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A B S T R A C T 

 

The proximate analysis is the most common form of coal evaluation that reveals the quality of a coal sample. It examines four factors including 
moisture, ash, volatile matter (VM), and fixed carbon (FC) within the coal sample. Every factor is determined through a distinctive 
experimental procedure under ASTM specified conditions. These determinations are time consuming and require various laboratory 
equipment. The calorific value is one of the most important properties of a solid fuel and its experimental determination requires special 
instrumentation and highly trained operator. This paper develops mathematical and ANFIS models for estimation of two factors of proximate 
analysis based on the other two factors. Furthermore, the estimation of calorific value of coal samples based on proximate analysis factors is 
performed using multivariable regression, the Minitab 16 software package, as well as ANFIS and MATLAB software package. The results 
indicate that ANFIS is a more powerful tool for estimation of proximate analysis factors and calorific value than multivariable regression 
method. The following equation estimates the calorific value of coal samples with high precision:  
Calorific value (btu/lb)= 12204 - 170 Moisture + 46.8 FC - 127 Ash 
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1. Introduction 

Chemical composition of a coal sample is defined in terms of its 
proximate and ultimate (elemental) analyses [1,2]. The proximate 
analysis is performed in order to determine the moisture, ash, volatile 
material (VM) and fixed carbon (FC) content within the coal sample 
and is reported as a percentage of the weight of the coal sample used 
[1,2]. It is applied to establish the rank of coals, to show the ratio of 
combustible to incombustible constituents, or to provide the basis for 
many coal buying/selling and performance prediction indices used by 
utility operators [1,2]. Moisture, VM, and ash are all determined by 
subjecting the coal to preset temperatures for predetermined time 
intervals under ASTM specified conditions [1,2]. The losses of weight 
are, by stipulation, due to loss of moisture and, at the higher 
temperature, loss of VM. After recording these measurements, the tester 
burns the coal and the remaining material is called ash [1,2]. FC is the 
difference of these three amounts summed and subtracted from one 
hundred. In low volatile coal samples, the FC content is approximately 

equal to the elemental carbon content of the sample [1, 2]. These 
determinations, however, are time consuming and require various 
laboratory equipment. Therefore, it is very desirable to both the 
suppliers and consumers of coal to have an exact and reliable estimation 
method for obtaining the proximate analysis factors. 
The calorific value is one of the most important characteristics of a fuel 
which defines its energy and is useful for planning and control of a 
combustion plant [3]. The experimental determination of calorific value 
of solid fuels is an expensive process, as it requires special 
instrumentation and highly trained operators. Therefore, to simplify the 
task and to reduce the cost of analysis, many correlations were 
developed for determining calorific value from proximate and ultimate 
analysis data of solid fuels, whereas these analytical data can be obtained 
more conveniently. Several researchers have used regression method to 
develop an equation between calorific value and proximate analysis 
factors (FC, Ash, VM and Moisture) or ultimate analysis factors 
(moisture, ash, carbon, hydrogen, nitrogen, sulfur, and oxygen) [4-8]. 
The developed models for estimation of calorific value or higher heating 
value (HHV) of solid fuels are summarized in Table 1. 

 Table 1. Proposed mathematical models for estimation of calorific value. 

Equations comments Ref. 

Q = 0.3278C + 1.419H+ 0.09257S - 0.1379O + 0.637 (MJ/kg) C, H, S, and O are on a dry, mineral-matter free [4] 

Q = 0.472C + 1.48H + 0.193S+0.107Ash-12.29 (MJ/kg) C, H and S all on dry basis [5] 

HHV = 35.43- 0.1835VM - 0.3543 Ash (MJ/kg) VM and Ash on dry basis [6] 

HHV = -2737- 160.43 Moisture + 266.76 VM (MJ/kg) as received sample [7] 

HHV = -0.03 Ash- 0.11Moisture + 0.33 VM + 0.35 FC (MJ/kg) as received sample [8] 
 

Artificial neural network (ANN) is a computational-based, nonlinear empirical modeling tool, which is analogous to the behavior of 
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biological neural structures [9, 10]. Krishnaiah et al. suggested a method 
to compute ultimate analysis based on the proximate analysis 
information using ANN [11]. Estimation of gross calorific value of coals 
using ANN has been performed by Patel et al. [12].  

