
Progress in Biological Sciences /  Vol. 6 (2) 2016  
 

 

 

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between 

sequences ....................................................................................................................................................... 117 

Vahid Rezaei Tabar, Hamid Pezeshk 
 

Neighborhood matrix: A new idea in matching of two dimensional gel images .......................................... 129 

Behrouz Alizadeh Savareh
1
, Azadeh Bashiri

2
, Mehrnaz Mostafavi 

 

Optimization for high level expression of cold and pH tolerant amylase in a newly isolated Pedobacter sp. 

through Response Surface Methodology ................................................................................................... 139 

Razie Ghazi-Birjandi, Bahar Shahnavaz, Maryam Mahjoubin-Tehran 
 

Using petrochemical wastewater for production of cruxrhodopsin as an energy capturing nanoparticle by 

Haloarcula sp. IRU1 ..................................................................................................................................... 151 

 Mojtaba Taran, Mehran Alavi, Arina Monazah, Javad Zavar Reza 
 

Radical scavengering of pigments from novel strains of Dietzia schimae and Microbacterium 

esteraromaticum ............................................................................................................................................ 159 

Sayyede Narjes Zamanian, Zahra Etemadifar 
 

Degradation of naphthalene by bacterial isolates from the Gol Gohar Mine, Iran .................................... 171 

Moslem Abarian, Mehdi Hassanshahian, Arastoo Badoei-Dalfard 
 

Evaluation of growth inhibition activity of myxobacterial extracts against multi-drug resistant 

Acinetobacter baumannii  ............................................................................................................................. 181 

Mona Dehhaghi, Fatemeh Mohammadipanah 
 

Comparison of MAPK and thioredoxin gene expression in wheat seedlings exposed to silver nitrate and 

silver nanoparticle  ....................................................................................................................................... 189 

Javad Karimi; Sasan Mohsenzadeh 
 

Simple procedure for production of short DNA size markers of 100 to 2000 bp ........................................ 199 

Hamed Hekmatnezhad, Fatemeh Moradian, Seyed Hamidreza Hashemi-Petroudi 
 

Changes in composition and antioxidant activities of essential oils in Phlomis anisodonta (Lamiaceae) at 

different stages of maturity ......................................................................................................................... 205 

Hamzeh Amiri 
 

Effects of culture medium and supplementation on seed germination, protocorm formation and 

regeneration of some Phalaenopsis hybrids ............................................................................................... 213 

Golandam Sharifi, Masoud Mirmasoumi, Zahra Zahed 

 

Subgeneric classification of Linaria (Plantaginaceae; Antirrhineae): molecular phylogeny and 

morphology revisited ................................................................................................................................... 229 

Nafiseh Yousefi, Günther Heubl, Shahin Zarre 

 

CONTENTS 





Progress in Biological Sciences 

Vol. 6, Number 2, Summer / Autumn 2016/117-127 – DOI: 10.22059/PBS.2016.590014 
 

A generalization of Profile Hidden Markov Model (PHMM) 

using one-by-one dependency between sequences 
 

Vahid Rezaei Tabar1,2*, Hamid Pezeshk2,3 

1 Department of Statistics, Faculty of mathematics and Computer Sciences, Allameh Tabataba'i University, Tehran, Iranz 

2 School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, Iran 

3 School of Mathematics, Statistics and Computer Science, University of Tehran, Iran 

 

Received: May 12, 2016; Accepted: December 10, 2016 

 

 

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of 

the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple 

sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the 

fact that sequences appearing in the final MSA are written based on their similarity; the one-by-one dependency 

between corresponding amino acids of two current sequences can be append to PHMM. This perspective makes it 

possible to consider a generalization of PHMM. For estimating the parameters of generalized PHMM (emission and 

transition probabilities), we introduce new forward and backward algorithms. The performance of generalized 

PHMM is discussed by applying it to the twenty protein families in Pfam database. Results show that the 

generalized PHMM significantly increases the accuracy of ordinary PHMM. 

