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Abstract 

One of the most challenging issues in multi-objective problems is finding Pareto 

optimal points. This paper describes an algorithm based on Benders Decomposition 

Algorithm (BDA) which tries to find Pareto solutions. For this aim, a multi-

objective facility location allocation model is proposed. In this case, an integrated 

BDA and epsilon constraint method are proposed and it is shown that how Pareto 

points in multi-objective facility location model can be found. Results are compared 

with the classic form of BDA and the weighted sum method for demand uncertainty 

and deterministic demands. To do this, Monte Carlo method with uniform function 

is used, then the stability of the proposed method towards demand uncertainty is 

shown. In order to evaluate the proposed algorithm, some performance metrics 

including the number of Pareto points, mean ideal points, and maximum spread are 

used, then the t-test analysis is done which points out that there is a significant 

difference between aforementioned algorithms. 
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Introduction 

Facility location problem is an important issue in many strategic 

programs and has a crucial role in many transportation and 

communication problems. Facility location problem has an impressive 

effect on efficiency and cost, and has an application in transhipment, 

switching, and sorting points as well as supply chain (Melo et al., 

2009; Rahimi et al., 2016; Tang et al., 2016). The capacitated facility 

location problem extends this model by selecting from many possible 

facilities for locating utilities which minimises the cost including the 

sum of transportation costs and facilities opening cost. Based on the 

model of Daskin et al. (2005), one of the core forms of capacitated 

facility location is: 
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where I is the set of plants and J is the set of customers; Parameters 

include cij The fixed cost of transporting between plant i and customer 

j, hi The capacity of plant i, bj the demand of customer j; and the 

decision variables include zil the amount of product transported 

between plant i and customer j; Xij is equal to 1 if customer j is served 

by plant i, 0 otherwise. 

The objective Function (1) minimises the total cost (fixed facility 

cost plus shipment). Equation (2) limits total products that should be 

transported between facilities and customers for every customer. 

Constraint (3) limits total products that should be transported to each 

facility. Equation (4) is a simple non-negative equation. 

However, several issues in facility location should be considered 

such as cost, environment, social factors, efficiency, and so on. 
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Performance measurement of facility location has been one of the 

important keys of decision-making policies recently. Regarding this, 

data envelopment analysis has been studied by some scholars 

(Klimberg & Ratick, 2008; Moheb-Alizadeh et al., 2011). Data 

Envelopment Analysis (DEA) is one of the mathematical 

programmings having been used widely for measuring the 

performance of decision-making units (DMUs) which uses the same 

inputs and outputs. The DEA model was first introduced by Charnes 

et al. (1978). One of the advantages of DEA is no need to convert 

input or output measures to some common metrics, meaning that they 

remain in their natural form. The fraction of the sum of weighted 

output to the sum of weighted inputs is defined as the DEA score 

(Mirghafoori et al., 2014; Danesh Asgari & Haeri, 2017; Torabi & 

Mahlooji, 2017).  

The most important issue in multi-objective optimisation is first 

how to find Pareto optimal. Dabia et al. (2013) showed that a multi-

objective optimization problem is a non-deterministic polynomial NP-

hard problem. In Wang, Lai, and Shi’s study (2011), Pareto optimal 

solutions are defined as the non-dominated solution for Multi-

Objective Optimization (MOO) problem. In this issue, several 

approaches including metaheuristic and exact algorithms have been 

developed to deal with multi-objective optimization problems. 

Metaheuristic algorithms are approximate and usually non-

deterministic; Also, these methods are not problem-specific. 

