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A B S T R A C T 

 

One of the key outcomes of blasting in mines is rock fragmentation that profoundly affects downstream expenses. In fact, size prediction of 
rock fragmentation is the first step towards the optimization of blasting design parameters. This paper attempts to present a model to predict 
rock fragmentation using Mutual Information (MI) in Meydook copper mine. Ten parameters are considered to influence fragmentation. On 
the other hand, Rock Engineering System (RES) is employed in order to compare different models. To validate the results, six blasting 
scenarios were selected and the results were compared. The coefficient of correlation (R2), Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) were used to assess the performance of presented models. The R2, RMSE and MAE values for 30 blasting cycles were 
calculated to be 0.81, 10.7, and 9.02 for MI model, and 0.75, 11.87, and 9.61 for RES, implying the better capability of MI model to predict 
fragmentation. 
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1. Introduction 

Activities related to rock engineering such as underground opening 
excavation, surface excavation and tunnel construction interfere with 
initial state of the ground causing a permanent interaction between rock 
mass characteristics and the structure itself [1]. Rock fragmentation as 
one of the most important aspects of blasting, has been an important 
topic among researchers [2]. This is because inappropriate 
fragmentation may significantly increase different mining expenses 
such as secondary drilling and blasting costs. Downstream expenses 
such as loading and hauling, on the other hand, may cause rock crushing 
machinery to operate inefficiently [3]. The parameters affecting 
fragmentation can be classified into two categories. The first category 
includes controllable parameters such as pattern design of blasting and 
explosives while the second category is composed of those parameters 
which may not be under control such as geomechanical characteristics 
of rock mass [4]. 

Due to fragmentation, size prediction is the first step towards blast 
optimization process to reach desirable fragmentation [5]. In 
underground and surface activities, where blasting process is the key 
part of production cycle, the rock mass blastability should be greatly 
analyzed. However, since there are numerous parameters affecting rock 
blastability, application of analytical methods seems to be challenging. 

Rock Mass Rating (RMR) was presented by Bieniawski in 1976, and 
is currently agreed to be one of the most globally comprehensive and 
commonly-used methods of rock mass classification [6]. Hudson in 1992 
presented the Rock Engineering System (RES) where every individual 
parameter is considered as a two-variable system [7]. RES possesses a 
variety of applications in different rock engineering activities such as 

stability analysis of underground openings [8], geo-hazard due to TBM 
tunneling [9], and system assessment for rock mass blastability. Lu and 
Latham in 1999 used RES to predict size distribution of blasting-induce 
fragmentation. In terms of blastability, their classification categorizes 
rock mass into five groups of very easy, easy, medium, hard, and very 
hard [10]. Faramarzi et al. used RES to predict fragmentation based on 
interaction matrix [11]. 

In order to form the interaction matrix, for RES method using experts 
view, a variety of expert perspectives are used. Obviously, experiences 
and knowledge of each expert differ from those of others; therefore, the 
results highly depend on experts and may change if the group of experts 
change. This is considered to be a weakness of the method. 

Several empirical and artificial intelligent methods are widely used to 
predict blast fragmentation [11-13]. However, empirical methods usually 
consider a few number of parameters [11]. In these methods, it is not 
easy to involve many variables. On the other hand, most intelligent 
methods need large number of data to result acceptable accuracy [12-
13]. In this paper, we have proposed the Mutual Information (MI) 
method as a new approach to overcome both aforementioned 
shortcomings. The mutual information is the information that two 
random variables have in common [14]. One of the most applicable 
performance criteria for feature selection is be mutual information [15]. 
In addition, mutual information is employed to determine how 
dependent two random parameters are [16]. The great advantage of 
mutual information is to decrease the amount of randomness of a 
parameter due to the other random parameter. Using this characteristic 
one can determine the weight factor of each parameter from the data 
that significantly increases the analysis accuracy. Therefore, application 
of MI method eliminates possible inaccuracies resulted from expert’s 
perspective and can incorporate unlimited number of parameters for 
available data.
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2. General geology of Meydook copper mine 

Meydook mine is located 42 kilometers north east of Shahrebabak 
district on the copper - rich belt in Kerman province, Iran. It is 
geologically considered as part of the Alp-Himalaya orogeny. Meydook 
copper ore mine has a reserve of 171 million tons at an average grade of 
0.83%. In Meydook mine, the waste material is generally composed of 
altered andesite and the ore is mostly porphyritic diorite [17]. 

