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Abstract 

The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the 

capabilities of the robot. The position/force control problem of such a robot in the stance phase with point 

contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. 

Active joints of the legs and serial manipulator are used to exert the desired normal force on the plane while 

tracking a desired trajectory on the plane. First, the equations of motion of the robot and contact forces of the 

feet on the ground are derived. A controller is then proposed which tracks the desired trajectory while keeping 

the feet contacts on the ground and prevent slipping. An optimization problem is solved in each control loop to 

minimize the actuation effort. This minimization is subject to position tracking for the end-effect or (using 

inverse dynamics controller), force requirements of the feet contacts with the ground, and actuators capabilities. 

Simulations are conducted for the simplified model of a quadruped robot with a 2-DOF serial manipulator. To 

test the controller, a 20 N normal force is applied onto the target plane while moving the tip of the end-effector. 

It is shown that the robot can perform the task effectively without losing the ground contact and slipping. 

Keywords: Legged robots, Stiffness control, Minimum effort, Contact forces, Serial manipulator. 

 

1.   Introduction 

The end-effector of a serial manipulator has force 

interactions with the environment while performing a 

position/force control task. In such a situation a 

method for accounting the interaction forces in the 

controller is required. Without a force control strategy, 

the robot or the environment may be damaged. Also, 

some tasks such as grinding and polishing depend on 

applying a desired force on a surface while tracking a 

desired trajectory along the surface. In stiffness control 
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[1], [2], the desired force is exerted by commanding a 

desired trajectory inside the environment whose 

stiffness is known. The concept of hybrid 

position/force control proposed in [3] and extended in 

[4] uses the feedback data of force sensors to combine 

position and force controllers. Some variations of this 

method is presented in [5] and [6].  

However, when a serial manipulator is mounted on 

a mobile robot, stability of the whole robot becomes an 

important matter. The mobile robot is not fixed on the 

ground, hence force slipping or losing the contact with 
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the ground may happen. When the mobile robot is 

supposed to travel in an unstructured terrain, as in 

search-and-rescue operations, legged robots are better 

choices compared to wheeled robots [7]. Inverse 

dynamics controllers are implemented for position 

control of legged robots in locomotion [8]. Generating 

actuation torques or forces in legged robots that 

prevent slipping or losing contact of the legs which are 

in stance phase during the locomotion is also 

considered in [9]–[13]. The control method proposed 

in [9] computes the torques that minimizes tangential 

forces in contact points with the ground during 

locomotion. The advantage of using this method is that 

it gives an analytical solution to generate such input 

torques. But it does not check if the feet which are 

supposed to be in stance phase, actually remain in 

contact with the ground. Checking this condition 

becomes more important when a serial manipulator, 

which is operating a position/force control task, is 

mounted on the body of a legged robot.  

Separate position control for the serial manipulator 

and the body is proposed and implemented on a 

quadruped in [14], but separate controls needs 

estimation or feedback data of the force interaction 

between the body and the serial manipulator. In a 

position/force control task, the requirements of the 

contact points on the ground may be violated more 

easily than in a position control task. Hence, to avoid 

delays and errors, we do not separate the control. In 

addition, separate controls makes it difficult to present 

a minimum-effort control law, which is desired in 

mobile robots. 

We propose a general method for stiffness control 

of a serial manipulator mounted on a legged robot. The 

robot is assumed to be in stance phase and we utilize 

both the active joints of the legs and the serial 

manipulator to perform the task by a minimum effort 

control strategy. The actuation torques computed in the 

controller, will ensure that the feet remain in contact 

with the ground and do not slip. Presenting a unified 

minimum effort control method for the whole legged 

robot to perform stiffness control for the end-effector 

of the mounted serial manipulator while keeping the 

contacts of the feet on the ground and preventing the 

robot from slipping is not treated in the literature and 

is the subject of this paper. The modeling and the 

proposed control method is general and is not limited 

to a particular design of the robot. 

The kinematics and dynamics of the robot is 

modeled in section 2. The controller is introduced in 

section 3 where an optimization problem is solved in 

each loop of the control to generate the required 

actuation efforts. Simulation is performed for a 

simplified model of a quadruped equipped with a 2-

DOF serial manipulator in section 4. Results and 

discussion are presented in section 5 and the 

conclusion is presented in section 6. 

 

2.   Modeling 

A general legged robot is shown in Fig. 1. All the legs 

are in contact with the ground and there is no slipping 

between the feet and the ground. The tip of the end-

effector of the serial manipulator is in touch with a 

specified plane in the workspace, but there is no force 

interaction between them. We assume this 

configuration to be the initial configuration in our 

problem. 

