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Abstract 

In this article, the free vibration behavior of nanoscale FG rectangular plates is studied within the framework of the 

refined plate theory (RPT) and small-scale effects are taken into account. Using the nonlocal elasticity theory, the 

governing equations are derived for single-layered FG nanoplate. The Navier’s method is employed to obtain closed-

form solutions for rectangular nanoplates assuming that all edges are simply supported. The results are subsequently 

compared with valid results reported in the literature. The effects of the small scale on natural frequencies are 

investigated considering various parameters such as aspect ratio, thickness ratio, and mode numbers. It is shown that 

the RPT is an accurate and simple theory for the vibration analysis of nanoplates, which does not require a shear 

correction factor. 
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1.   Introduction 

Over the past two decades, many researchers have 

employed the nonlocal elasticity theory for the 

investigation of the vibration behavior and buckling 

response of nanostructures. Such nanostructures 

include nanotubes[1-5], nanorods[6], nanorings[7]and 

nanoplates [8-14]. The nonlocal elasticity theory was 
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introduced by Eringen [15]. He modified the classical 

continuum mechanics for taking into account small 

scale effects. In this theory, the stress state at a given 

point depends on the strain states at all points in the 

domain, while in the local theory, the stress state at any 

given point depends only on the strain state at that 

point.  

Graphene is a truly two-dimensional atomic crystal 

with exceptional electronic and mechanical properties. 
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The graphene sheets are widely used in the micro 

electro-mechanical systems (MEMS), nano electro-

mechanical systems (NEMS), and in devices such as 

oscillators, clocks, and sensors. Electromechanical 

resonators are NEMS devices made from suspended 

single- and multi-layered graphene sheets [16]. 

Furthermore, potential applications have been 

investigated for the SLGSs as mass sensors and 

atomistic dust detectors [17]. Proper application of 

SLGSs depends on a thorough understanding of their 

mechanical properties. Vibration behavior is one such 

mechanical property that is of great importance from a 

design perspective. Ansari[18] obtained the natural 

frequencies of a multi-layered graphene sheet 

embedded in an elastic medium. The vibration analysis 

of the circular nanoplate was investigated by 

researchers[13]. Theclassical plate theory (CPT) and 

first-order shear deformation theory (FSDT) were 

developed for the free vibration of nanoplates 

[19].Aghababaei and Reddy[19] reformulated the 

third-order shear deformation plate theory for the 

vibration and bending of nanoplates. Ansari et 

al.[18]investigated the vibrational characteristics of 

multi-layered graphene sheets using the nonlocal finite 

element model. Assadi and Farshi [20] studied the free 

vibration of circular nanoplates taking into 

accounttheir surface properties. A levy type method 

has also been used in the vibration and buckling 

analysis of nanoplates using the nonlocal plate model 

[10].  

In this paper the refined plate theory is applied to 

obtain the vibration frequency of the FG rectangular 

nanoplate. The transverse displacement has two 

(bending and shear) components and the parabolic 

distribution of the transverse shear strains through the 

thickness of the plate is taken into account. In this 

theory, it is assumed that the transverse shear strains 

vary parabolically across the thickness. The shear 

stress components satisfy the zero traction boundary 

conditions on the top and bottom surfaces of the plate 

without using shear correction factors. In the present 

work, RPT has been extended to single-layered 

graphene sheets. The governing equations are derived 

for the FG rectangular nanoplate based on the nonlocal 

elasticity theory. Explicit solutions are obtained for the 

natural frequencies of rectangular nanoplates with all 

edges simply supported by applying the Navier’s 

method. The natural frequencies calculated by the 

proposed theory are compared with results obtained 

from other theories such as the classical plate theory 

(CPT), first order shear deformation theory (FSDT), 

and third order shear deformation theory (TSDT). The 

effects of the small scale on natural frequencies are 

also studiedby considering various parameters such as 

aspect ratio, thickness ratio, and mode numbers.  