ANFIS is a specific approach in neuro-fuzzy which is a powerful tool 
for modeling the nonlinear functions [13]. The ANFIS can simulate and 
analyze the mapping relation between the input/output dataset through 
a back-propagation algorithm alone or in combination with a least mean 
squares method (hybrid learning) to optimize the parameters of a given 
Fuzzy Inference System (FIS) [14, 15].  

The estimation of two factors of coal proximate analysis based on the 
other two factors has not received enough attention. In this paper we 
performed the estimation using multi-variable regression, the Minitab 
16 software package, and the ANFIS MATLAB software package. In this 
research, we also tried to establish a model for estimation of calorific 
value based on proximate analysis factors. Hence, the best subsets 
regression by Minitab 16 software was applied for the first time to 
identify the model with as few variables as possible and then the model 
was developed by multivariable regression, the Minitab 16 software. An 
ANFIS model was also developed for estimation of calorific value with 
proximate analysis factors as variables by MATLAB software package 
and a comparison was made between these models. 

2. Experimental data 

A mathematical model needs a comprehensive database to cover a 
wide variety of coal types. Such a model will be capable for estimating 
the proximate analysis factors with a high accuracy. The results of 
proximate analysis of total 270 United States coal samples reported by 
U.S. bureau of mines [16] were used for the development of 
mathematical and ANFIS models. The Boxplot of proximate analysis 
factors and calorific value are illustrated in Fig.1. The dataset was 
randomly divided into two parts; training and testing dataset. The 
number of training and testing dataset was 249 and 21, respectively. The 
training dataset was used for establishment a mathematical model or the 
training ANFIS. In order to get more reliable evaluation and 
comparison, mathematical and ANFIS models are tested with testing 
dataset that was not used during the training process. The performance 
of mathematical models and ANFIS configurations was validated 
through calculating the average relative deviation (ARD%) which is 
defined as: 

exp cal
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i

(y y )

y
ARD% 100

N
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Where yiexp and yip are experimental and calculated values for the ith 
dataset, and N is the total number of considered events. 

 
Fig. 1. Boxplot of proximate analysis factors and calorific value of 270 US coal 

samples. 

3. Adaptive neuro-fuzzy inference system (ANFIS) 

The concept of ANFIS algorithm was first introduced by J. Jang 

(1993) [17]. It combines the advantages of two intelligent approaches, 
neural network and fuzzy logic, to allow good reasoning in quantity and 
quality [18].  

Like other fuzzy systems, the ANFIS structure is organized of two 
introductory and concluding parts which are linked together by a set of 
rules. A kind of this network, which is a first-order Takagi-Sugeno fuzzy 
model with two inputs and one output, is illustrated in Fig.2. As can be 
seen, this system contains two inputs namely x and y and one output or 
f which is associated with the following rules: 

 Rule 1: If x is A1 and y is B1, then f1=p1x+q1y+r1; 
 Rule 2: If x is A2 and y is B2, then f2=p2x+q2y+r2; 

 
Fig. 2. ANFIS structure for a two-input Takagi-Sugeno model with two rules. 

In this system, Ai, Bi and fi are fuzzy sets and system’s output, 
respectively. pi, qi and ri are designing parameters which are achieved 
during the learning process. ANFIS is a multi-layer network and five 
distinct layers can be recognized in the structure of ANFIS network [18]. 
If we consider the output of each layer in the ANFIS network as Oi,j ( ith 
node output in jth layer), we may explain the various layers functions of 
this network as follows: 

Layer 1: Every node i in this layer is an adaptive node with a node 
function 

i
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O (y), for i 3,4B
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where x (or y) is the input to node i and Ai (or Bi-2) is a linguistic 
variable associated with this node function and μAi is the membership 
function of Ai. The Gaussian membership function used in the ANFIS 
model is as follows: 
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where x is input and {ai, ci} is the parameter set [13]. Parameters in 
this layer are referred to as premise parameters. 