Metaheuristics are based on a systematic progression of random 

evolution, and it has no mathematical proof, and its convergence 

cannot be proved (Pishvaee et al., 2014). It has been proven that some 

metaheuristics need some modifications to guarantee finding a local 

optimum. Other main disadvantages of metaheuristics, when used for 

optimisation, are mainly related to the apparent difficulties to control 

diversity (Coello et al., 2007). Moreover, the role of the parameters of 

the metaheuristic algorithms in its convergence and its loss of 

diversity has been scarcely studied. It is valuable to notice that there is 

no guarantee of the convergence of approximate methods. In contrast, 

some mathematical programming by exhaustive search looks into all 
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available space and tries to find the optimal solution, so it is 

guaranteed to find the optimal solution. These approaches by 

exhaustive search in all available search space, try to find the best 

guaranteed optimal solutions among other solutions. One of these 

approaches for solving these multi-objectives optimisation and 

generating Pareto optimal is aggregating objectives using numerical 

scalar weights. Using each weight results in the corresponding Pareto 

solution and a varying number of scalar weights could produce the 

corresponding set of Pareto solution. Weakness of the most current 

methods is the lack of the well-distributed set of Pareto solutions 

(Wang et al., 2011; Ismail-Yahaya & Messac, 2002). 

Messac et al. (2003) applied normalised normal constraint method 

for solving the multi-objective NP-hard problem and generating 

Pareto frontier. Wang et al. (2011) applied normalised normal 

constraint method used in Das and Dennis’s study (1998) for solving 

their multi-objective NP-hard problem. They have used posterior 

preference articulation approach and could produce special Pareto 

solutions for DMs (decision makers). They have used their methods in 

the four-echelon supply chain with six nodes including suppliers, 

plants, warehouses and customers. However, they did not consider 

uncertainty, different transportation modes in their multi-objectives 

NP-hard problems. 

Bender decomposition algorithm (BDA) is one of the techniques in 

mathematical programming with guaranteed convergence. There are 

two stages in Benders decomposition algorithm. The variables of the 

original problem are split into two subsets so that a first-stage master 

problem (MP) is solved with the first set of variables, and then the 

solution of the first stage is used for the second stage so that the 

second set of variables in the second stage is determined by a given 

first-stage solution. If the sub-problem shows that master problem is 

infeasible or is not optimal yet, then feasibility and optimality Benders 

cuts are generated and added to the master problem, the algorithm is 

repeated until no cuts can be generated (Benders, 1962).  

Also, Benders decomposition provides a rich framework for 

designing metaheuristics (Boschetti & Maniezzo, 2009). Boschetti and 
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Maniezzo (2009) solved capacitated facility location problem as an 

NP-hard problem with Benders decomposition metaheuristics. There 

are some advantages of using BDA, for example, it is guaranteed that 

this algorithm always converges and achieves an optimal solution; 

moreover, it is based on algebra concepts (Pishvaee et al., 2014). In 

this regard, Pishvaee et al. (2014) designed a multi-objective 

possibility programming model for a real medical needle and syringe 

supply chain network design problem under epistemic uncertainty of 

input data. The resulted model is strongly NP-hard; a BDA is devised 

to solve the model efficiently. 

Abdolmohammadi and Kazemi (2013) developed BDA for 

economic dispatch problem, also their algorithm provides a useful 

framework for the non-convex region. Üster & Agrahari (2011) have 

used strengthened cut for the convergence of lower and upper bounds 

for their network design problem related to strategic decisions such as 

location and capacity decisions. Osman and Demirli (2010) proposed 

bilinear goal programming and BDA for their strategic problem. The 

most contribution of their work is to reduce time in reaching an 

optimal solution. In Yang and Lee’s (2012) work, reducing 

computational time and the number of iteration are two main issues 

which have been focused. They have proposed their approach to a 

multiproduct batch plant scheduling problem. de Sá et al. (2013) 

addressed BDA for single allocation hub location problem. 

Recently, Abdolmohammadi and Kazemi (2013), and Charwand et 

al. (2014) used Normal Boundary Intersection (NBI) and BDA for 

their multi-objective framework; however, one drawback of the 

combined NBI algorithm is that Pareto optimality solution is not 

guaranteed (Das & Dennis, 1998; Ghane-Kanafi & Khorram, 2015). 

Moreover, an uncertain parameter in supply chain network design 

models is another important characteristic. The uncertainties can be 

classified into two groups. They are random or stochastic, and non-

random or strategic uncertainties. 