2.   Nonlocal elasticity 

As mentioned in the previous Section, the nonlocal 

elasticity theory, first introduced by Eringen [21], has 

been widely used for the analysis of nonlocal problems 

[12, 22-28]. According to this theory, a stress-strain 

relationship for a homogeneous elastic solid is 

expressed as: 

'( , ) l

ij ij

V

x x dV                                          (1)  

where,
ij  and l

ij  are the nonlocal and local stress 

tensors, respectively. The integration extends over the 

entire body volume,V . The function   is the nonlocal 

modulus, which contains the small scale effects. It is 

obvious that the nonlocal modulus has the dimension 

of  
3

length


. This function depends on two variables, 

namely 'x x and  , as seen from the above equation.

'x x represents the distance between points x  and 

'x .  is a material constant defined by: 

0 ie l

L
                                                                   (2)  

where,
il  and L  denote the internal and external 

characteristic lengths, respectively. The value of the 

parameter
0e is vital for the validity of nonlocal 

models. Eringen [21] obtained a value of 0.39 for this 

parameter by matching the dispersion curves based on 

atomic models. Recently, most researchers have used 

values ranging from 0 to 2 nm for the nonlocal 

parameter,
0 ie l ,in the analysis of nanoplates.

 

It is difficult to apply Eq. (1) for solving nonlocal 

elasticity problems. Therefore, the following 

differential form of Eq. (2) is often used [29] 

 
2 2

0 :ij ije a C                                              (3)  

The symbol ‘:’ indicates the double dot product, 

while C  and  are the fourth order elasticity and strain 

tensors, respectively. 2 2 2 2 2x y      is the two-

dimensional Laplace operator. Note that the classical 

relationship between the stress and strain tensors can 

be obtained by setting 0 0e a  in the above constitutive 

equation. The local stress tensor is as follows: 

3.   Governing equations based on RPT 

In the present work, we employ the refined plate theory 

for the vibration analysis of rectangular nanoplates 

(Fig. 1). According to this theory, the transverse shear 

strains vary parabolically over the plate thickness. The 

shear stress components must satisfy the following 

conditions: 
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0   at   
2

xz yz

h
z                                            (4)

 

where, h  is plate thickness.  

The displacement field can be written as: 

1( , , , ) ( , , ) ( )b sw w
U x y z t u x y t z zf z

x x

 
  

 
 

2( , , , ) ( , , ) ( )b sw w
V x y z t v x y t z zf z

y y

 
  

 
 

( , , , ) ( , , ) ( , , ) ( , , )e b sW x y z t w x y t w x y t w x y t     (5)
 

 

Fig.1.A continuum plate model of the nanoplate. 

 
where, 

2 2

1 2

5 1 5
( ) ,    ( ) 5

3 4 4

z z
f z f z

h h

   
      

   
                (6)

 

 
in which, u and v denote mid-plane displacements 

of the plate in the x and y directions, respectively.

,  e bw w ,and 
sw represent the extension, bending, and 

shear components of the transverse displacement, 

respectively. The extension component ew of the 

transverse displacement may be regarded as negligible 

compared to other displacement components in most 

cases. Using the above-mentioned displacement field, 

one can obtain the strains as follows: 

 

       0

1( )b sz zf z     
 

       2( )e sf z   
                                        

(7)
 

 
where, 

  , ,
T

x y xy       ,  0 , ,

T

u v u v

x y y x


     
   
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, 

 
2 2 2

2 2
, ,2

T

b b b bw w w

x y x y


   
   

    
 

 

 
2 2 2

2 2
, ,2

T

s s s sw w w

x y x y


   
   

    
,  

yz

xz






 
  
 

, 

  ,

T

e e ew w

y x


  
    

,   ,

T

s s sw w

y x


  
    

        (8)  

 

The resultant stresses N, M, and Q are defined by 

 

   
2

2

, , , ,

h

b b b

x y xy x y z

h

M M M zdz  


                     (9 )a  

   
2

1

2

, , , , ( )

h

s s s

x y xy x y z

h

M M M f z zdz  


             (9 )b  

   
2

2

, , , ,

h

x y xy x y z

h

N N N dz  


                          (9 )c  

   
2

2

, ,

h

e e

xz yz xz yz

h

Q Q dz 


                                   (9 )d  

   
2

2

2

, , ( )

h

s s

xz yz xz yz

h

Q Q f z dz 


                           (9 )e  

 
Using Eq. (2), the stress–strain relationship for a 

FG nanoplate is written as: 

 