Keywords: Statistics; Multiple sequence alignment; Amino Acids; Protein families; Pfam database 

 

 

Introduction 

A hidden Markov model (HMM) is a statistical 

Markov model in which the system being modeled is 

assumed to be a Markov process with unobserved 

(hidden) states (1, 2, 3). It is used in almost all current 

speech recognition system, in numerous applications 

in computational molecular biology, in data com-

pression, and in other areas of artificial and pattern 

recognition (4, 5, 6, 7). A Hidden Markov Model 

(HMM) can be presented as a specific type of 

graphical model which is a directed acyclic graph 

(DAG) (Figure 1).  Under the casual Markov 

assumption, the joint probability distribution of a 

HMM can be written as: 

  (         )   (  ) ∏  (  
 
   |    ) (  |  )    {1} 

 

in which  (  |    ) and  (  |  )indicate the 

transition and emission probabilities. 

 

* Corresponding author: vhrezaei@atu.ac.ir 

http://atu.ac.ir/en
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Markov_model
https://en.wikipedia.org/wiki/Markov_process
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Figure 1. Structure of a HMM 

 

Sonnhammer et al. (8) introduced an HMM 

architecture that was well suited for representing 

profiles of multiple sequence alignments (MSA). For 

each consensus column of the multiple alignment, a 

"Match" (M) state models the distribution of residues 

allowed in the column. An "Insert" (I) state and 

"Delete" (D) state at each column allow for insertion 

one or more residues between that column and the 

next, or for deleting the consensus residues. Profile 

HMMs are strongly linear, left-right models. Figure 2 

shows a profile HMM corresponding to the MSA. 

 

 

Figure 2. Structure of a profile HMM 

 

The Profile Hidden Markov Model (PHMM) can 

be poor at capturing dependency between 

observations because of the statistical assumptions it 

makes (1). For overcoming this problem, we consider 

the one-by-one dependency between two current 

residues. Based on the fact that with doing a MSA, the 

sequences are biologically related, we can use the 

MSA to find the areas of similarity between two 

current sequences. Therefore the one-by-one 

dependency between a residue and the corresponding 

residue located above it can be combined with the 

PHMM (i.e. Figure 3). 

 

Figure 3. One-by-one dependency between sequences in MSA 

This approach in spirit is similar to the works 

proposed by Holmes (9), Qian and Goldstein (10) and 

Siepel and Haussler (11) where a PHMM is 

augmented with phylogenetic trees. In their approach, 

the evolutionary information is appended to the 

PHMM. They considered the dependency between 

sequences based on the fact that all the current 

sequences are dependent upon their ancestral 

sequences and there is no dependency between two 

current sequences. But in our approach, the 

dependency between two current sequences based on 

the similarity between them can be appended to the 

PHMM.  

When talking about PHMMs, there are generally 

three problems to be considered (12): 

Evaluation: Given the observation sequence 

O={O_1,O_2,…,O_L} and a model λ, how do we 

efficiently compute P(O|λ), i.e., the probability of the 

observation sequence given the model. For evaluation, 

two algorithms are used: the forward algorithm or the 

backwards algorithm (1).  
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Recognition: Given the observation sequence 

O={O_1,O_2,…,O_L} and a model λ, how do we 

choose a corresponding state sequence 

S={S_1,S_2,…,S_L} which is optimal in some sense, 

i.e., best explains the observations. For this problem 

the Viterbi algorithm is used (13).  

Training: Given the observation sequence 

O={O_1,O_2,…,O_L}, how do we adjust the model 

parameters λ to maximize P(O|λ). For this purpose the 

Baum Welch (forward-backward) algorithm is 

considered (14). 

In this paper, based on the one-by-one dependency 

between two current sequences, we introduce the new 

forward and backward algorithms. As a result, the 

Baum-Welch and Viterbi algorithms are generalized. 