Currently, the mine pit is ??? m deep, and Emolan and cordtex are 
used in benches lower than the ground water level, and ANFO and 
Nonel system are used in dry areas. The extraction process is carried out 
in an open pit with 15-meter high benches and a slope of 70°. Figure 1 
shows a collapsed boulder in Meydook mine which causes adverse 
problems in current blasting operations. 

2.1. Data acquisition 

Data of 36 blast cycles from Meydook mine were used in this research. 
The data from 30 blast cycles were used as the models input data and 
the other six datasets were employed to validate the results. Uniaxial 
compressive strength and density parameters of different rock types 
were adopted from a report prepared by Marefvand in 2012 [18]. Rock 
Quality Designation (RQD) and stemming for each blast were derived 
from geological investigation of each blast in the mine. Parameters such 
as joint spacing, joint persistence, joint plane orientation ratio to bench 
face, burden, ratio of boreholes spacing to their diameters, specific 
charge and 80% passing size (D80) were directly measured and/or 
surveyed in mine site. In order to survey the joints, dominant joints were 
determined at first, and then, their characteristics were specified 
through selecting a scan line using compass and measuring tape. Data 

for each block were independently surveyed and measured as the rock 
type changed. 

 
Fig. 1. A sample of boulder collapse problem in Meydook mine. 

Image processing was used to plot the grain size distribution as well 
as D80. Two balls of 23 cm diameter were used for scaling the images. 
Considering the size of blasting blocks, 20 images on average were taken 
from each bench face, and were analyzed by Split-Desktop software. 
Figure 2 presents a typical image analysis along with grain size 
distribution graph for blast block 2615-680 (bench 2615 and blasting 
cycle of 680). In addition, Table 1 provides the statistical description of 
30 selected blasts performed in Meydook mine. It should be noted that 
the rock type varies throughout the mine in different zones. 

 

 
Fig 1. Image analysis for blast block 2615-683. 

 
Table 1. Main parameters for 30 selected blasts in Meydook copper mine. 

Parameter  Parameter description and unit Symbol Minimum measured value 
Maximum measured 

value 

Standard 

deviation 

P1 Uniaxial compressive strength (MPa) UCS 13.56 150.43 56.68 

P2 Joint persistency (m) P 1.5 13 3.02 

P3 Rock Quality Designation RQD 10 45 10.76 

P4 Joint Spacing (m) JS 0.1 3.5 0.94 

P5 Density (t/m3) ρ 2.25 2.68 0.18 

P6 Specific charge (kg/m3) q 0.26 0.5 0.07 

P7 Burden (m) B 5 6.5 0.58 

P8 Stemming (m) St 4 9 1.30 

P9 ratio of boreholes spacing to their diameters S/D 34.44 52.49 4.23 

P10 Joint plane orientation ratio to bench face JPO - - - 

P11 80% passing size (cm) D80 7.65 92.88 24.6 
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3. Rock engineering system 

Rock engineering system was first introduced by Hudson in 1992 to 
deal with intricate engineering problems, and is one the most powerful 
methods in rock engineering. Interaction matrix is the core of rock 
engineering system. In this matrix, the main parameters are arranged 
along the main diagonal elements of a matrix and the interrelations 
between pairs of parameters are identified in off-diagonal elements. 
There are variety of methods to quantify the interaction matrix such as 
0-1 binary method, Expert Semi-Quantitative (ESQ) and Continuous 
Quantitative Coding (CQC) [7]. The most common method is ESQ in 
which interaction intensity is denoted by the values from 0 (no 
interaction) to 4 (critical interaction). In the interaction matrix, the sum 

of values in a row (
i

n

C Ip ij

j 1

) is called “Cause” value and the sum of 

values in a column (
i

n

E Ip ij

i 1

) is called “Effect” value [19]. Therefore, 

the more the value of C+E is for a parameter, the more important that 
parameter will be in the system, implying that there is significant 
interaction between this parameter and the system. It is noted that there 
is no limitation on the number of parameters in rock engineering 
system. For example, n by n matrix is used to define a system with n 
parameters. Figure 3 shows an interaction matrix. 

 
Figure 2. Interaction matrix in RES [7] 

C+E value may be used as weight factor of parameters (ai) as shown 
in equation 1 [7]. 