 
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                      (10)  

 
in which, C is the fourth order elasticity tensor. The 

components of this tensor are defined as: 
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h

 
   

 

 
   

 

                            (11)
 

where,
tE  and 

bE  are Young’s moduli of top and 

bottom layer;
tG  and 

bG  are shear moduli of top and 

bottom layer of the FG nanoplate, respectively 
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where, 
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where, ,ij ijF H , etc., are plate stiffness defined by 
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We now employ the Hamilton’s principle to derive 

the governing equations. The analytical form of the 

principle can be expressed as [30] 

0

( ) 0

t
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where, represents a variation with respect to x 

and y. U, V, and T denote the strain energy of 

deformation, the potential energy of external forces, 

and the kinetic energy of the plate, respectively. Using 

Eq. (16), and summing the coefficients of 

,  ,  ,  e bu v w w    and
sw , we may obtain the 

following governing equations 
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where, the inertias 
0I and 

2I are defined by 
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in which,  is the mass of the nanoplate density. 

Substitution of Eqs.(12a-e) and(15a-g) into Eqs. (17a-

e) yields the following governing equations in terms of 

the displacements: 
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       

          
 

(19 )b  

   

4 4 4 2 2 2 2
2

11 12 66 22 0 24 2 2 4 2 2 2 2

2 2 2 2
2 22 4

0 0 0 22 2 2 2

:   - 2( 2 )

                                            

b b b a b s b
b

a b s b
i i

w w w w w w w
w D D D D I I

x x y y t t t t

w w w w
e l I e l I

t t t t


         

         
          

    
      

    
                    

 

  (19 )c
 

 

4 4 4

11 12 66 224 2 2 4

2 2 2 2 2 2 2

55 44 02 2 2 2 2 2 2

2 2
22 22

0 02 2

1
:   - 2( 2 )

84

5 5
          

6 6

          
84

s s s
s

a s a s a b s

s a
i

w w w
w D D D D

x x y y

w w w w w w w
C h C h I

x x y y t t t

w wI
e l I

t t


   

   
    

           
           

           

  
    

 
 

2 2 2
2 42

02 2 2
                          

84

b s s
i

w w wI
e l

t t t

    
     

     

   

  (19 )d
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 

2 2 2 2 2 2 2

55 55 44 44 02 2 2 2 2 2 2

2 2 2
2 2

0 0 2 2 2

5 5
:    

6 6

                                                                       

a s a s a b s
a

a b s
i

w w w w w w w
w C h C h C h C h I

x x y y t t t

w w w
e l I

t t t


       

      
       

   
    

   
          

 

 (19 )e  

 
It should be noted that when the nonlocal 

parameter is set to zero, 
0( ) 0ie l  , Eq. (19a-e) reduces 

to that of the classical equation [31]. 

4.   Analytical solutions for the simply supported 

rectangular nanoplate 

We employ the Navier’s method to obtain the closed 

form solutions associated with determining the natural 

frequencies of the rectangular nanoplates. Let us now 

consider the simply supported boundary conditions 

along all the edges of rectangular graphene sheets. The 

boundary conditions are of the form: 

At edges x =0 and x = a 

 

0

0

0,

e b s s

e b

b s

xx xx xx

v w w w w y

w y w y

N M M

      

     

  

               (20 )a  

 
At edges y =0 and y = b 

 
     2

5 5 5 5 5 1
0  

  
  

0

0

0,

e b s s

e b

b s

yy yy yy

u w w w w x

w x w x

N M M

      

     

  

               (20 )b  

 

The following expressions of the displacements 

which automatically satisfy the above boundary 

conditions are assumed. 