This paper organizes as follows: in section 2, we 

introduce the PHMM. In section 3, parameter 

estimation of PHMM is presented. More details of 

generalized Viterbi algorithm presented in section 4. 

We finally compare the performance of the generalized 

PHMM with the common one by applying them on 

twenty protein families in Pfam database which is a 

well-known database of protein families (15). 

 

Materials and Methods 

The PHMM 

Profile hidden Markov model (PHMM) techniques are 

among the most powerful methods for protein 

homology detection (16). One of the advantages of 

using the PHMMs is that they provide a better method 

for dealing with gaps found in protein families. A 

profile HMM is a linear state machine consisting of a 

series of nodes, each of which corresponds roughly to 

a position (column) in the alignment from which it 

was built (17-19). In other words, the PHMM is a 

linear structure of three states Match (M), Delete (D), 

and Insert (I). The construction of the PHMM is 

shown in Figure 2. In PHMM, we need to decide how 

many states exist in a PHMM. In other words, we 

should determine the length of the PHMM (i.e., how 

many match states do we have in a profile?). Here we 

assume that n is the number of Match states (M) in the 

PHMM. So, the total number of states is 3n+3.  

Delete, Start and End states are silent and they emit 

no symbols. One heuristic method to set M, is to 

include those columns that have amino acids in at 

least half of the sequences using MSA (2). It should 

be noted that in each column, we have 20 amino acids 

or gap in which 20 amino acids are observed from 

Match and Insert states. A profile HMM has several 

types of probabilities associated with it. One type is 

the transition probability; the probability of 

transitioning from one state to another. There are also 

emissions probabilities associated with each Match or 

Insert state, based on the probability of a given residue 

existing at that position in the alignment.  

 

Parameter Estimation of the Generalized 

PHMM 

A major limitation of a PHMM is the assumption that 

given states, the observations, are independent. To 

overcome this limitation, the dependency between 

amino acids in a multiple sequence alignment (MSA) 

which is the representative of a PHMM can be 

appended to the PHMM. It is very important because 

we can generalize profile hidden Markov models 

using the on-by-one dependency. The sequences 

appearing in the final multiple sequence alignment are 

written based on their similarity (note that MSA is a 

representative of PHMM). So, the one-by-one 

dependency between corresponding amino acids of 

two current sequences can be combined with PHMM. 

Regarding MSA, we assume that protein sequences 

consisting of 21 observations (20 amino acids and one 

gap) have been placed on a regular lattice. In other 

words, each observation (residue) is arranged as a site 

(i.e. Figure 4). 

 

 

Figure 4. Observations on a regular lattice 
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Regarding the regular lattice, we can introduce the 

ingredients of the PHMM as follows:  

1. Hidden state (S) takes on 3n+3 values 

2. Observation (O) takes on 21 values (20 amino 

acids and gap) 

3. Transition probability matrix  (     ) (     ) 

with following entries: 

  ( )   (    |      )            

4. Emission probabilities  (     )    with the 

following entries: 

  (   )   (        |            )    

                       . 

This emission probability presents the probability 

of current observed variable given the current hidden 

state as well as observed variable located above it. It 

should be noted that        represents the amino acids 

(20 types) at lattice point and      is the amino acids 

or one gap (21 types) located above       .  

5. A vector of initial state π with elements 

 ( )   (    ) 

With consideration of the one-by-one dependency 

between residues, a PHMM can also be considered as 

a graphical model.  

According to Figure 3, if we assume that the 

observations come from three hidden Match states 

(M1, M2 and M3), then the dependency between 

Match states (from left to right), the dependency 

between residues (top to bottom), and the dependency 

between residues and hidden states can be shown in 

Figure 5.  

 

 

 

Figure 5. A PHMM with consideration of the one-by-one dependency 

 

 

Suppose that    

[
 
 
 
 
 

    

       

 
 
 

    ]
 
 
 
 
 

, where   is the 

number of rows in MSA (Note that we arrange the 

observations on the regular lattice). For instance in 

Figure 4, we have    [
 
 
 
]     [

 
 
 

]     [
 
 
 
].) 