 

Reaching to the configuration in Fig. 1 from 

another arbitrary configuration can be done using a 

suitable method for the problem such as what 

discussed in [14]. Also, we can treat the serial 

manipulator as another leg and use the position control 

methods for legged robots to reach the configuration 

depicted in Fig. 1[8]. The contact points of the legs on 

the ground are fixed and we assume that we have their 

position vectors in an inertial coordinate system. 

 

Fig. 1. A general legged robot in stance phase with a 
mounted serial manipulator. The position of the contact 
points are fixed and known in the inertial coordinate system 
{0}. The tip of the end-effector is in touch with a specified 
plane, but no force is exerted on the plane in this 
configuration. 

 

2.1.   Kinematics 

We describe the position and orientation of the body of 

the robot in the inertial coordinate system by 𝒒𝑏 ∈ ℝ
𝑊. 

We denote the joint configuration of the legs by 𝒒𝑙 ∈

ℝ𝑗 and the joint configuration of the serial manipulator 
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by 𝒒𝑎 ∈ ℝ
𝑟. Thus, the set of generalized coordinates 

𝒒 ∈ ℝ𝑛, 𝑛 = 𝑤 + 𝑗 + 𝑟, is: 

𝒒 = [𝒒𝑏
𝑇 𝒒𝑎

𝑇 𝒒𝑙
𝑇]𝑇 (1) 

Now if we attach local coordinate systems to the links, 

the position and orientation of them can be obtained in 

terms of 𝒒. 

We have assumed that the robot is in stance phase. 

Therefore, if it has 𝑠 legs, there are 𝑠 independent 

vector loops that define the kinematics of the body and 

legs. Writing these vector loops in a Cartesian 

reference frame, we have 3𝑠 equations, 𝒄1 ∈ ℝ
3𝑠: 

𝒄1(𝒒𝑏 , 𝒒𝑙) = 𝟎 (2) 

These are in fact, constraint equations that must be 

satisfied in the kinematic model of the robot. First and 

second time-derivatives of (2) are: 

𝐴�̇� = 𝟎 (3) 

𝐴�̈� + �̇��̇� = 𝟎, (4) 

where, 𝐴(𝒒) ∈ ℝ𝑚×𝑛, 𝑚 = 3𝑠 is: 

𝐴 =
𝜕𝒄1
𝜕𝒒

 (5) 

If we denote the tip of the end-effector of the serial 

manipulator by 𝐷, the position of this point in the 

inertial frame is a function of 𝒒𝑏 and 𝒒𝑎: 

𝒄2(𝒒𝑏 , 𝒒𝑎) = 𝒓𝐷 (6) 

Also, the orientation of the end-effector in the 

reference frame is related to 𝒒𝑏 and 𝒒𝑎. For example, 

if we let 𝜓, 𝜙 and 𝜃 be the 𝑥𝑦𝑧 Euler angles of the end-

effector, the orientation of the end-effector is: 

𝒄3(𝒒𝑏 , 𝒒𝑎) = [𝜓 𝜙 𝜃]𝑇 (7) 

  

2.2.   Dynamics 

We assume that the stiffness of the ground is high 

enough so that it can be considered as a rigid material. 

Because the end-effector is in contact with another 

environment, the forces between the two must be 

accounted in the dynamics. It is desired to apply a 

normal force by the end-effector’s tip to a plane 

specified in the workspace which is the external 

surface of an environment. The unit normal vector of 

this plane is �̂� ∈ ℝ3. We assume that the stiffness of 

the environment is uniform in the �̂� direction and 

denote it by k. We neglect the friction force between 

the surface and the tip of the end-effector. In the initial 

configuration, the tip of the end-effector is just in touch 

with the plane but does not exert any force on it. We 

denote the tip of the end-effector by 𝐷 and its initial 

position in the inertial frame by 𝑟𝐷
⋆. 

 

There is no force interaction between the end-

effector and the environment if point 𝐷 is outside the 

environment, i.e. when (𝒓𝐷 − 𝒓𝐷
⋆ ). �̂� ≥ 0 in Fig. 2. 

When point 𝐷 goes inside the environment, (𝒓𝐷 −

𝒓𝐷
⋆ ). �̂� becomes negative in Fig. 2, and the end-effector 

is exerting force on the environment. 