Aghezzaf (2005), Chan et al. (2001), Longinidis and Georgiadis 

(2011), and Baghalian et al. (2013) are some authors who have 

worked on uncertain demands. In this paper, demand uncertainty with 
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Monte Carlo method would be discussed. Monte Carlo methods are 

based on computing algorithm using repeated random number to 

compute results (Rahimi et al., 2016). Table 1 reviews some works 

which have applied BDA. 
 

Table 1. A review of BDA 

Author Description 

Abdolmohammadi & Kazemi (2013) Heat and power economic dispatch 

Üster & Agrahari (2011) Distribution network design 

Montemanni (2006) Robust spanning tree problem 

Kagan & Adams (1993) Multi-objective distribution planning problem 

Osman & Demirli (2010) 
Integrating goal programming and BDA for 

supplier selection 

Oliveira et al. (2014) Petroleum product supply chain 

de Sá et al. (2013) Hub location problem 

Fortz & Poss (2009) Multi-layer network design 

Çakır (2009) 
Multi commodity multi-mode distribution 

planning 

de Camargo et al. (2008) Multi allocation hub location problem 

Esmaili et al. (2013) Hybrid power market 

Chu & You (2013) Scheduling and dynamic optimisation 

Al-Agtash & Yamin (2004) Electricity market 

Charwand et al. (2015) Multi-objective electricity market 

In the next section, the model is explained, then the classic form of 

BDA, as well as the proposed method are applied to the model to find 

the optimal Pareto solution. This model is an extension of Klimberg 

and Ratick’s (2008); they have considered capacitated facility location 

combined with data envelopment analysis as a bi-objective and 

indeterministic model, then a new framework solution procedure has 

been proposed for solving the proposed multi-objective facility 

location problem under deterministic and uncertainty cases. For 

demand uncertainty, Monte Carlo method with uniform function has 

been proposed. Then, results of the proposed algorithm are compared 

with the results found by the classic form of BDA, and the weighted 

sum method and some statistical tests are examined to evaluate the 

proposed solution approach. 

Methodology 

The problem above based on Klimberg and Ratick’s (2008) model is 

as below: 
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where k is the index of facility locations, l is the index of demand 

locations, t is the set of inputs, f is the set of output. 

i= 1. . . I: Inputs used at DMU 

j= 1. . . J: Outputs produced at DMU 

k= 1. . . r, . . ., KDMUs 

dem(l) is the demands of the customer; Cap _k is the capacity of 

facility k;     is the cost of transportation from facility k to demand 

point l;     is equal to 1 if facility k serves demand l, 0 otherwise; yk is 

equal to 1 if facility k is open; 0 otherwise;    is the fixed cost of 
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facility k;     is the inefficiency of facility (DMU) k that serves 

demand point l;     are products which are transported between 

facility k and demand point l;      is the amount of the jth output for 

the kth facility that serves demand point l; iklI is the amount of the ith 

input for the kth facility which serves demand point l; uj is the weight 

assigned to the jth output; vi is the weight assigned to the ith input. 

Equation (5) maximises the total efficiency of all decision-making 

units (DMUs), Equation (6) minimises the total cost including 

transportation and facility location of DMUs. Constraint (7) makes 

sure every demand must be satisfied by at least one facility. Constraint 

(8) guarantees if one demand is served by one facility, that facility 

must be open before. Equation (9) shows the demand of every 

customer is equal to the total products that are transported from 

facilities. Constraint (10) depicts maximum products which their 

transport is equal to demand or capacity of the facility. Equation (11) 

shows if facility k is open to serve demand l, then the sum of weighted 

input of facility must be equal to 1; otherwise, 0. The variable kld  is 

defined as the inefficiency of DMU k. Therefore, constraint (12) 

depicts efficiency of facility k that is open. Constraint (13) shows that 

the sum of weighted output is less than the sum of corresponding 

weighted inputs. Constraint (14) indicates that weight of output of 

facility k which is open is less than 1. Equation (15) depicts that at 

least one product is transported for demand l if facility k serves it. 