(C E )i ia 100i n n

( C E )i i

i 1 i 1

 (1) 

3.1. Fragmentation prediction using rock engineering system 

The main goal of using RES in vulnerability index, presented by 
Benardos for the first time, was to detect hazardous sections of ground 
affecting the performance of a TBM [9]. In this paper, a similar method 
is applied to predict fragmentation. As mentioned earlier, a variety of 
parameters can affect fragmentation. Considering previous researches in 
this field, ten parameters were selected as the main items for Meydook 
copper mine [1, 2, 5, 10]. Regarding interaction matrix, the effect of 
every parameter is rated from 0 (no interaction) to 4 (critical 
interaction). The rating system is presented in Table 2. Table 3 shows 
interaction matrix used for RES, it should be noted that the interaction 
matrix is finally evaluated and completed by blasting experts. Weight 
factor of each parameter is then calculated using equation 1. Table 4 
shows ‘Cause’ and ‘Effect’ values and calculate ‘ai’ for each parameter. 

Table 2. ESQ interaction matrix coding [7] 

Coding Description 

0 No interaction 

1 Weak interaction 

2 Medium interaction 

3 Strong interaction 

4 Critical interaction 

 

Table 3. The interaction matrix for the parameters affecting fragmentation 

 UCS P RQD JS ρ q B St S/D JPO 

UCS P1 1 2 2 0 3 4 4 2 0 

P 0 P2 2 1 0 1 1 2 1 1 

RQD 0 1 P3 1 0 3 2 2 2 0 

JS 0 2 4 P4 0 3 3 2 2 2 

ρ 3 1 2 0 P5 1 1 1 1 0 

q 0 0 0 0 0 P6 2 2 2 0 

B 0 0 0 0 0 3 P7 0 3 0 

St 0 0 0 0 0 3 3 P8 2 0 

S/D 0 0 0 0 0 2 3 1 P9 0 

JPO 0 2 2 2 0 2 3 1 2 P10 

Table 4. Weight factor of different parameters for RES method 

parameter C value E value ( C E )i i
i i

 

(C E )i ia 100i 10 10

( C E )i i

i 1 i 1

 

P1 18 3 212 9.9 

P2 9 7 212 7.55 

P3 11 12 212 10.85 

P4 18 6 212 11.32 

P5 10 0 212 4.72 

P6 6 21 212 12.74 

P7 6 22 212 13.21 

P8 8 15 212 10.85 

P9 6 17 212 10.85 

P10 14 3 212 8.02 

Row I: 
Influence of Pi on other 

parameters 

Main parameters Pi on 
matrix diagonal arrays 

Column J: 
Influence of other parameters on 

Pi 

   
 

   

  Pi   
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Blast Quality Index (BQI), a parameter presented in this research, is 
calculated using equation 2. 

n
QiBQI 100 ai

Qmax
i 1

(2) 

Where ai is weight factor of ith parameter (%), Qi is the rating of ith
parameter and Qmax represents the maximum value of rating assigned to 
ith parameter, shown in Table 5. This table shows scoring for a different 
range of values for each parameter which are proposed based on 
judgment and previous researches [20-21]. Scoring of the parameters is 
based on the way they influence the fragmentation. Five classification 
groups, each scored from 0 to 4, are considered so that 0 is referred to 
as poor fragmentation and 4 is referred to as desirable fragmentation. 
BQI always ranges between 0 and 100. The high value of BQI represents 
poor fragmentation whereas low values refer to as desirable 
fragmentation. 

Table 5. Proposed ranges for the parameters effective in fragmentation [20-21] 

Rating 

(Qi) 
0 1 2 3 4 

1 UCS (MPa) Value ≥150 150-100 100-50 50-25 25-1 

2 P (m) Value < 2 2-5 5-8 8-12 12≤ 

3 RQD Value ≥60 60-40 40-25 25-15 <15 

4 JS (m) Value ≥2 2-0.6 0.6-0.4 0.4-0.2 <0.2 

5 ρ (t/m3) Value ≥2.5 2.5-2.3 2.3-2 2-1.6 <1.6 

6 q (kg/m3) Value 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 

7 B (m) Value ≥8 6-8 4-6 2-4 <2 

8 St (m) Value ≥10 10-8 8-6 6-3 <3 

9 S/D Value ≥50 50-40 40-30 30-20 <20 

10 JPO Value HOR DOF SNF SAF DIF 
HOR = Horizontal, DOF = Dip out of face, SNF = Strike normal to face, SAF = 
Strike at an angle acute to face, DIF = Dip into face 

D80 variation has a close relationship with BQI. A linear regression 
between D80 and BQI shows a promising correlation as the following 
equation. 

