تعداد نشریات | 161 |
تعداد شمارهها | 6,466 |
تعداد مقالات | 69,886 |
تعداد مشاهده مقاله | 122,389,379 |
تعداد دریافت فایل اصل مقاله | 95,639,016 |
Investigation of Climate Change Effect on Drought Characteristics in the Future Period using the HadCM3 model (Case Study: Khoy Station, Northwest of Iran) | |||
Desert | |||
مقاله 5، دوره 22، شماره 1، خرداد 2017، صفحه 43-50 اصل مقاله (267.2 K) | |||
نوع مقاله: Research Paper | |||
شناسه دیجیتال (DOI): 10.22059/jdesert.2017.62294 | |||
نویسندگان | |||
َA. Salehpour Jam1؛ M. Karimpour Reihan* 2؛ M. Mohseni Saravi3؛ J. Bazrafshan4؛ Sh. Khalighi Sigaroudi3 | |||
1Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO) | |||
2Geo Science Research Dept., International Desert Research Center (IDRC), University of Tehran, Tehran, Iran c Faculty of Natural Resources, University of Tehran | |||
3Faculty of Natural Resources, University of Tehran | |||
4Faculty of Agricultural Engineering and Technology, University of Tehran | |||
چکیده | |||
Investigation of drought event has a great importance in the natural resources and water resources management and planning. In this research, the effect of the climate change on drought characteristics in Khoy station was investigated using the HadCM3 model under B2 scenario. The statistical downscaling was executed using SDSM 4.2.9 and observed daily precipitation, observed predictors and large-scale predictors derived from the HadCM3 model. Afterwards the SPI was calculated for different time scales of 3, 12, 24, 48 months in the observed period of 1977-2006 and also three periods of 2007-2036, 2037-2066 and 2067-2096. The results show that the mean annual precipitation will decrease in the future periods, in the manner that the fourth and second periods respectively with the depletion of 48 mm (17%) and 34 mm (12%) than the observed period have maximum and minimum rate of the depletion. The results also show that the drought occurrence with more intensity, duration and frequency can occur in the future periods. | |||
کلیدواژهها | |||
Khoy؛ Drought؛ Large-scale predictors؛ Statistical Downscaling؛ SPI | |||
مراجع | |||
Abbasi, F., M. Asmari, 2011. Forecasting and assessment of climate change over Iran during future decades using MAGICC-SCENGEN model. Water and Soil, 25; 70-83. Babaeian, I., R. Modirian, M. Karimian, M. Zarghami, 2015. Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system. Desert, 20; 123-134.
Bootsma, A., S. Gameda, D.W. McKenney, 2005. Impacts of potential climate change on selected agroclimatic indices in Atlantic Canada. Canadian Journal of Soil Science, 85; 329-343. Braga, A.C.F.M., R.M. da Silva, C.A.G. Santos, G.C. de Oliveira, P. Nobre, 2013. Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil. Journal of Hydrology, 498; 46-58. Dastorani, M.T., A.R. Massah Bavani, S. Poormohammadi, M.H. Rahimian, 2011. Assessment of potential climate change impacts on drought indicators (case study: Yazd Station, Central Iran). Desert, 16; 159-167. Golmohammadi, M., A. Massah Bavani, 2011. Investigation of climate change impact on drought intensity and duration. Water and Soil, 25; 315-326. Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, P. Pegion, 2012. On the increased frequency of Mediterranean drought. Journal of Climate, 25; 2146-2161. IPCC, 2007. Summary for policy makers. In: IPCC. Climate change: The physical Science basic. Contribution of working group first to the Fourth assessment report of the intergovernmental panel on climate change. 1th ed., Cambridge university press, Cambridge. Labedzki, L., 2006. Estimation of local drought frequency in central Poland using the standardized precipitation Index (SPI). Irrigation and Drainage, 56; 67-77. Lazar, B., M. Williams, 2008. Climate change in western ski areas: potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Regions Science and Technology, 51; 219-228. Lee, J.H., C.J. Kim, 2013. A multimodel assessment of the climate change effect on the drought severity– duration–frequency relationship. Hydrological Processes, 27; 2800-2813. Lee, J.H., H.H. Kwon, H.W. Jang, T.W. Kim, 2016. Future Changes in Drought Characteristics under Extreme Climate Change over South Korea. Advances in Meteorology, 2016; 1-19. Loukas, A., L. Vasiliades, J. Tzabiras, 2008. Climate change effects on drought severity. Advances in Geosciences, 17; 23-29. McKee, T.B., N.J. Doesken, J. Kleist, 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, USA. pp. 179- 183. Mohammadi, H., M. Moghbel, F. Ranjbar, 2010. The study of Iran's precipitation and temperature changes using the MAGICC-SCENGEN model. Journal of Geography, 8; 125-142. Mohammadi, H., F. Taghavi, 2005. Trend of extreme
indices of temperature and precipitation in Tehran. Geography Researches, 53; 151-172. Morid, S., M. Moghaddam, Sh. Paymozd, H. Ghaemi, 2005. Design of Tehran province drought monitoring system. Water Resources Management Co. (WRMC-Iran), Report number: 1, 196p. Nandintsetseg, B., M. Shinoda, 2013. Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Natural Hazards, 66; 995-1008. Salajegheh, A., E. Rafiei Sardooei, A. Moghaddamnia, A. Malekian, Sh. Araghinejad, Sh. Khalighi Sigaroodi, A. Salehpour Jam, 2016. Prediction of climatic variables using statistical downscaling model (SDSM) in Future under Scenario A2. Desert Management, 4; 12-25. Salehpour Jam, A., M. Mohseni Saravi, J. Bazrafshan, Sh. Khalighi Sigaroudi, 2015. Investigation of Climate Change Effect on Drought Characteristics in the Future Period using the HadCM3 model, Case Study: Northwest of Iran. Journal of Range and Watershed Management, 67; 537-545. Sayari, N., A. Alizadeh, M. Bannayan, A. Farid Hossaini, M.R. Hesami Kermani, 2011. Comparison of two GCM models (HadCM3 and CGCM2) for the prediction of climate parameters and crop water use under climate change (case study: Kashafrood Basin). Water and Soil, 25; 912- 925. Schoof, J.T., S.C. Pryor, 2001. Downscaling temperature and precipitation: A Comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 21; 773-790. Spinoni, J., G. Naumann, H. Carrao, P. Barbosa, J. Vogt, 2014. World drought frequency, duration, and severity for 1951-2010. International Journal of Climatology, 34; 2792-2804. Enyew, B. D., H. A. J. Van Lanen, A. F. Van Loon, 2014. Assessment of the impact of climate change on hydrological drought in Lake Tana catchment, Blue Nile basin, Ethiopia. Journal of Geology & Geosciences, 3; 174-185. Wilby, R.L., T.M.L. Wigley, 2000. Precipitation predictors for downscaling: Observed and general circulation model relationships. International Journal of Climatology, 20; 641-661. Yu, P.S., T.C. Yang, C.M. Kuo, H.W. Tseng, S.T. Chen, 2014. Climate change impacts on streamflow drought: a case study in Tseng-Wen reservoir catchment in southern Taiwan. Climate, 3; 42-62. Zehtabian, Gh R., A. Salajegheh, A. Malekian, N. Boroomand, A. Azareh, 2016. Evaluation and comparison of performance of SDSM and CLIMGEN models in simulation of climatic variables in Qazvin plain. Desert, 21; 155-164. | |||
آمار تعداد مشاهده مقاله: 1,185 تعداد دریافت فایل اصل مقاله: 1,126 |