Constraint (16) and (17) show that variables xk,l, yk are binary, and 

variables, uk,l,j, vk,l,j, bkl are continuous. The problem mentioned above 

is the capacitated formulation of combined DEA and facility location 

model which simultaneously solves spatial efficiency and facility 

efficiency. The first issue is measured by optimising cost while the 

latter one is measured by DEA linear programming. The formulation 

of this combination in a multi-objective framework has been able to 

provide the decision makers with a way for measuring the interaction 

between facility location pattern and those open sites’ performance. 

These formulations obtain a trade-off between facility location and 

facility efficiency, and may provide a strong approach for multi-

objective location analysis. 
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The specific problem which is formulated in Equations (5) to (17) 

is known as mixed integer programming optimization problem and is 

defined as a combination of facility location problem and data 

envelopment analysis. In the literature, several articles mentioned that 

facility location problem is a complex issue and exact solution of this 

kind of problem is NP-hard, and also an approximation of this 

problem with a small error is known NP-hard (Fowler et al., 1981; 

Megiddo & Tamir, 1982; Gonzalez, 1985).  

The Proposed BDA 

First of all, two objectives must be converted to a single one, in this 

regard, epsilon constraint would be used. In this approach, the number 

of objective functions is reduced, and the number of constraints is 

increased. In minimization problem, an upper bound (epsilon value) is 

considered for one of the objective functions as a new constraint 

added to the model, then the problem is solved for the single objective 

function (Laumanns et al., 2006; Aghaei et al., 2011; Khalili-

Damghani & Amiri, 2012).  

First, for this purpose, initializing the value of epsilon, that can 

change for constrained objective to find Pareto front, is used. Then, 

the above problem is split into two parts; the master problem and sub-

problem that can be solved iteratively by using their solution 

(Benders, 1962). The sub-problem includes continuous variables and 

their related constraints, while the master problem includes integer 

variables and a continuous one which relates the master and the sub-

problem together. The optimal solution for the master problem 

provides lower bound for the objective function. By using this 

solution that has been gained from the master problem and fixed 

integer variables as inputs for the dual of the sub-problem, it is solved 

resulting in upper bound for the objective function. Also, by solving 

dual of primal sub-problem, one Benders cut is produced including 

continuous variables that are added to the master problem. In the next 

iteration, this cut is added to the master problem and then updates the 

lower bound for the objective function that it is guaranteed which 

current solution is not worse than previous lower bound. So, the 
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master and the sub-problem are solved iteratively until the end. The 

requirement for finishing this loop is to reduce the distance between 

lower and upper bound. After finding one optimal point, value of 

epsilon should be changed to obtain a new optimal point. BDA is 

dependent to decompose one mixed integer programming into a 

master problem and one sub-problem that iteratively would solve 

using the other solution. The master problem includes only integer 

variables and one auxiliary variable. The primal master problem and 

the sub-problem are introduced as follow: 

Primal master problem 

1

.
K

k k
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Min F y

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subject to  
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where Equation (18) is the binary section of Equation (6). 
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Benders sub-problem (BSP (u, v|x, y)) is a maximisation problem that 

finds the optimal value of continuous variable x, y for fixed integer 

variables           . The primal sub-problem is written as below: 
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Notice that here integer variables are fixed that already are found in 

the previous step by solving the master problem. 

For producing Benders cut for the master problem, dual of 

( , , )BSP u v x y  would be used ( 1 2 3 4 5 6 7 8, , , , , , ,kl kl kl klj kl kl klj kl        ). For 

using dual variables 1 2 3 4 5 6 7 8, , , , , , ,kl kl kl klj kl kl klj kl         would be 

employed for every Constraint (21)-(28). It is assumed that Equations 

(22), (23), and (25) are considered as an inequality. By using these 

variables, dual problem, 1 2 3 4 5 6 7 8( , , , , , , , , )kl kl kl klj kl kl klj klDBSP x y         is 

as follow: 
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Benders’ master problem 

Benders’ master problem is as follows: 
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Equations (7) and (8).  

