تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,701 |
تعداد دریافت فایل اصل مقاله | 97,226,231 |
ارزیابی و تحلیل عدم قطعیت معادلات مختلف برآورد زمان تمرکز (حوضه مورد مطالعه: حوضههای آبریز امامه و کسیلیان) | ||
تحقیقات آب و خاک ایران | ||
مقاله 5، دوره 48، شماره 2، مرداد 1396، صفحه 275-288 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2017.62625 | ||
نویسنده | ||
اصغر عزیزیان* | ||
استادیار گروه مهندسی آب/ دانشگاه بین المللی امام خمینی قزوین | ||
چکیده | ||
وابستگی معادلات زمان تمرکز به پارامترهای مختلف آنها را در معرض عدم قطعیتهای ناشی از تغییرات شدت بارش، مقیاس نقشه توپوگرافی و کاربری اراضی، توان تفکیک مدلهای رقومی ارتفاعی و همچنین آستانه شکلگیری آبراههها قرار میدهد. در پژوهش حاضر به ارزیابی و تحلیل عدم قطعیت 20 معادله پرکاربرد و متداول در زمینه محاسبه زمان تمرکز در دو حوضه آبریز کسیلیان و امامه پرداخته شده است. نتایج بدست آمده نشان میدهد که معادلات BransbyWilliams و Morgali-Linsley با دارا بودن خطای نسبی کمتر از 10 درصد، بیشترین تطابق را با زمان تمرکز مشاهداتی در دو حوضه مذکور، دارا میباشند. همچنین تحلیل عدم قطعیت معادلات مختلف برآورد زمان تمرکز به روش مرتبه اول تغییرات حاکی از آن است که معادلات McCuen، ASCE و Eagleson دارای بیشترین عدم قطعیت (بیش از 50 درصد) و معادلات FAA و Johnstone دارای کمترین عدم قطعیت (کمتر از 10 درصد) میباشند. در روشهای مبتنی بر پارامترهای ژئومورفولوژیکی نیز سهم عدم قطعیت ناشی از آستانه شکلگیری آبراههها بر عملکرد معادلات زمان تمرکز تقریباً 3 تا 4 برابر مقیاس نقشه و توان تفکیک مدلهای رقومی ارتفاعی میباشد. لذا توصیه میگردد به هنگام استفاده از چنین معادلاتی بهویژه در حوضههای فاقد آمار به مبحث آستانه شکلگیری آبراههها توجه ویژهای بعمل آید. | ||
کلیدواژهها | ||
زمان مرکز؛ عدم قطعیت؛ پارامترهای ژئومورفولوژیکی؛ مقیاس نقشه | ||
عنوان مقاله [English] | ||
Assessment and Uncertainty Analysis of Different Time of Concentration Methods | ||
نویسندگان [English] | ||
Asghar Azizian | ||
Assistant Professor in Water Engineering Department/ Imam Khomeini International University | ||
چکیده [English] | ||
There are many uncertainty sources initiated from dependency of time of concentration equations (Tc) upon different parameters, which generally include rainfall intensity, topographic and land use map scale, DEM resolution and streams' delineation threshold. Throughout the present research the uncertainty and the performance of twenty Tc equations were investigated in the Kasilian and Amameh catchments. Results indicate that in either of the catchments, BransbyWilliams and Morgali-Linsley equations show good agreement with the observed values, with a relative error of less than 10%. Also, the uncertainty analysis of different Tc equations by use of delta method illustrates that McCuen, ASCE, Eagleson and FAA, Johnstone-Cross equations are of the highest vs. lowest uncertainties, respectively. In the geomorphological-based equations, the uncertainty that is caused by streams delineation threshold is approximately 3-4 times that of DEM and data resolutions' uncertainties. This indicates that streams delineation threshold is the most important factor and should be more consideration, especially in ungagged catchments. | ||
کلیدواژهها [English] | ||
time of concentration, uncertainty, Geomorphological Parameters, Data Resolution | ||
مراجع | ||
Azizian, A. and Shokoohi, A.R. (2014). DEM resolution and stream delineation threshold effects on the results of geomorphologic-based rainfall runoff models. Turkish J Eng Env Sci, 38, 64-78. Azizian, A. and Shokoohi, A.R. (2015a). Effects of Data resolution and stream delineation threshold effects on the results of a Kinematic Wave based GIUH model. Journal of Water S.A, 4(9), 61-70. Azizian, A. and Shokoohi A.R. (2015b). Investigation of the Effects of DEM Creation Methods on the Performance of a Semi distributed Model: TOPMODEL. J. Hydro. Eng, 20(11), 05015005 (1-9). Azizian, A. and Shokoohi, A.R. (2016). Effect of Data Spatial Resolution on Topographic Index and Performance of the Simi-Distributed Model (TOPMODEL). Modares Civil Engineering Journal, 16(2), 187-201 (In Farsi). Comina, C., Lasagna, M., Luca, D. A. De., and Sambuelli, L. (2013). Discharge measurement with salt dilution method in irrigation canals: direct sampling and geophysical controls. Hydrol. Earth Syst. Sci. Discuss, 10, 10035-10060. Dastourani, M.T., Abdollahvand, A., Osareh, H., Talebi, A. and Moghaddamnia, A. (2013). Determination of application of some experimental relations of concentration time for estimation of surveying time in waterway. Journal of Watershed Management Research, 99, 42-52 (In Farsi). Dingman, S. L. (2002). Physical Hydrology, Prentice Hall. Eslamian, S. and