Layer 2: Every node in this layer is a fixed node labeled Π which 
calculates the firing strength wi of a rule. The output of each node is the 
product of its all incoming signals and is given by: 

i i2,i i A BO w (x) (y), i 1,2  (4) 

Layer 3: Every node in this layer is a fixed node labeled N. The ith node 
calculates the ratio of the ith rule's firing strength to the sum of all rules' 
firing strengths:  

i
3,i i

1 2

w
O w , i 1,2.

w w
 

(5) 

The output from the ith node is called the normalized firing strength. 
Layer 4: Every node in this layer is an adaptive node with a node 

function given by 

4,i i i i i i iO w f w (p x q y r ), i 1,2  (6) 

where iw is a normalized firing strength from layer 3 and {pi, qi, ri} is 

the consequent parameter set of this node. 
Layer 5: The single node in this layer is a fixed node labeled ∑, which 

calculates the overall output as the summation of all incoming signals: 
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4. Results and discussion 

4.1. Regression analysis 

4.1.1. Predication of proximate analysis factors 
In order to develop correlations between one of the proximate 

analysis factors and the other two factors, a multivariable regression 
using least squares was performed by Minitab 16 software. Table 2 shows 
equations for estimation of FC and p-values of the models and the 

parameters. The P value for all three equations is 0.000 which indicates 
that the models estimated by the regression procedure are significant at 
an α-level of 0.05. The p-values for the estimated coefficients are both 
0.000, indicating that they are significantly related to FC. Table 2 also 
shows the R2 and ARD values for both of training and testing datasets. 
The ARD values further indicate that the models fit the data well. The 
best model for estimation of FC includes moisture and VM. It has the 
highest R2 value  (80.2%) and the lowest ARD value (7.42). 

Table 2. Equations for estimation of FC and related R2 and ARD values. 

Eq. No. 
ARD 

R2 (%) 

P value 

Equation 
2nd variable 

1st 

variable 
constant Model 

Test data Train data 

Eq. (8) 
10.75 

 
11.08 64.3 0.000 0.000 0.000 0.000 FC = 68.5 - 1.08 Moisture - 0.951 Ash 

Eq. (9) 
7.29 

 
12.54 54.6 0.000 0.000 0.000 0.000 FC = 94.1 - 0.813 Ash - 1.10 VM 

Eq. (10) 
7.42 

 
7.20 80.2 0.000 0.000 0.000 0.000 FC = 89.1 - 0.918 Moisture - 0.972 VM 

Fig.3 shows the normal plot of residual, histogram of residual, the 
residual versus fits plot and the residual versus order plot for estimation 
of FC through Eq.8. The points in normal probability plot generally form 
a straight line which indicates the distribution of residuals. The plot of 
residuals versus the fitted values shows that the residuals get greater as 

the fitted values increase, which may indicate that the residuals have 
non-constant variance. The residual versus order plot is a plot of all 
residuals in the order that the data was collected and can be used to find 
non-random error. It can be seen that there is non-random error since 
the points show a random pattern. 

 

Fig.3. Residual plots for estimation of FC through Eq.8 

 

Table 3 shows three different equations for estimation of VM. The p 
value for Eq. 11 is 0.290 which indicates that the model estimated by the 
regression procedure is not significant at an α-level of 0.05. The R2 value 
for this equation is 1% which further indicates that the model is not 
appropriate for fitting the data. The p-value for Eq. 12 and Eq. 13 are 
both 0.000 which indicate that the models are significant at an α-level 

of 0.05. The p-values for estimated coefficients are both 0.000, indicating 
that they are significantly related to VM. Eq.13 is the best model for 
estimation of VM since it has the lowest ARD value for testing datasets 
(8.03). 
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Table 3. Equations for estimation of VM and related R2 and ARD values 

Eq. No. 