 

In this case, the work done by the tip of the end-

effector on the environment is: 

𝑊𝑓 =
1

2
𝑘((𝒓𝐷 − 𝒓𝐷

⋆ ) . �̂�)
2
 (8) 

 

In matrix notation, the above equation is: 

𝑊𝑓 =
1

2
𝑘(�̂�𝑇(𝒓𝐷 − 𝒓𝐷

⋆ ))
2
 (9) 

Therefore: 

𝛿𝑊𝑓 = 𝑘 �̂�𝑇(𝒓𝐷 − 𝒓𝐷
⋆ )�̂�𝑇

𝜕𝒓𝐷
𝜕𝒒

𝛿𝒒 (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The difference between the current and the initial 
position vector of point D, the tip of the end-effector, is 
denoted by 𝜟𝒓𝑫. If point D is outside the environment (red 
vectors): 𝜟𝒓𝑫. �̂� ≥ 𝟎. If point D is inside the environment 
(blue vectors): 𝜟𝒓𝑫. �̂� < 𝟎 

 

If all the legs remain in contact with the ground and do 

not slip, the dynamics of the robot which has 𝑝 

actuators, using Lagrange’s method, can be written in 

the form of: 
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𝑀(𝒒)�̈� + 𝒉(𝒒, �̇�) = 𝐵𝝉 + 𝐴𝑇𝝀

− 𝑘 (
𝜕𝒓𝐷
𝜕𝒒

)
𝑇

�̂�(𝒓𝐷

− 𝒓𝐷
⋆ )𝑇�̂� 

𝐴�̈� + �̇��̇� = 𝟎, 

(11) 

where 𝑀(𝒒) ∈ ℝ𝑛×𝑛 is the positive-definite inertia 

matrix, 𝒉(𝒒, �̇�) ∈ ℝ𝑛 is the vector of gravitational, 

centrifugal and Coriolis forces, 𝐵 ∈ ℝ𝑛×𝑝 is the 

actuation selector matrix, 𝝉 ∈ ℝ𝑝 is the actuation 

vector, 𝝀 ∈ ℝ𝑚 is the vector of Lagrange’s multipliers, 

and the last term is the contribution of the normal 

interaction force to the dynamics of the robot. This 

term is the transpose of what we obtained in (10). The 

second equation in (11) is the constraint equations at 

acceleration level in (4). In (11), it is obvious that as 

long as 𝒓𝐷 equals 𝒓𝐷
⋆ , there will be no exerted force on 

the plane. This is especially true when the joint 

configuration of the robot changes but 𝒓𝐷 remains 

equal to its initial value: 𝒓𝐷
⋆ . 

The main simplification that we had made to 

include the external force in (11), is that we have 

assumed that the normal vector of the target plane and 

its stiffness is known. Therefore, tracking the desired 

trajectories will ensure the tracking of the desired 

force. However, if the normal vector and the stiffness 

are not known, force sensor data are needed to model 

the dynamics; in which case, the control procedure 

must have a force control loop to track desired forces 

[15]. 

To simplify the notation, according to what we 

discussed about Fig. 2, we take: 

𝒉𝑘 = {
𝒉 + 𝑘 (

𝜕𝒓𝐸
𝜕𝒒

)
𝑇

�̂�(𝒓𝐷 − 𝒓𝐷
⋆ )𝑇�̂�(𝒓𝐷 − 𝒓𝐷

⋆ )𝑇�̂� < 0

𝒉(𝒓𝐷 − 𝒓𝐷
⋆ )𝑇�̂� ≥ 0

 (12) 

and rewrite (11): 

𝑀�̈� + 𝒉𝑘 = 𝐵𝝉 + 𝐴
𝑇𝝀 

𝐴�̈� + �̇��̇� = 𝟎, 
(13) 

In the inverse dynamics problem, (13) is a set of 𝑛 +

𝑚 equations for 𝑛 + 𝑚 unknowns, namely 𝒒 and 𝝀. 

The Lagrange’s multipliers can be obtained from 

(13). We obtain �̈� from the first equation in (13) and 

then replace it in the second equation[16]. The result 

is: 

𝝀 = 𝐵1(𝒒)𝝉 + 𝑩2(𝒒, �̇�), (14) 

where 𝐵1 and 𝑩2 are: 

𝐵1 = −(𝐴𝑀−1𝐴𝑇)−1𝐴𝑀−1𝐵 

𝑩2 = (𝐴𝑀−1𝐴𝑇)−1(𝐴𝑀−1𝒉𝑘 − �̇��̇�) 
(15) 

 

3.   Control method 

Here, the tasks of the control system are to:  1) apply a 

desired amount of normal force by the tip of the end-

effector on a defined plane in the workspace, 2) 

tracking a desired trajectory for the end-effector’s tip 

on the plane and tracking the desired orientation of the 

end-effector, and 3) ensuring that the feet remain in 

contact with the ground and do not slip. The computed 

𝜏 in the controller to satisfy the above requirements 

will be based on (13). Note that in this equations, we 

have in fact modeled the force interaction of the 

robot’s end-effector and the specified plane by its 

equivalent effect on the generalized coordinates using 

the stiffness of the environment. Now, tracking the 

desired trajectories of the generalized coordinates will 

accomplish both tasks of position and force control of 

the end-effector, i.e. tasks 1 and 2. 