Regarding one-by-one dependency between obser-

vations, the likelihood of the parameters   (     ) 

given the observations will be as follows: 

 

 ( | )   ( | )  ∑ ( |   ) ( | )

 

             

 ∑∏ (  |  ) (  |    )
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 ∑∏ (  ) ∏
   

(           )  (    |  ) 
 

 

     

     
(  ) 

Note that we consider    
(    )   (    |  ) as 

the new parameter. In other words, a vector of initial 

observation φ with elements   ( )   (     

 |    ) is added to the set of parameters  . Taken 

together we have   (       ). For estimating the 

set of parameter   in a PHMM, we need to define the 

new Forward and Backward algorithms which are to 

find out a recursive way to represent the variable 

sequence (20). 

The Forward algorithm represents the probability 

of observations up to time t and in state i at time t, 

given the model λ; 

  ( )   (               | ) 

 Then we have:  

 (          |  )  ∑  (                |  )  ∑   ( )
    

   

    

   
 

 

We can solve   ( ) for inductively through the equation (Note that            ): 

 

  ( )   (                | ) 

 ∑  (                      | )

    

   

 

 ∑  (                    | )  (       |                     )

    

   

 

 ∑     ( )  (       |               )

    

   

 

  ∑     ( )  (       |      )

    

   

 

  ∑     ( )    (    |      ) (  |     )

    

   

 

 ∑     ( )    ( )  (    |         )  (    |         )

    

   

 (    |         )   (      |         ) (    |  ) 

 ∑     ( )    ( )  (    |    )∏ (      |         )

 

   

    

   

 

 ∑     ( )    ( )   (    )∏  (           )

 

   

    

   

                       

In a very similar manner, we define the backward variable as follows:  

  ( )   (              |       ) 

where                denote the partial time series beyond time t in a PHMM. Then we can use   ( ) to 
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solve  (              |  ) by the following way: 

   ( )   (              |        ) 

 ∑  (                     |        )

    

   

 

 ∑  (              |                   )  (            |       )

    

   

 

 ∑  (         |       ) 
 (                 )

 (     )

    

   

 

 ∑

 

      ( ) 
 (      |    ) (    ) (     |        )

 (    )
 

    

   

 

       ∑      ( )   ( )   (      |      )∏ (        |             )

 

   

 

    

   

 

       ∑      ( )   ( )    (      )∏  (               )             

 

   

 

    

   

 

Let   (   ) be the probability of the PHMM being in state i at time t and making a transition to state j at time 

t + 1, given the model   (       ) and observation sequence O:  

  (   )   (           |   ) 

Using Bayes law and the independency assumption, it follows: 

  (   )   
 (             | )

 ( | )
                

  
 (                | ) (                     |      )

 ( | )
                            

 
 (                | ) (      |    ) (               |             )

 ( | )

 
 (                | ) (      |    ) (    |        ) (         |        )

 ( | )

 
  ( )  ( )   (      )∏   (               )

 
       ( )

 (          | )

 
  ( )  ( )   (      )∏   (               )

 
       ( )

 (                )  (                )

 
  ( )  ( )   (      )∏   (               )

 
       ( )

 (    |     )   (      |    ) (    )  (    |     )   (      |    ) (    )
               

 

We also define the   ( ) as the probability in state i at time t given the observation sequence O= 

             and model   (       ) then it can be proven: 
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  ( )   (    |   )  
 (      | )

 ( | )
 

      
 (            | ) (         |      )

 ( | )
    

       
  ( )  ( )

 (    |     )   (      |    ) (    )  (    |     )   (      |    ) (    )
                  

 

Baum-Welch method is indeed an implementation 

of general EM (Expectation-Maximization) method 

(14). As indicated by its name, EM algorithm involves 

a two-step (E-step and M-step) procedure which will 

be recursively used (4). Baum-Welch works by 

maximizing a proxy to the log likelihood, and 

updating the current model to be closer to the optimal 

model. Each iteration of Baum-Welch is guaranteed to 

increase the log-likelihood of the data. In this paper 

Generalized Baum-Welch works in the following way 

for each sequence in the training set of sequences:  

1. Calculate forward probabilities with the 

forward algorithm 

2. Calculate backward probabilities with the 

backward algorithm 

3. Calculate the contributions of the current 

sequence to the transitions of the model, 

calculate the contributions of the current 

sequence to the emission probabilities of the 

model. 