ARD 
R2 

(%) 

p-value 

Predicted equation 
Test 

data 

Train 

data 
2nd variable 1st variable constant Model 

Eq. (11) 15.77 22.00 1 0.570 0.167 0.000 0.290 VM = 31.5 + 0.0782 Moisture - 0.0488 Ash 

Eq. (12) 9.07 10.22 63.4 0.000 0.000 0.000 0.000 VM = 69.2 - 0.566 Moisture - 0.649 FC 

Eq. (13) 8.03 13.57 49 0.000 0.000 0.000 0.000 VM = 58.4 - 0.395 Ash - 0.445 FC 

Three different equations for estimation of Ash are presented in Table 
4. The P value for Eq. 14 is 0.115 which reveals that the model estimated 
by the regression procedure is not significant at an α-level of 0.05. The 
p-value for Eq. 15 and Eq. 16 are both 0.000 which indicate that the 
models are significant at an α-level of 0.05. The ARD value for both 

equations is high which indicates that the accuracy of the models for the 
estimation of Ash is not satisfactory.  Eq.16 is the best model for 
estimation of Ash since it has the lowest ARD value (52.06) for testing 
datasets. 

Table 4. Equations for estimation of Ash and related R2 and ARD values 

Eq. No. 
ARD 

R2 (%) 
p-value 

Predicted equation 
Test data Train data 2nd variable 1st variable constant Model 

Eq. (14) 71.71 43.05 1.7 0.570 0.053 0.000 0.115 Ash = 10.9 - 0.0812 Moisture - 0.0270 VM 

Eq. (15) 68.79 42.43 34.5 0.000 0.000 0.000 0.000 Ash = 30.8 - 0.434 Moisture - 0.351 FC 

Eq. (16) 52.06 39.68 22.8 0.000 0.000 0.000 0.000 Ash = 34.4 - 0.278 FC - 0.333 VM 

4.1.2. Predication of calorific value 

The best subsets regression is an efficient way to identify models with 
as few variables as possible which achieve our goals. Subset models may 
actually estimate the regression coefficients and predict probable 
responses with smaller variance than the full model using all variables 
[19, 20]. Minitab examines all possible subsets of the predictors, 
beginning with all models containing one variable, and then all models 
containing two variables, and so on. By default, Minitab displays the two  

best models for each number of variables. A good model should have 
a high R2 and adjusted R2, small S, and a Mallows' Cp close to the 
number of variables in the model and the constant [19, 20].  

The results of best subsets regression by Minitab software are 
presented in Table 5. Each row of the Table 5 represents a different 
model. Vars is the number of predictor variables in the model. Variables 
that are present in the model are indicated by an x. 

Table 5. The results of best subsets regression by Minitab software for estimation of calorific value 

Vars R2 R2 (adj) Mallows Cp S 
Variables type 

Moisture VM FC Ash 

1 76.7 76.6 1397.7 935.23 x 

1 72.4 72.3 1700.1 1017.7 x 

2 95.5 95.4 76.2 413.12 x x 

2 93.7 93.6 202.4 487.98 x x 

3 96.5 96.5 3.1 361.95 x x x 

3 96.5 96.5 3.2 362.07 x x x 

4 96.5 96.5 5 362.65 x x x x 

The three-predictor model with all variables except VM has the highest 
R2 and adjusted R2  (96.5%), the lowest Mallows' Cp value (3.1) and S
value (361.95). The model with all the variables has the highest R2 and 
adjusted R2 values (96.5%), a low Mallows' Cp value (5) and S value 
(362.65). The best two-predictor model includes VM and FC, with a 
higher Cp value (76.2) and a lower adjusted R2 (95.5%). The best one-
predictor models might be considered the minimum fit. 
The best model to predict the calorific value is a three-predictor model 
with all variables except VM as following equation: 

Calorific value (btu/lb)= 12204 - 170 Moisture + 46.8 
FC - 127 Ash 

(17) 

The p value for the model is 0.000 which indicates that the models 
estimated by the regression procedure are significant at an a-level of 
0.05. The p-values for all of the estimated coefficients are 0.000, 
indicating that they are significantly related to calorific value. The R2

value for this equation is 96.5% which indicates that the model fit the 
data well. The ARD value for training and testing datasets were 2.18 and 
14.99%, respectively. 

4.2. FIS estimation 

4.2.1. Estimation of proximate analysis factors 
In this research, a hybrid grid partitioning ANFIS by using Gaussian 

membership function was developed in order to predict two factors of 
coal proximate analysis based on the other two factors. An ANFIS 
toolbox from MATLAB is used and its operation is explained in its user 
guide. 