  D 1.6(BQI) 44.7380   , R2 = 0.75 (3) 

4. Information theory 

Information theory is based on probability theory and statistics. 
Information theory often concerns itself with measures of information 
of the distributions associated with random variables [22]. It was 
initially developed by Claude E. Shannon to find essential limits on 
signal processing and communication operations such as data 
compression. Important quantities of information are entropy, a 
measure of information in a single random variable, and mutual 
information, a measure of information in common between two random 
variables [23]. 

Let X be a discrete random variable with probability mass function of 
P(x) =Pr{X=x}, xϵχ , then the entropy function is defined as follows: 

x

H(x) p(x). log p(X)



  (4) 

If the base of the logarithm is b, we denote the entropy as Hb(x). For 
example, if the base of the logarithm is e or 2, the entropy is then 
measured in terms of nat or bit, respectively. Nat and bit are units of 
information entropy. It should be noted that entropy is a function of X 
distribution and it does not depend on assigned values to X. Therefore 
the results do not depend on selected units for parameters. 

In fact, the fundamental concept of entropy in information theory is 
defined as how random a signal or an event is. Entropy, known also as 
Shannon entropy, expresses randomness as a mathematical quantity.  

Joint entropy H(x,y) for two random variables x and y is in 
relationship with Joint distribution P(x,y) as defined in equation 5: 

H(x,y) p(x,y)logp(x,y)

x y

(5) 

Where two random variables are independent, i.e. p(x,y)=p(x).p(y), 
equation 5 can be rewritten as equation 6 [24]: 

H(x, y) H(x) H(y)  (6) 

Furthermore, entropy function can be generalized beyond two 
random variables as stated in equation 7 [24]: 

H(x,y,z) p(x,y,z)logp(x,y,z)

x y z

(7) 

4.1. Mutual information 

As mentioned earlier, entropy is a measure to show randomness of a 
variable. Similarly, conditional entropy is defined as H(x│ y) that 
measures the residual information in X, while the values of Y are known. 
Equation 8 shows the chain rule of conditional entropy. 

H(X, Y) H(X) H(Y X)  (8) 

If two variables x and y are independent, resulting in H(x│y)=H(x), 
then knowing Y has no effect on remaining information in X. Reduction 
in the uncertainty of  X due to knowing Y value is referred to as mutual 
information [24]. In fact, mutual information is defined as the amount 
of information in common between two random variables. Mutual 
information for two random variables is defined as equation 9. 

I(X;Y) H(X) H(X Y) H(X) H(Y) H(X,Y) (9) 

Equation 9 can be also expressed in another form as follows: 
p(x,y)

I(X;Y) p(x,y)log
p(x).p(y)

x,y

(10) 

MI method has numerous advantages such as having unaffected 
interpretation of variables in terms of uncertainty reduction, the 
capability of measuring nonlinear relationship among variables, the 
applicability for multi-variable random variables [15]. 

As mentioned earlier, MI is a measure of dependence of two random 
variables. Two variables are independent if MI is 0, meaning that any 
increase in mutual information raises the dependence between two 
variables. When MI values are known, every MI value is then normalized 
with the summation of all MI values to calculate the weight factor for 
each parameter, as stated in equation 11. 

MIiai n

MIi

i 1

(11) 

Figure 4 demonstrates the relationship between H(x), H(y), H(x,y), 
H(x│y), H(y│x) and I(x;y) expressed in Venn diagram. As shown in this 
Figure, mutual information confirms the amount of common 
information between X and Y [24]. 

Figure 3. Relationship between entropy and mutual information [23] 

I(X;Y) H(X│Y) H(Y│

H(X,Y) 

H(X H(Y
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4.2. Prediction of fragmentation using mutual information 

In order to predict the fragmentation, equation 2 is used along with 
the rating system that was explained for RES. The only change here is 
the way ai is calculated. Weight factor of each parameter (ai) is calculated 
using MI with no dependency on expert’s opinion. Table 6 shows ai for 
each parameter and the calculation of BQI for a selected blast in block 

2540-302 in Meydook copper mine. Equation 12 shows linear regression 
between D80 and BQI using the data from 30 blast cycles. It can be seen 
that the coefficient of correlation (R2) for this equation is higher than 
that of similar equation for RES model. It is clear that BQI in this 
equation is calculated based on MI model. Figure 5 depicts the 
comparison between weight factor of each parameter calculated by RES 
and MI models. 