 

3.1.   Controller 

In order to obtain a convenient form of the 

equations of motion for inverse dynamics control law, 

Lagrange’s multipliers must be eliminated from (13). 

We first obtain the orthogonal complement of matrix 

𝐴, which is 𝐶 ∈ ℝ(𝑛−𝑚)×𝑛 and then pre-multiply the 

first equation in (13) by 𝐶𝑇: 

𝐶𝑇𝑀�̈� + 𝐶𝑇𝒉𝑘 = 𝐶
𝑇𝐵𝝉 + (𝐴𝐶)𝑇𝝀 (16) 

Since 𝐴𝐶 = 0𝑚×𝑛, Lagrange multipliers are 

eliminated and from the equations of motion. Denote 

𝐶𝑇𝑀 in (16) by �̂�, 𝐶𝑇𝒉𝑘 by �̂�𝑘, and 𝐶𝑇𝐵 by �̂�, and 

rewrite (16): 

�̂��̈� + �̂�𝑘 = �̂�𝝉 (17) 

 

where �̂� ∈ ℝ(𝑛−𝑚)×𝑛, �̂�𝑘 ∈ ℝ
𝑛−𝑚, and �̂� ∈

ℝ(𝑛−𝑚)×𝑝.  

Thus, after the elimination of the Lagrange’s 

multipliers, (13) can be written in the form of: 

�̂��̈� + �̂�𝑘 = �̂�𝝉 

𝐴�̈� + �̇��̇� = 𝟎, 
(18) 

Different methods such as SVD [17] or QR 

decomposition [18] can be used to compute 𝐶.The 

above equation can be written in the form of: 

�̃��̈� + �̃�𝑘 = �̃�𝝉, (19) 

where �̃� ∈ ℝ𝑛×𝑛, �̃�𝑘 ∈ ℝ
𝑛 and �̃� ∈ ℝ𝑛×𝑝 are: 

�̃� = [�̂�
𝐴
] , �̃�𝑘 = [

�̂�
�̇��̇�
]  , �̃� = [�̂�

0
] (20) 
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For now, we assume that the trajectories of the 

generalized coordinates are already planned. These 

trajectories, if properly tracked, will ensure that the 

end-effector will exert the desired force on the plane, 

follows the desired trajectory on the plane, and that the 

dynamic stability of the robot is not violated. Also, we 

assume that the feedback data of 𝒒 and �̇� are available 

in each control loop.Thus, in each loop in the 

controller, having the values of 𝒒 and �̇�, we use an 

inverse dynamics control law to track the desired 

trajectories. The desired values of the generalized 

coordinates and their first and second time-derivatives 

are denoted by subscript 𝑑. We compute vector 𝒖 ∈
ℝ𝑛: 

𝒖 = �̈� = �̈�𝑑 + 𝐾𝐷(�̇�𝑑 − �̇�) + 𝐾𝑃(𝒒𝑑 − 𝒒), (21) 

where, 𝐾𝐷 ∈ ℝ
𝑛×𝑛 and 𝐾𝑃 ∈ ℝ

𝑛×𝑛 are the positive-

definite diagonal matrices of 𝐷 and 𝑃 coefficients in 

the PD controller. The above equation will result in a 

stable error dynamics, 𝒆 = 𝒒 − 𝒒𝑑, 𝒆 ∈ ℝ𝑛: 

�̈� + 𝐾𝐷�̇� + 𝐾𝑃𝒆 = 𝟎 (22) 

Note that 𝒖 = �̈� computed in (21) may violate the 

constraint equations at acceleration level, i.e.(4). 

Therefore, we will compute 𝒖 = �̈� in a slightly 

different way. 

If we denote the active generalized coordinates by �̅� ∈
ℝ𝑝, we first compute �̅� ∈ ℝ𝑝: 

�̅� = �̈̅� = �̈̅�𝑑 + 𝐾𝐷(�̇̅�𝑑 − �̇̅�) + 𝐾𝑃(𝒒𝑑 − 𝒒) (23) 

Where 𝐾𝑉 ∈ ℝ
𝑝×𝑝 and 𝐾𝑃 ∈ ℝ

𝑝×𝑝. Then, denoting the 

passive generalized coordinates by 𝒒° ∈ ℝ𝑛−𝑝, we can 

obtain 𝒖° = �̈�°  from (4) (maybe by using a 

generalized inverse). Then we arrange the elements of 

�̅� and 𝒖° to obtain the vector 𝒖. 