For estimation of FC content of coal samples by ANFIS, six different 
schemes are possible. In three schemes, the estimation of FC is 
performed directly through ANFIS modeling. In other schemes, the 
estimation of FC is carried out indirectly by applying this fact that the 
summation of moisture, ash, FC and VM content of coal samples is 100 
percent. Table 6 shows different schemes for the estimation of FC 
content of coal samples. As can be seen, the ARD value for estimating 
the FC content of coal samples in scheme 3 has the least value among 
the other schemes. In this scheme, moisture and VM content are input 
parameters in ANFIS modeling and FC content is output parameter. 
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Table 6: Different schemes for estimation of FC content of coal samples and the related ARD values. 

Calculated Parameter ARD Output 

Parameter 
Input Parameters 

Scheme 

No. ARD Name TRAIN TEST 

10.26 VM 7.35 7.06 FC Ash Moisture 1 

102.52 Moisture 9.18 8.99 FC VM Ash 2 

61.8 Ash 6.05 6.43 FC VM Moisture 3 

6.56 FC 34.96 61.68 Ash VM Moisture 4 

7.05 FC 109 89.33 Moisture VM Ash 5 

7.17 FC 15.46 10.69 VM Ash Moisture 6 

Fig.4 shows the applicability of ANFIS modeling for the estimation of 
FC through scheme 3. As can be seen, this scheme has a good ability for 
estimation of FC content of coal samples. Fig.4 also compares the ability 
of regression method and ANFIS for estimation of FC content of coal 
samples. As can be seen, ANFIS can show better results in estimation of 
FC than regression method. 

The estimation of VM content of coal samples by ANFIS is possible 
through six different schemes. In three schemes, the estimation of VM 
is performed directly through ANFIS modeling and in other three 
schemes the estimation of VM is carried out indirectly, as explained 
previously. Table 7 shows different schemes for the estimation of VM 
content of coal samples. Scheme 8 is the best schemes for the estimation 
of VM since it has the lowest ARD value (4.59%). 

Fig.4. The plot of experimental FC content of coal samples versus predicted FC by regression method and ANFIS 

Table 7: Different schemes for estimation of VM content of coal samples and the related ARD values. 

Calculated Parameter ARD 
Output 

Parameter 
Input Parameters Scheme No. 

ARD Name TRAIN TEST 

7.17 FC 15.46 10.69 VM Ash Moisture 6 

52.02 Ash 6.24 6.88 VM FC Moisture 7 

46.35 Moisture 4.99 4.59 VM FC Ash 8 

10.26 VM 7.35 7.06 FC Ash Moisture 1 

7.26 VM 28.47 53.05 Ash FC Moisture 9 

4.60 VM 43.40 42.85 Moisture FC Ash 10 

Fig.5 shows the applicability of ANFIS modeling for the estimation of 
VM content of coal samples through scheme 8. It can be seen that this 
scheme has a good ability for estimation of VM content of coal samples. 
Fig.5 plots a comparison between ANFIS and regression method for 
estimation of VM. The results indicate that ANFIS is a better predictor 
for VM than regression method. 

The estimation of ash content of coal samples by ANFIS was 
performed similar to the estimation of FC and VM and the results 
presented in Table 8. The lowest ARD value for the estimation of ash 
content of coal samples is observed for scheme 11. 

The applicability of ANFIS modeling for the estimation of ash 
content of coal samples through scheme 11 is illustrated in Fig.6. It can 
be seen that it presents good performance in estimation of ash content 
of coal samples. Fig.6 also compares two methods of regression and 
ANFIS for estimation of Ash content of coal samples. The figure 
confirms that ANFIS is a better method for estimation of Ash than 
regression method. Fig.5. The plot of experimental VM content of coal samples versus predicted VM 

by regression method and ANFIS. 
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Table 8. Different schemes for estimation of ash content of coal samples and the related ARD values. 

Calculated Parameter ARE 
Output 

Parameter 
Input Parameters Scheme No. 