In this model, Equation (33) presents the objective function of the 
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master problem. Equation (34) is the optimality cuts added to the 

master problem. Also, in these equation dual parameters are from the 

sub-problem; the solutions used are fixed in this step. Equation (35) is 

the feasibility cut which in case the sub-problem is infeasible. It is 

added to the master problem. Figure 1 shows the procedure of the 

proposed method. 

 

 
 

Fig. 1. Flowchart of the proposed method 

where Equation (36) is as below: 

1 2 4 5 6 7 8
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Results 

In this section, numerical analysis would be tested and compared with 

classic BDA. Both cases, that are deterministic and uncertainty under 

Monte Carlo method with the uniform function will be shown to 

verify the stability of the proposed method towards different 

conditions. GAMS software is especially designed for the above 

model. To illustrate the proposed method, numerical analysis from 

Klimberg and Ratick (2008) would be used. The proposed model and 

solution approach are applied to a simulation data based on the real 

case study. In this regard, the value of efficiency is based on DEA 

efficiency and cost is based on Malaysia’s currency (Ringgit). There 

are four facilities which tend to be located in 8 potential location sites 

and 18 customer locations that their demand must be satisfied. It is 

tried to use standard data ranged in real, so we simulated real data 

from the website www.investpenang.gov, based on a starting business 

in Malaysia. However, in this approach, classical BDA is applied for 

finding Pareto points. This cost includes facility location and 

transportation cost. When DEA objective is optimised, another one 

(cost objective) increases significantly since the model tries to locate 

the minimum number of facilities and assign demands to the minimum 

available warehouses to maximise DEA efficiency score. The model is 

formulated for multi-products plants, for this matter, Table 2 shows 

demands of customers based on kilogram per unit. It has been 

considered 8 products which should be served by 18 customer zones. 
 

Table 2. The demand of customers 

product 
Demand(kg) 

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 

product1 37 61 96 45 43 45 43 55 65 34 54 33 54 23 44 65 66 76 

product2 64 53 54 78 29 27 35 52 27 44 28 31 59 60 67 30 60 76 

product3 24 73 21 33 26 27 53 59 47 68 55 43 61 49 22 72 21 68 

product4 26 65 40 26 56 79 71 79 74 37 68 50 26 68 38 45 74 56 

product5 69 26 68 60 68 41 20 66 48 63 66 61 66 21 56 42 37 44 

product6 52 33 76 77 68 76 74 66 72 39 63 24 51 35 55 29 72 50 

product7 53 36 54 41 62 68 23 33 47 50 52 27 33 53 37 56 51 75 

product8 46 45 53 38 66 22 55 59 56 58 27 44 52 71 76 63 57 59 
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To facilitate sites in potential location, various plants with different 

size and capacity are considered. Table 3 depicts fixed cost of opening 

plants. The size of products, weights, distance, and type of vehicles 

are factors which are considered to measure transportation cost. For 

this issue, Table 4 implies transportation cost between plants and 

customer zones. 
 

Table 3. The fixed cost of opening plants in different candidate locations (*100 RM) 

No j1 j2 j3 j4 j5 j6 j7 j8 

p1 350 630 240 420 380 430 450 530 

p2 520 420 360 450 430 510 740 510 

p3 420 520 280 670 360 310 640 340 

p4 360 480 650 720 780 680 630 520 

 

Table 4. The transportation cost between facilities and customers (RM) 