1 1

sin( )sin( ) i t

e emn

m n

w W x y e  
 



 

                 (21 )a  

1 1

sin( )sin( ) i t

b bmn

m n

w W x y e  
 



 

                 (21 )b  

1 1

sin( )sin( ) i t

s smn

m n

w W x y e  
 



 

                  (21 )c  

1 1

cos( ) sin( y) e i t

mn

m n

u U x  
 



 

                    (21 )d  

1 1

sin( ) cos( y) e i t

mn

m n

v V x  
 



 

                     (21 )e  

In the above expressions, m a  and n b 

, ,  , , ,emn bmn smn mn mnW W W U V are coefficients, and   is 

the natural frequency of the nanoplate. Substituting 

Eqs.(21a-e) into Eqs. (19a-e), one can obtain a system 

of equations in the following matrix form: 

     2

5 5 5 5 5 1
0  

  
                           (22)  

 

where, 

   , , , ,
T

mn mn bmn smn emnU V W W W                          (23)  

Here ,
ij  and 

ij are defined for the rectangular 

nanoplate as follows: 

 

 0 2 0 2 0 0 1 3 1, 3

11 11 66 12 12 66 13 11 14 11,   ,     ,  sD D D D D D                 

 
1 3 1, 3 2 4 2 2 2 2 2 4

23 11 24 11 33 11 12 66 22 ,    ,  2( 2 )sD D D D D D               

2, 4 2, 2, 2 2 2, 4 0 2 0 2

34 11 12 66 22 22 66 222( 2 )   ,  s s s sD D D D D D              

6, 4 6, 6, 2 2 6, 4 0, 2 0, 2

44 11 12 66 22 55 442( 2 )s s s s s sD D D D D D             

0, 2 0, 2 0 2 0 2

45 55 44 55 55 44  ,  e eD D D D          

2 2 2

11 22 35 45 55 34 0 0 0( ) ( )iI I e l                

  2 2 2 2 2

33 0 0 21 ( ) ( ) ( )ie l I I          

 2 2 2 2 22
44 0 01 ( ) ( ) ( )

84
i

I
e l I    

 
     

 
 

12 13 14 15 21 23 24 25 31 32 41 42 51 52 0                            

 

(24)  
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For a nontrivial solution, the determinant of the 

coefficient matrix in Eq. (22) must be equal to zero. 

This provides an equation for determining the natural 

frequencies of the nanoplate. 

4.1.   Validation and comparisonof the results 

obtained 

For the validation of the results obtained, comparisons 

are madebetween these results and those obtained from 

various theories for the orthotropic plate  0 0ie l  . In 

the present work, the boundary conditions along all the 

four edges are assumed to be simply supported. The 

material properties of the orthotropic nanoplate are 

obtained from the Ref. [32]. 

In Table 3, the natural frequencies calculated using 

the RPT theory are compared with those calculated 

using CPT, FSDT, and TSDT [33]for isotropic 

graphene sheets with the following material and 

geometrical properties: 

The non-dimensional natural frequencies of the FG 

square nanoplate for different nonlocal parameters 

calculated by RPT are listed in Table 4. The material 

properties of the FG nanoplate (Table 3) are tabulated 

in the Table 2[11]. 

The comparisons of non-dimensional natural 

frequencies obtained by various theories as presented 

in Tables 1 and 3, the maximum and minimum values 

are observed for CPT and RPT, respectively. One can 

easily find from Table 4 that non-dimensional natural 

frequency decreases with increasing nonlocal 

parameter  0 ie l  . Further, this decrease is more 

sensitive at higher mode numbers. 

In this Table, we assume that the nanoplate is 

isotropic, which means that material properties at a 

given point are the same in all directions. 

5.   Results and discussion 

5.1.   Effect of aspect ratio on vibration of 

nanoplates 

The non-dimensional natural frequencies in Figs. (2-3) 

for isotropic and FG nanoplates are defined as:

11h C      

The variation in non-dimensional natural 

frequency of the nanoplate with the nonlocal parameter 

is shown in Fig. 2 for various aspect ratios a b . Plate 

length is taken to be 10 nm. In this Section, we assume 

that the nanoplate is FG. The Young’s modulus and 

Poisson’s ratios of the FG nanoplate were presented in 

the previous Section. It is observedin Fig. 2 that natural 

frequency decreases with increasing aspect ratio from 

1 to 2 as it does also with increasing nonlocal 

parameter from 0 nm to 2 nm while this decrease is 

more rapid for 1a b  than it is with 2a b  . Further, 

the difference between RPT and CPT becomes more 

significant when aspect ratio decreases from 2 to 1. 