ARE Name TRAIN TEST 

6.56 FC 34.96 61.68 Ash Moisture VM 4 

7.26 VM 28.47 53.05 Ash FC Moisture 9 

42.65 Moisture 31.05 36.02 Ash FC VM 11 

61.8 Ash 6.05 6.43 FC VM Moisture 3 

52.02 Ash 6.24 6.88 VM FC Moisture 7 

43.38 Ash 68.89 53.39 Moisture FC VM 12 

The applicability of ANFIS modeling for the estimation of ash 
content of coal samples through scheme 11 is illustrated in Fig.6. It can 
be seen that it presents good performance in estimation of ash content 
of coal samples. Fig.6 also compares two methods of regression and 
ANFIS for estimation of Ash content of coal samples. The figure 
confirms that ANFIS is a better method for estimation of Ash than 
regression method. 

Fig.6. The plot of experimental Ash content of coal samples versus predicted Ash 
by regression method and ANFIS. 

4.2.2. Estimation of calorific value 

Based on grid partitioning algorithm by Gaussian Membership 

Function with proximate analysis factors (i.e., Moisture, VM, FC and 
Ash), ANFIS model was designed to predict calorific value (Fig.7). 

Fig. 7. System ANFIS: 3 inputs (Moisture, VM, FC and Ash), 1 output (Calorific 
Value) 

Fig.8 shows the ANFIS model structure that was built for calorific 
value estimation in this study. Also, the characterizations of ANFIS 
models are shown in Table 9. 

The ARD value for training and testing datasets was 2.85% and 3.07%, 
respectively. These values indicate that the developed model by ANFIS 
for estimation of calorific value is accurate and consistent. Fig.9 shows 
the applicability of ANFIS model to predict calorific value based on 
proximate analysis factors. As can be seen, ANFIS model maintains its 
excellent estimation accuracy throughout the range of calorific value, 
hence showing consistency and a high degree of generalization 
capability. A comparison between regression method and ANFIS for 
estimation of calorific value has been also shown in Fig.9. It can be seen 
that the ANFIS model could predict the calorific value more precisely 
than the regression model. 

Fig.8. Model structure of the ANFIS for calorific value estimation. 
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Table 9. Summary of the ANFIS model structures and optimal parameters. 

ANFIS parameter type Value 

Number of MFs 

Output MF 

Number of nods 

Number of linear parameters 

Number of nonlinear parameters 

Total number of parameters 

Number of training data pairs 

Number of testing data pairs 

Number of fuzzy rules 

Number of epoch 

3 3 3 3 

Linear 

193 

81 

48 

129 

249 

21 

81 

2000 

Fig.9. The plot of experimental calorific value versus predicted calorific value by 
regression method and ANFIS. 

5. Conclusion 

The mathematical and ANFIS models were developed for estimation 
of two factors of proximate analysis based on the other two factors. The 
best mathematical models for estimation of FC, VM and Ash with 
multiple regression method by Minitab 16 software were found to be as 
follows: 

FC = 89.1 - 0.918 Moisture - 0.972 VM 
VM = 58.4 - 0.395 Ash - 0.445 FC 
Ash = 34.4 - 0.278 FC - 0.333 VM 
The best input variables for estimation by ANFIS for FC were 

Moisture & VM, for VM were Ash & FC, and for Ash content of coal 
samples were FC & VM. The results indicated that ANFIS is a more 
powerful tool for estimating the proximate analysis factors than 
multivariable regression method. 

Different set of the proximate analysis factors were evaluated with the 
best subsets regression by Minitab16 software to find the best 
mathematical model for estimating the calorific value. The results 
showed that the three-predictor model with all variables except VM had 
the highest R2 and adjusted R2  (96.5%), the lowest Mallows' Cp value 
(3.1) and S value (361.95). The model had shown fairly small deviations 
when applied to a diversity of coal samples, thus providing a rapid, 
convenient and cost effective procedure to obtain good estimates of 
calorific value. The ability of ANFIS was also examined for estimating 
the calorific value of coal samples from proximate analysis factors. The 
results indicated that the accuracy of ANFIS for estimation of calorific 
value is better than that of regression method. 
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