4. Calculate the new model parameters (start 

probabilities, transition probabilities, emission 

probabilities) 

5. Calculate the new log likelihood of the model 

6. Stop when the change in log likelihood is 

smaller than a given threshold or when a 

maximum number of iterations is passed. 

 

 

Therefore the estimated emission and transition 

probabilities will be as follows (2):  

 ̂ (   )  
∑   ( )                   

∑   ( )          
           

 ̂ ( )  
∑   (   ) 

∑   ( ) 
 

Generalization of Viterbi Algorithm 

One of the most important problems in a hidden 

Markov model (HMM) is, given observations 

               and the model  , how we choose 

the states               from 3n+3 possible states 

to maximize the probability of observing the 

sequence? (12). The Viterbi algorithm finds the single 

best state path for the given observations. In other 

words, the Viterbi algorithm provides overall most 

likely path.  

In generalized Viterbi algorithm, we have to find 

the optimal state sequences which could best explain 

the given observations according to dependency 

between observations. The solutions for this problem 

rely on the optimality criteria we have chosen. The 

most widely used criterion is to maximize  (   | ). 

It represents the probability (for discrete distribution) 

or likelihood (for continuous distribution) of 

observing observation sequence given their joint 

distribution. Therefore the probability of the state path 

and observation sequence given the model in a 

PHMM would be as follows: 

 

 (   | )   ( |   ) ( | )          
(  )   

(  )    
(  )      

(  )   
(  ) 

Where  

   
(  )   (  |  )   (    |  )∏ (      |       ) 

 

   

     
(    )∏   

(           )

 

   

 

To convert the products into summations, U(S) defines as follows:  
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 ( )     ( (   | ))   [  (    )  ∑  (     
(  )   

(  ))

 

   

]       

 

Consequently, 

 

   
 

 (   | )     
 

 ( ) 

 

This reformation now enables us to view terms -   (     
(  )   

(  )) as the cost (or distance). The problem 

then can be seen as finding the shortest path via Viterbi Algorithm.  

Let   (      ) be the first t terms of U(S) and   ( ) be the minimal accumulated cost when we are in state i 

at time t,- 

 

           (      )      (    )  ∑   (     
(  )   

(  ))

 

   

  

  ( )      
           

  (             ) 

 

Therefore, Viterbi algorithm then can be implemented by four steps: 

1. Initialize the   ( ) for all           

 

  ( )     (    ) 

2. Inductively calculate the   ( ) for all          from time t = 1 to t = L: 

 

  ( )     
         

     ( )     (   
(  )   

(  )  

 

3. Then we get the minimal vale of U(S): 

 

   
 

 ( )     
        

   ( )  

 

4. Finally we trace back the calculation to find 

the optimal state path            

Results and Discussion 

To evaluate the performance of generalized profile 

hidden Markov model, we use the top twenty protein 

families from the Pfam database (Table 1) which is a 

well-known database of protein families (15). Proteins 

are generally composed of one or more functional 

regions, commonly termed domains. Different 

combinations of domains give rise to the diverse range 

of proteins found in nature. The identification of 

domains that occur within proteins can therefore 

provide insights into their function. The Pfam 

database contains 16230 families. Pfam is a database 

of protein families that includes their annotations and 

multiple sequence alignments generated using hidden 

Markov models. 