5.2.   Comparison of natural frequencies of 

isotropic and FG nanoplates 

In order to comparethe natural frequencies of isotropic 

nanoplates with those of FG ones, we have plotted 

non-dimensional natural frequency versus nonlocal 

parameter for both isotropic and FG cases using CPT 

and RPT (See Fig.3). The length of the square 

nanoplate is 10 nm.Thematerial properties of isotropic 

graphene sheetsare
31060  ,  0.25, 2250 kgE Gpa m    . It is clear 

from this Figure that the natural frequencies of FG 

nanoplate are always smaller than their isotropic 

counterparts for both CPT and RPT. Also, it is 

observed that the results obtained by RPT are always 

smaller than those of CPT.  

5.3.   Effect of higher modes and thickness ratio 

a h on vibration of nanoplates 

To study the influence of higher modes on the 

vibration characteristics of rectangular nanoplates, the 

variation in non-dimensional natural frequency with 

the nonlocal parameter is shown in Fig. 4. The curves 

are plotted for different mode numbers.The length of 

the square FG nanoplate is10 nm. It is observed that 

the small length scale exhibits a higher effect for 

higher modes. This phenomenon isdue to the 

increasing interaction between atoms at smaller 

wavelengths (higher mode numbers). Further, the gap 

between the two curves (RPT and CPT) increases with 

an increase in mode number; in other words, the 

difference between the natural frequencies calculated 

by RPT and CPT increases with increasing mode 

number. Effect of thickness ratio a h  on the non-

dimensional natural frequency of FG nanoplate for 

various nonlocal parameters is shown in Fig.5. It is 

found that natural frequencies decrease with increasing 

thickness ratio from 10 to 15.   

5.4.   . Comparison of natural frequencies 

obtained by CPT and RPT 

In this Section, we consider a square FG nanoplatewith 

a lengthof10 nm. To investigate the difference between 

the two theories (RPT and CPT), we define percent 
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difference in non-dimensional natural frequencies 

calculated using RPT and CPT as follows: 

Table 1: Comparison of the non-dimensional natural frequencies
11h C      of an orthotropic square plate. 

Non-dimensional natural frequency 
mn  for an orthotropic plate in various theories 

n
 

m
 Mode number 

Present CPT ]34[Srinivas ]35[Reddy ]34[Exact 
0.0467 0.0497

 
0.0474

 
0.0474

 
0.0474

 
1 1 1 

0.1021 0.1120
 

0.1032
 

0.1033
 

0.1033
 

2 1 2 
0.1176 0.1354

 
0.1187

 
0.1189

 
0.1188

 
1 2 3 

0.1678 0.1987
 

0.1692
 

0.1695
 

0.1694
 

2 2 4 
0.1868 0.2154

 
0.1884

 
0.1888

 
0.1888

 
3 1 5 

0.2149 0.2779
 

0.2178
 

0.2184
 

0.2180
 

1 3 6 
0.2454 0.3029

 
0.2469

 
0.2477

 
0.2475

 
3 2 7 

0.2603 0.3418
 

0.2619
 

0.2629
 

0.2624
 

2 3 8 
0.2930 0.3599

 
0.2959

 
0.2969

 
0.2969

 
4 1 9 

0.3251 0.4773
 

0.3311
 

0.3330
 

0.3319
 

1 4 10 
0.3304 .44700

 
0.331

 
0.3326

 
0.332

 
3 3 11 

0.3443 0.4480
 

0.3463
 

0.3479
 

0.3476
 

4 2 12 
0.3662 0.5415

 
0.3696

 
0.3720

 
0.3707 2 4 13 

Table 2: Material properties of the nanoplate. 

Type of Materials Young's Modulus Poison's Ratio Geometrical Properties 

Isotropic 630 10  E    0.3   a=10, =1, =10 a b a h  

FG 1 21765 Gpa, 1588 GpaE E    0.3   1,  10a b a h   

Percentage difference =100  CPT RPT

CPT

 




  

The above percent difference versus aspect ratio 

for various mode numbers and thickness ratios are 

plotted in Figs. 6 and 7,respectively. Aspect ratio has a 

decreasing effect on percent difference and this effect 

vanishes after a certain aspect ratio; i.e., the difference 

between the two theories becomes constant beyond a 

certain aspect ratio. In addition, the difference between 

the two theories increases with increasing mode 

numberas already mentioned above. Finally, it is 

observed that the percent difference decreases with an 

increase in the thickness ratio from 10 to 20.  