Now, computing�̂�, �̂�𝑘 and �̂� in (18) by feedback 

data of 𝒒 and �̇�, we can find the required values of 𝝉 to 

track the desired trajectories: 

�̂�𝝉 = �̂�𝒖 + �̂�𝑘 , (24) 

where �̂� is a 𝑛 − 𝑚 by 𝑝 matrix. The usual case for 

legged robots in stance phase is that 𝑛 − 𝑚 > 𝑝. Now 

in presence of a mounted serial manipulator, this 

inequality becomes stronger. Therefore, (24)is a set of 

equations with more unknowns than the number of 

equations. Hence, Moore-Penrose generalized inverse 

gives the answer for 𝝉 while minimizing norm-2 of the 

𝝉. 

Applying the computed actuation vector in (24) by 

the actuators, ensures the tracking objective of the 

desired force on the plane and the desired 

position/orientation of the end-effector. But note that 

tracking the desired trajectories of the generalized 

coordinates is not sufficient in this problem. Note that 

(13) which our controller is based upon, was derived 

by the assumption that all feet remain in contact with 

the ground and do not slip. When the computed 𝝉 in 

(24) is applied to the robot, it may result in lifting the 

feet from the ground or tangential contact forces 

between some of the feet and the ground which cause 

slipping. 

Lagrange’s multipliers in (13) are related to contact 

(or constraint) forces between the feet and the ground. 

The relation can be obtained if the normal vector of the 

surface under each foot is known. We have derived 

Lagrange’s multipliers in (14) in terms of𝝉, 𝒒 and �̇�. 

Let 𝒇𝑖 and 𝑁𝑖 represent the normal and tangential 

constraint forces exerted to the 𝑖-th feet in contact with 

the ground. According to what we discussed, we can 

express 𝒇𝑖 and 𝑁𝑖 in terms of the 𝝉, 𝒒 and �̇� using(14), 

if the normal vectors of all surfaces under the feet are 

known: 

𝑖 = 1, 2, … , 𝑠 {
𝒇𝑖 = 𝐶1𝑖(𝒒)𝝉 + 𝑪2𝑖(𝒒, �̇�)

𝑁𝑖 = 𝐶3𝑖(𝒒)𝝉 + 𝑪4𝑖(𝒒, �̇�)
 (25) 

These equations can be used in the controller to 

prevent slipping and loss of contact with the ground. 

The requirements on 𝒇𝑖 and 𝑁𝑖 are inequality 

constraints, because 𝑁𝑖 must be positive and |𝒇𝑖| <
𝜇𝑠𝑖𝑁𝑖, where 𝜇𝑠𝑖  is the static coefficient of friction 

corresponding to the 𝑖-th foot on the ground. 

Therefore,(25) can be considered as inequality 

constraints for an optimization problem. 

In mobile robots, it is desired to seek minimum-

effort control laws, because these robots have to carry 

their own power supplies. In the controller we can 

solve an optimization problem in each loop, to find the 

minimum of the norm-2 of 𝝉, subjected to equality 

constraint (24) and inequality constraints(25). The 

problem must also be subjected to actuator’s limits to 

prevent saturation. 

To sum up, having the feedback values of 𝒒 and �̇� 

in each loop, we first construct 𝒖 and compute �̂�, �̂�, 

�̂�𝑘 in (24) and 𝐶1 to 𝑪4 in (25) for all the legs. Then 

we solve the following optimization problem: 

min‖𝝉‖2 

subject to:

{
 

 
�̂�𝝉 = �̂�𝒖 + �̂�𝑘

𝑖 = 1, 2, … , 𝑠: {
𝑁𝑖 > 𝑁𝐿
|𝒇𝑖| < 𝜁𝑁𝑖

𝑗 = 1,2,… , 𝑝 ∶ 𝜏min < 𝜏𝑗 < 𝜏max

, 
(26) 

where we have used the limit 𝑁𝐿 > 0 to prevent normal 

force to become too much close to zero. Also instead 

of 𝜇𝑠 we used 0 < 𝜁 < 𝜇𝑘 < 𝜇𝑠, where 𝜇𝑘 is the 

kinetic coefficient of friction. Now the controller stops 

the slipping if it occurs between two consecutive 

computation of 𝝉. Note that 𝑁𝐿, 𝜁 and 𝜏min,𝜏max can be 

different for different feet and actuators. 
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3.2.   Trajectory planning and dynamic stability 

So far, we have assumed that the desired 

trajectories of all the generalized coordinates were 

planned. In practice, a desired final position and 

orientation for the end-effector is given and the 

required joint configuration must be determined. 

Therefore, we first need to determine the final 

configuration of the robot, and then plan the 

trajectories of all generalized coordinates from the 

initial to final configuration while maintaining the 

dynamic stability of the robot. We assume that the 

robot is statically stable in its initial configuration. 