A. Mehrabi. (2005). Determination of experimental relations in estimation of concentration time in mountainous watershed basins. Journal of Natural Resources and Agricultural Sciences, 12(5), 23-34 (In Farsi). Fang, X., Thompson, D. B., Cleveland, T. G., and Pradhan, P. (2007). Variations of time of concentration estimates using NRCS velocity method. J. Irrig. Drain Eng, 133(4), 314–322. Fang, X., Thompson, D. B., Cleveland, T. G., Pradhan, P., and Malla, R. (2008). Time of concentration estimated using watershed parameters determined by automated and manual methods. J. Irrig. Drain Eng, 134(2), 202–211. Froehlich, D.C. (2011). NRCS overland flow travel time calculation. J. Irrig. Drain Eng, 137(4), 258–262. Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Eng, 10(6), 362–368. Khan, A.L., Lye, L. and Husain, T. (2008). Latin Hypercube Sampling for Uncertainty Analysis in Multiphase Modelling, J. of Environ. Eng. Sci., 7, 617-626. Kosari, M.R., Saremi Nayeeni, M.A., Tazeh, M. and Rahim Firrozeh, M. (2010). Sensitivity analysis of four concentration time estimation methods in watershed basins. Journal of Khoshkboom, 1(1), 43- 55 (in Farsi). Kumar, R., Chatterjee, C., Singh, R.D., Lohani, A.K. and Kumar, S. (2004). GIUH based Clark and Nash models for runoff estimation for an ungauged basin and their uncertainty analysis. Intl. J. River Basin Management, 2(4), 281–290. Loucks, D.P., Van Beek, E., Stedinger, J., Dijkman, J.P.M. and Villars, M.T. (2005). Water Resources Systems Planning and Management An Introduction to Methods, Models and Applications. UNESCO publishing, Turin, Italy. Manjo, K.C. and Fang, X. (2014). Estimating Time of Concentration of Overland Flow on Impervious Surface using Particle Tracking Model. World Environmental and Water Resources Congress. Water without Borders © ASCE. McCuen, R. (2009). Uncertainty Analyses of Watershed Time Parameters. J. Hydrol. Eng, 14(5), 490-498. McCuen, R. H. and Spiess, J. M. (1995). Assessment of kinematic wave time of concentration. J. Hydraul. Eng, 121(3), 256–266. McCuen, R. H., Wong, S. L. and Rawls, W. J. (1984). Estimating urban time of concentration. J. Hydraul. Eng, 110(7), 887–904. Mobaraki, J. (2006). Analysis the accuracy of empirical Tc and time to peak equations. MSc. Dissertation, Natural resources faculty. Tehran. Moghaddamnia, E. (2000). Comparing time of concentration, lag time and time to peak equations with using empirical equations and the shape of hydrograph, MSc. Dissertation, Natural resource and marine sciences, Tarbiat Modares university, Tehran. NRCS (Natural Resource Conservation Service). 1986. Urban hydrology for small watersheds. Tech. Release No. 20, Soil Conservation Service, U.S. Dept. of Agriculture, Washington, DC. Pavlovich, S. B. and Moglen, G. E. (2008). Discretization issues in travel time calculation. J. Hydrol. Eng, 13(2), 71–79. Razmjoei, N., Mahdavi, M., Mohseni Saravi, M. and MoetamedVaziri, B. (2011). Comparing some of Tc equations (case study: Tehran). 7th National Conference on Watershed Management Sciences and Engineering of Iran, Esfahan University. Sadeghi, S. H. R., Mostafazadeh, R. and Sadoddin, A. (2015). Changeability of simulated hydrograph from a steep watershed resulted from applying Clark’s IUH and different time–area histograms. J. of Environ. Eng. Sci, 74(4), 3629-3643. Sharifi, S. and Hosseini, S.M. (2011). Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region. J. Irrig. Drain Eng. 137(11), 712–719. Singh, V. P. (1988). Hydrologic systems: Rainfall-runoff modeling. Vol. 1, Prentice Hall, Englewood Cliffs, NJ. Tarboton, D. G. (1991). On the extraction of channel networks from digital elevation data. Hydrological Processes, 5(1), 81-100. Tung, Y.K. (1996). Uncertainty analysis in water resources engineering. Tick, K. S. Goulter, I. C., Xu, c., Wasimi, S. A., and Bouchart, F. (Eds.), In Stochastic Hydraulics 96. USACE (U.S. Army Corps of Engineers). 2001. HEC-HMS hydrologic modeling system. User’s manual Version 2.2.1.www.usace.army.mil. USWRC (U.S. Water Resources Council). 1981. Estimating peak flow frequencies for natural ungaged watersheds. Washington, D.C. Viessman, W. Jr. and Lewis, G. L. (2003). Introduction to hydrology. Pearson Education, New York. Wong, T. S. W. (2005). Assessment of time of concentration formulas for overland flow. J. Irrig. Drain Eng, 131(4), 383–387. Wong, T. S. W. (2009). Evolution of kinematic wave time of concentration formulas for overland flow. J. Hydrol. Eng, 14(7), 739–744. | ||
آمار تعداد مشاهده مقاله: 953 تعداد دریافت فایل اصل مقاله: 1,012 |