Table 6.  Corresponding BQI for blast block 2540-302 in MI model, Meydook copper mine 

Parameter UCS P RQD JS ρ q B St S/D JPO 

Value of parameter 68.76 11 25 0.45 2.61 0.3 5.5 6 45.93 HOR 

Qi/Qmax 0.5 0.75 0.5 0.5 0 0.25 0.5 0.5 0.25 0 

Weight factor of parameters (ai) 16.24 13.83 12 14.97 12.25 9.89 4.22 5.53 5.68 5.39 

BQI=59.25 

  D 1.24(BQI) 23.1780 , R2 = 0.81 (12) 

Figure 4. Comparison between weight factor of parameters in MI and RES 

5. Comparison and evaluation of models proposed for 
fragmentation prediction 

Six blast cycles were considered to evaluate the proposed models i.e. 
MI and RES. Measured and predicted values of D80 using both models 
are presented in Table 7 for six blast cycles which were considered for 
evaluation. There are several ways to compare the models; R2, RMSE 
(Root Mean Square Error) and MAE (Mean Absolute Error) have been 
used as the comparison criteria by many authors. MAE and RMSE can 
be used together to diagnose the variation in the errors in a set of 
forecasts. RMSE will always be larger or equal to MAE; the greater 
difference between them, the greater the variance in the individual 
errors in the sample [25]. In general, application of RMSE is more 
appropriate than MAE when model errors follow a normal distribution. 
[25]. Shapiro-wilk test revealed that the errors of both models follow 
normal distribution. However both criteria were used for comparison. 
The R2, RMSE and MAE values for 30 blast cycles were respectively 
calculated as 0.81, 10.7, and 9.02 from MI model, and 0.75, 11.87, and 9.61 
RES model (Table 8). It clearly shows that MI model yields less error 
and manifests stronger relation between BQI and D80 compared to that 
of RES model. Moreover, 6 blast cycles were also considered to evaluate 
the proposed models. The RMSE and MAE values for MI models are 
8.51 and 7.55, respectively, confirming acceptable accuracy and 
efficiency of MI model. Also, the greater difference between RMSE and 
MAE in RES model shows a higher inconsistent error size. Figure 6 
presents a comparison between predicted and measured D80 values for 
six blast cycles. As shown in this figure, all models are generally able to 
predict D80 with an acceptable accuracy. MI model has better prediction 
in some cases while in some other cases RES is more accurate. Among 
these two models, it is advised to use MI since it directly uses the data 
sets to calculate weight factor of each parameter. 

6. Conclusions 

In this paper, Mutual Information (MI) and RES models were used 
to predict fragmentation. In Meydook copper mine, 36 blast cycles were 

chosen, six of which were considered to validate the models. Although 
there is no limitation in the number of input parameters for both 
models, MI model is expected to show better accuracy since the weight 
factor of each parameter is derived from direct interpretation of data. R2, 
RMSE and MAE were used to validate the results obtained from MI and 
RES models. Using the results of 30 blast cycles, the R2, RMSE and MAE 
values were calculated as 0.81, 10.7, and 9.02 for MI and 0.75, 11.87, and 
9.61 for RES model, confirming that MI model possesses a higher 
accuracy level. Finally, six blast cycles were also used to validate the 
results. For validating the datasets, RMSE and MAE values for MI model 
were respectively 8.51 and 7.55, showing a promising level of accuracy. 

Table 7. D80 predicted by models MI and RES for six blast cycles, Meydook copper 
mine 

Blast number Measured D80 (cm) 
Predicted D80 (cm) 

RES MI 

31 21.05 30.24 25.01 

32 35.92 33.81 29.66 

33 49.75 42.84 39.39 

34 44.31 48.11 48.10 

35 58 44.17 43.17 

36 49.66 45.67 43.53 

Table 8. Comparison between MI and RES Models in Meydook copper mine 

Model R2 RMSE MAE 

For 30 Blast cycles 
MI 0.81 10.7 9.02 

RES 0.75 11.87 9.61 

For six validation  blast 

cycles 

MI - 8.51 7.55 

RES - 7.73 6.63 

Figure 5. Comparison between predicted and measured D80 values for MI and RES 
model for six blast cycles 
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