We denote the desired final position of the end-

effector by 𝑟𝐷𝑓 and its desired final orientation by 

[𝛼𝑓 𝛽𝑓 𝛾𝑓]𝑇. Since the inverse kinematics problem 

for legged robots in stance phase, usually has infinite 

solutions, one can find the final joint configuration 

which minimizes a cost function. We denote the final 

values of the generalized coordinates and the actuation 

vector by 𝒒𝑓 and 𝝉𝑓, respectively. We assume that the 

robot is going to be at rest in the final configuration, 

therefore: �̇�𝑓and �̈�𝑓 are both zero. Thus, the cost 

function can be a general function of 𝒒𝑓 and 𝝉𝑓. We 

will ensure that a static stability criterion is satisfied in 

the final configuration. The static stability criterions 

are functions of the configuration of the robot and the 

external forces/torques [19][20]; therefore one can 

formulate them as a constraint for the optimization 

problem in the final configuration. Moreover, all the 

feet must be in contact with the ground and must not 

slip in the final configuration. Also, joint limits must 

be accounted. Therefore, according to (2), (6), and (7), 

we solve an offline optimization problem to find a 

suitable joint configuration to realize the mentioned 

requirements: 

 

 

 

 

 

 

 

 

min 𝑔(𝒒𝑓 , 𝝉𝑓) 

s.t.:

{
 
 
 
 
 

 
 
 
 
 

�̂�𝝉𝑓 = �̂�𝑘

𝑖 = 1, 2, … , 𝑠: {
𝑁𝑖 > 𝑁𝐿
|𝒇𝑖| < 𝜁𝑁𝑖

𝑗 = 1, 2,… , 𝑝 ∶ 𝜏min < 𝜏𝑓(𝑗) < 𝜏max

𝑣 = 1,… , 𝑛: 𝑞𝑓(𝑣)min < 𝑞𝑓(𝑣) < 𝑞𝑓(𝑣)max

𝒄1(𝒒𝑓) = 𝟎

𝒄2(𝒒𝑓) = 𝒓𝐷𝑓

𝒄3(𝒒𝑓) = [𝛼𝑓 𝛽𝑓 𝛾𝑓]𝑇

static stability criterion

 
(27) 

 

The result is the final joint configuration and the 

actuation vector in this configuration. 

Now that we have the initial and final values of 𝒒, 

the desired trajectories of all the generalized 

coordinates, 𝒒𝑑, can be planned to be tracked in the 

controller. Note that in planning the trajectories from 

the initial to the final point, the dynamic stability of the 

robot must be considered using a convenient method. 

Some of these methods are discussed in [21]–[25]. 

However, one might plan the trajectories without 

paying attention to the dynamic stability, using 

polynomial functions or other methods such as 

potential fields [26]–[28]. In this case, there might 

exist regions between the initial and final configuration 

in which the dynamic stability of the robot is violated. 

Note that the robot is statically stable in the initial and 

final configurations. The controller in (26) computes a 

vector 𝝉 in each loop that ensures that the magnitude 

of the normal force for all the feet is at least equal to 

𝑁𝐿 and that the feet do not slip. Thus, when the robot 

is passing through a dynamically unstable region, 

between each two consecutive computation of 𝝉, the 

magnitude of the normal force under unstable feet 

becomes less than 𝑁𝐿. If the next 𝝉 is computed and 

applied to the robot before the magnitude of the normal 

force reaches to zero, the contact will be maintained. 

However, sudden changes in the magnitude of the 

normal forces is not desired. It is clear that the success 

in passing through the unstable regions with less 

undesirable effects depends on the fast computation of 

𝝉 in each loop in(26). 

A flowchart representation of the control 

procedure is shown in Fig. 3.  
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4.   Simulation 

In this section we implement the discussed method for 

the model of a quadruped robot that has a mounted 2-

DOF serial manipulator on its body. The position and 

force control of the end-effector is to be done in the 2D 

plane. To keep the simulation as simple as possible, we 

assume that the motion of the front legs is generated 

synchronically. If we assume the same for rear legs, we 

can model the robot in the 2D plane. The schematic of 

the robot in an arbitrary configuration is depicted 

inFig. 4, where the coordinate systems and the 

generalized coordinates are also shown.The unit 

normal vector of the plane is: 

[𝑛𝑥 𝑛𝑦]𝑇 = [− cos 𝜋 6⁄ − sin 𝜋 6⁄ ]𝑇 (28) 

 

Fig. 4. The 2-D model of a quadruped robot with a mounted 
2-DOF serial manipulator. Point 𝑫 is in contact with the 

Fig. 3. Flowchart of the control system. 
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plane whose unit normal vector is �̂�. The inertial coordinate 
system and attached local coordinate systems to the links are 
depicted. The definition of generalized coordinates are also 
shown. 