Table 3: Comparison of the non-dimensional natural frequencies h G      of an isotropic square nanoplate. 

Present CPT FSDT[33] TSDT[33]  
2

0 ie l frequencies 

0.0930 0.0963 0.0930 0.0935 0 

11 

0.0850 0.0880 0.0850 0.0854 1 

0.0788 0.0816 0.0788 0.0791 2 

0.0737 0.0763 0.0737 0.0741 3 

0.0695 0.0720 0.0696 0.0699 4 

0.0660 0.0 683 0.0660 0.0663 5 

0.3406 0.3853 0.3414 0.3458 0 

22 

0.2546 0.288 0.2552 0.2585 1 

0.2121 0.2399 0.2126 0.2153 2 

0.1856 0.2099 0.186 0.1884 3 

0.1670 0.1889 0.1674 0.1696 4 

0.1531 0.1732 0.1535 0.1555 5 

0.6839 0.8669 0.6889 0.702 0 

33 

0.4105 0.5202 0.4134 0.4213 1 

0.3205 0.4063 0.3228 0.329 2 

0.2719 0.3446 0.2738 0.279 3 

0.2402 0.3045 0.242 0.2466 4 

0.2176 0.2757 0.2191 0.2233 5 
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Table 4: The non-dimensional natural frequencies
11h C     of an FG nanoplate calculated by RPT. 

0  (nm)ie l 
n m Mode number 

2 1.5 1 0.5 0 

0.0404 0.0450 0.0494 0.0528 0.0541 1 1 1 

0.0737 0.0875 0.1040 0.1199 0.1270 2 1 2 

0.0758 0.0900 0.1070 0.1233 0.1307 1 2 3 

0.0973 0.1191 0.1484 0.1814 0.1985 2 2 4 

0.1065 0.1320 0.1681 0.2122 0.2369 3 1 5 

0.1103 0.1367 0.1740 0.2197 0.2453 1 3 6 

0.1217 0.1528 0.1994 0.2622 0.3013 3 2 7 

0.1236 0.1553 0.2026 0.2664 0.3061 2 3 8 

0.1343 0.1707 0.2280 0.3131 0.3730 4 1 9 

0.1390 0.1767 0.2360 0.3241 0.3861 1 4 10 

0.1404 0.1788 0.2399 0.3326 0.3997 3 3 11 

0.1442 0.1844 0.2494 0.3519 0.4301 4 2 12 

0.1475 0.1886 0.2550 0.3599 0.4398 2 4 13 

 

Fig. 2. Variation in non-dimensional frequency with nonlocal parameter for different aspect ratios 
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Fig. 3. Variation in non-dimensional frequency with nonlocal parameter for isotropic and FG nanoplates 

 

Fig. 4.Variation in non-dimensional frequency with nonlocal parameter for different mode frequencies. 
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Fig. 5. Variation in non-dimensional frequency with thickness ratio for different nonlocal parameters.

6.   Conclusions  

Based on the two-variable refined plate theory and the 

nonlocal plate theory, the small scale effect on the free 

vibration of FG rectangular nanoplates was 

investigated. The boundary conditions along all the 

four edges were assumed to be simply supported. The 

governing equations of the plate were solved using the 

Navier’s method. The effects of nonlocal parameter, 

thickness ratio, aspect ratio, and mode number on the 

natural frequencies of FG nanoplate were investigated. 

The following conclusions may be drawn from the 

findings of the present study: 

(1). Natural frequency decreases with aspect ratio 

increasing from 1 to 2. 

(2). The natural frequencies of FG nanoplates are 

always found to be smaller than their isotropic 

counterparts for both CPT and RPT and the results 

obtained by RPT are always found to be smaller than 

those of CPT.  

(3). The effect of small length scale is higher for 

higher modes. Furthermore, the difference between the 

results from the two theories increases with increasing 

mode number. 

 

Fig. 6. Percent difference in non-dimensional frequency 

between RPT and CLPT with aspect ratio for different 

mode frequencies 
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Fig. 7. Percent difference in non-dimensional frequency 

between RPT and CLPT with aspect ratio for different 

thickness ratios 
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