https://en.wikipedia.org/wiki/Protein_family
https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Hidden_Markov_model
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Table 1. Top Twenty protein families in Pfam database 

profile Number of sequence 

 Seed Full 

ABC_tran 

RVT 1 

COX1 

GP120 

WD40 

RVP 

zf-C2H2 

Response_reg 

Cytochorm B N 

HA TPase c 

BPD transp 1 

MFS_1 

Oxidored q1 

Pkinase 

Cytochrom_B_C 

RVT_thumb 

Adh short 

Acetyltransf 1 

Helicase_C 

HTH_1 

60 

155 

94 

24 

1842 

50 

195 

57 

92 

662 

81 

196 

33 

54 

114 

41 

230 

243 

491 

1556 

163029 

126258 

118265 

105452 

101999 

93675 

88330 

75322 

70463 

70410 

70027 

69503 

60333 

56691 

51006 

50191 

50144 

46279 

42435 

41545 

 

There are two components in Pfam: Pfam-A and 

Pfam-B. The entries of the pfam-A have high quality 

and these twenty protein families belong to Pfam A. 

Pfam-A is the manually curated portion of the 

database. For each entry a protein sequence alignment 

and a hidden Markov model is stored. These hidden 

Markov models can be used to search sequence 

databases with the HMMER package written by Sean 

Eddy (2). 

To assess the performance of the generalized PHMM, 

20 sequences from each family are randomly 

removed. So we have 400 sequences removed in total. 

We consider these data as TEST sequences while the 

other sequences form the training set. Because of 

computational problem, we only repeat this 

procedure10 times. 

Given the training sequences of twenty protein 

families, the transition matrix  (    ) (    ) and the 

emission matrix  (    )    are estimated using 

generalized and common Baum-Welch algorithms. 

Then, each removed sequences (a sequence of TEST 

data) is returned to all families (not only that family 

which has been removed from). The log-likelihood 

value of each test sequence for all protein families is 

computed. Then the numbers of correctly assigned test 

sequences to the twenty protein families are counted 

(Table 2).  

 

Table 2. The average numbers of correctly assigned sequences 

Profiles 
Common 

Baum-Welch 

Generalized 

Baum-Welch 

ABC_tran 10.6 18.7 

RVT 1 14.3 18.8 

COX1 12.5 16.0 

GP120 18.3 18.3 

WD40 14.0 16.2 

RVP 12.0 18.7 

zf-C2H2 6.3 18.9 

Response_reg 14.8 16.3 

Cytochorm B N 14.9 16.2 

HA TPase c 14.0 18.4 

BPD transp 1 14.0 16.4 

MFS_1 16.5 16.1 

Oxidored q1 16.3 16.9 

Pkinase 6.1 14.4 

Cytochrom_B_C 14.4 16.8 

RVT_thumb 12.2 18.1 

Adh short 10.6 14.6 

Acetyltransf 1 12.7 18.1 

Helicase_C 14.1 14.0 

HTH_1 5.3 14.0 

 

Result show that assignment of protein sequences 

to protein families under the generalized Baum-Welch 

algorithm have higher accuracy than common Baum-

Welch algorithm. Since the profile hidden Markov 

model finds local optima, it is important to choose 

https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/HMMER
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initial parameters carefully. We perform the algorithm 

with different initial parameters in a way that the 

transition probabilities into Match states are larger 

than transition probabilities into other states.  

We also use the generalized Viterbi algorithm for 

determining the most probable path for each test 

sequence in corresponding protein family. Fort this 

purpose we use the following equation: 

P( | )         
(  )      

(  )  

or  

   ( | )    (    )  ∑   (     
(  ))

 

   

      

Equation 7 indicates the log-likelihood values of the 

optimal (most likely) sequence of hidden states for a 

test sequence. We calculate this score for all test 

sequences into each family using generalized and 

common Viterbi algorithm. We then normalized the 

log-likelihood values (scores) into each family. Figure 

6 indicates that the average of normalized score for 

most probable path into each protein family obtained 

by considering the one-by-one dependency are higher 

than common Viterbi algorithm.  
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