In the initial configuration the tip of the end-effector is 

in touch with the plane, but no force is applied to it.The 

values of the generalized coordinates in the initial 

configuration is given inTable 1. It is desired to apply 

a 10 N normal force on the plane in the final 

configuration, while moving the tip of the end-effector 

0.05 m upward along the plane. The stiffness of the 

environment is 103 N/m. Therefore, the tip of the end-

effector must have a 0.01 m normal displacement into 

the environment. The initial position of the tip of the 

end-effector is [0.073 0.556]𝑇 m and its desired 

final position is [0.057 0.604]𝑇 m. To decide on 

final values of 𝒒, we set𝒉 = 𝒉𝑘 in (27) and solved the 

offline optimization. Norm-2 of 𝝉was used as the cost 

function. The resulted final configuration is given in 

Table 1. The values of 𝑁𝐿 and 𝜁 for all legs were set to 

10 N and 0.2, respectively. The kinematic constraint 

equations (2) for this robot consist of two vector loops: 

[
𝑥𝐸
𝑦𝐸
] = [

𝑙
0
] = [

𝑞1
𝑞2
] + 𝑅𝐵

0 [
1
0
] 𝑙 + 𝑅1

0 [
1
0
] 𝑙

+ 𝑅2
0 [

1
0
] 𝑙 

[
𝑥𝐹
𝑦𝐹
] = [

−𝑙
0
] = [

𝑞1
𝑞2
] − 𝑅𝐵

0 [
1
0
] 𝑙 + 𝑅3

0 [
1
0
] 𝑙

+ 𝑅4
0 [

1
0
] 𝑙 

(29) 

In these relations, 2-by-2 rotation matrices are used to 

write the unit vectors in the reference frame. For 

example 𝑅𝑏
0 = 𝑅𝑧(𝑞3) and 𝑅4

0 = 𝑅𝑏
0 𝑅3

𝑏 𝑅4
3 , where 

𝑅4
3 = 𝑅𝑧(𝑞7) and 𝑅3

𝑏 = 𝑅𝑧(𝑞6).For this robot, the 

formulation of (6) is: 

[
𝑞1
𝑞2
] + 𝑙5 𝑅5

0 + 𝑙6 𝑅6
0 = 𝒓𝐷 (30) 

The desired orientation of the end-effector is not 

specified in the final configuration, therefore there is 

no related constraint in the form of (7) in (26). All of 

the revolute joints are active in which 𝜏min and 𝜏max are 

set to -10 Nm and 10 Nm, respectively. The body is a 

uniform slender bar of 2 kg mass. All other links are 

also uniform slender bars and each of them is 1 kg. 

Length 𝑙 inFig. 4is 0.2 m. Our static stability criterion 

was to locate the projection of the center of the mass 

on the ground to be in the range of −𝑙/3 and 𝑙/3. The 

obtained final configuration of the robot is given in 

Table 1, the time derivative of the generalized 

coordinates in the initial and final configuration are 

zero. The kinetic and potential energies of all the links 

can be written in terms of the generalized coordinates. 

Then the equations of the motion for the robot in (11) 

can be obtained, where 𝜕𝒓𝐷/𝜕𝒒 is obtained from (30). 

In the controller, the P and D coefficients were set to 

300 and 120 for all active generalized coordinates. 

These values of P and D coefficients were obtained by 

trial-and-error to achieve a fast response with 

minimum overshoot and steady-state error. The 

trajectories of the generalized coordinates from their 

initial to final values were obtained using fourth order 

polynomials. The first and second time derivatives of 

all generalized coordinates were assumed to be zero at 

𝑡 = 0.60 s in planning the desired trajectories. After 

𝑡 = 0.6 𝑠, all the generalized coordinates equal to their 

desired final values. 

Table 1. Generalized coordinates values in the initial and 
final configurations. The first two elements are in meter and 

others are in radian. 

 𝒒 

Initial config. 
[0.000  0.283  0.00  5.67  4.36  

3.93  1.57  2.09  4.71]T 

Final config. 
[-0.003  0.400  0.01  5.23  5.25  

4.80  -0.18  2.29  4.27]T 

5.   Results and Discussion 

The problem was simulated for 2.00 s where the 

control signal was updated at the rate of 200 Hz. The 

same rate was used to feed the values of the desired 

interpolated trajectories to the controller. All of the 

optimizations were solved using “fmincon” function 

with interior-point algorithm in MATLAB®. In these 

optimizations, the lower bound on the size of the step 

was equal to 10-10 and the lower bound on the change 

in the value of the cost function during a step was equal 

to 10-6. For the offline optimization in (27), the 

optimization was stopped after 32 iterations because 

the change in the value of the cost function during the 

last step was less than 10-6. The value of the cost 

function in each step is depicted in Fig. 5. 

The differential equations in (19) were solved 

using fourth order Runge-Kutta method. Reaching the 

desired position of the point 𝐷 ensures that it has 

moved 0.05 cm along the plane and applied a 10 N 

normal force to it in the final configuration. The 

desired and actual trajectories of 𝑥 and 𝑦 components 

of point 𝐷 is shown in Fig. 6 and Fig. 7, respectively. 

The desired and actual trajectory of point D in the 𝑥𝑦 

plane is depicted in Fig. 8.The actuation effort for all 

of actuators is depicted in Fig. 9. Their values are 

within the range of -10 to 10 Nm, so none of them were 

saturated. Note that in Fig. 9, 𝜏(𝑖) acts on 𝑞𝑖+3 for 𝑖 =
1, 2, … , 6 depicted in Fig. 4.  
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Fig. 5. The values of cost function, |𝝉𝒇|, in each iteration in 
the offline optimization (). During the last step, the change 
in the value is less than 10-6. 

 

 

 

 

Fig. 6. The desired and actual trajectories of 𝒙 component of 
point 𝑫. 

 

 

 

 

 

 

 

Fig. 7. The desired and actual trajectories of 𝒚 component of 
point 𝑫. 

 

 

 

 

Fig. 8. The desired and actual trajectories of point 𝑫 in the 
𝒙𝒚 plane. 
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Fig. 9. Trajectories of computed 𝝉 in the controller. For 𝒊 =
𝟏, 𝟐,… , 𝟔, 𝝉(𝒊) acts on 𝒒𝒊+𝟑 in Fig. 4. 

However, tracking the desired position without paying 

attention to the force requirements of the feet on the 

ground was meaningless. An important task of the 

controller was to keep all the feet in contact with the 

ground. The normal force at points E and F during the 

simulation are depicted in Fig. 10. Their values are 

greater than  𝑁𝐿 = 10 N. The other crucial task was to 

prevent slipping. Applying the computed torques in the 

controller must result in the friction coefficients at 

points E and F, i.e. 𝑓𝐸/𝑁𝐸 and 𝑓𝐹/𝑁𝐹, to be in the range 

of −0.2 to 0.2 for all instants. The trajectories of these 

coefficients are depicted in Fig. 11. In the initial 

configuration there is no slipping in points E and F. It 

is clear from Fig. 11that if position tracking was not 

subjected to no-slipping conditions in the controller, 

point F would have slipped immediately. The 

controller has produced 𝝉 in each loop that keeps 𝑓/𝑁 

in both points, E and F, between −0.2 and0.2. 

 

Fig. 10. Normal reaction forces in points E and F. Their 
values are greater than 𝑵𝑳 = 𝟏𝟎 N that was set in the 
controller.  

 

 

Fig. 11. The fraction 𝒇/𝑵 for points E and F during the 
simulation. This fraction must is kept between 𝜻 = −𝟎. 𝟐 and 
𝜻 = 𝟎. 𝟐 to prevent or stop slipping if it occurs. 

6.   Conclusion 

The position/force control for the end-effector of a 

general serial manipulator mounted on a legged robot 

was discussed using stiffness control approach. Active 

joints in both the manipulator and the legs were used 

in the control. The task was to apply a desired normal 

force to a specified plane, while moving the end-

effector tip over some desired trajectories on the plane. 

Assuming stiffness of the target plane is known, 

tracking the desired trajectories meant satisfying both 

force and position requirements. The equations of 

motion of the robot were obtained using Lagrange’s 

method. In the equations it was assumed that the 

ground was rigid and the contact points of the feet on 

the ground were fixed. We eliminated the Lagrange’s 

multipliers to obtain a suitable form for position 

tracking purpose. Because the Lagrange’s multipliers 

were functions of the feet contact forces, we recovered 

them in terms of the generalized coordinates, their first 

time-derivatives and the actuation effort. The resulted 

contact force functions in the controller were then used 

to compute an actuation vector which kept the contacts 

of the feet with the ground and prevented them from 

slipping. An optimization problem was solved in each 

loop of the control to minimize the actuation effort. 

The optimization was subject to position tracking of 

the end-effector, force requirements of the feet and 

actuators capabilities. Simulations were conducted for 

a simplified model of a quadruped robot equipped with 

a 2-DOF serial manipulator. It was desired to apply a 

10 N normal force to a plane while moving the end-

effector’s tip 5 cm upward on the plane. It was shown 

that the reaction of the normal force, exerted to the 
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robot, was enough to make it slip on the ground. 

Therefore, tracking the desired trajectories for the end-

effector was impossible without preventing the feet 

from slipping. The position/force control task was 

accomplished successfully because the generated 

actuation torques were computed regarding both 

requirements of the end-effector and the feet on the 

ground. 
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