 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 

j1 805 850 598 850 990 931 869 528 823 962 500 564 697 761 681 969 874 900 

j2 792 924 612 623 958 986 554 595 549 861 539 927 662 936 802 934 955 896 

j3 966 898 960 614 676 924 963 677 778 673 899 639 548 636 588 699 922 975 

j4 765 709 793 694 795 570 611 506 558 869 923 714 500 745 655 959 717 814 

j5 829 972 881 721 846 676 518 752 585 761 957 833 508 986 940 633 709 548 

j6 850 896 809 605 833 654 519 834 769 632 867 565 763 782 728 628 512 565 

j7 942 550 958 804 610 818 834 819 546 858 817 812 771 768 994 988 939 659 

j8 734 746 611 615 604 971 910 526 535 575 575 554 628 696 932 937 881 1000 

As it is evident from the comparison of Figure 2 with Figure 3, the 

proposed method is more able to capture more Pareto points, rather 

than classic Benders decomposition under uncertainty condition. For 

uncertainty, demands are assumed to be distributed by Monte Carlo 

method and uniform function. The classic form of BDA under 

uncertainty is fragile, but the integration of epsilon constraint and 

BDA catches more suitable Pareto solution. Classic Benders 

decomposition approach can find some Pareto points in deterministic 

case. However, there is a drawback in finding true Pareto optimality 

while the proposed method is more capable of finding more optimality 

points in better quality and discipline. In other words, the proposed 

algorithm benefits from epsilon constraint solution that could cover 

non-convex points while the classic form of BDA and the weighted 
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sum method possesses the weakness of not being able to find Pareto 

points of the non-convex optimisation problem. 

 

 
Fig. 2. Pareto front for uncertainty by classic BDA 

 

 
Fig. 3. Pareto front for uncertainty case by the proposed method 

Quality is the most important characteristic that is found in 

applying the proposed BDA against the classic form of BDA under 

uncertainty (Figs. 2 and 3). For uncertainty Monte Carlo method, 

which relies on repeating, random sampling with uniform function is 

used. As it is apparent from Figure 2, there is no quality in Pareto 

optimality when classic BDA is used while the proposed method is 

stable against uncertainty (Figure 3). 
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In the next section, for further evaluating these algorithms, some 

performance metrics including some Pareto points, mean ideal points, 

and maximum spread are used which are described as below. 

Number of Pareto Solution 

To check the reflect of change and variation under different 

conditions, design of experiment (DOE) is proposed, thus, Taguchi 

method is suggested (Taguchi, 1986; Behmanesh & Rahimi, 2012). It 

consists of five parameters including the fixed cost, the transportation 

cost, the inputs, the outputs, and the demand as factors for DOE and 

three levels including low level (number 1), medium level (number 2), 

and high level (number 3) resulting in 27 experiments. Table 5 shows 

the parameter set for the design of experiments that should be done. 

The numbers allocated in Table 5 indicate the level of each parameter. 
 

Table 5. Design of experiments 

Factor A Factor B Factor C Factor D Factor E 

1 1 1 1 1 

1 1 1 1 2 

1 1 1 1 3 

1 2 2 2 1 

1 2 2 2 2 

1 2 2 2 3 

1 3 3 3 1 

1 3 3 3 2 

1 3 3 3 3 

2 1 2 3 1 

2 1 2 3 2 

2 1 2 3 3 

2 2 3 1 1 

2 2 3 1 2 

2 2 3 1 3 

2 3 1 2 1 

2 3 1 2 2 

2 3 1 2 3 

3 1 3 2 1 

3 1 3 2 2 

3 1 3 2 3 

3 2 1 3 1 

3 2 1 3 2 

3 2 1 3 3 

3 3 2 1 1 

3 3 2 1 2 

3 3 2 1 3 
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The first metric used to measure is the number of Pareto solution 

that is gained with two algorithms. Based on experiments which are 

designed and depicted in Table 5, 27 tests are run, and results have 

been presented in Table 6. 
 

Table 6. The number of Pareto solution for the weighted sum method and the proposed 

algorithm 

Experiment run The weighted sum method The proposed algorithm 

1 3 13 

2 3 14 

3 3 14 

4 3 15 

5 4 13 

6 4 14 

7 4 14 

8 5 14 

9 5 13 

10 5 14 

11 4 15 

12 4 14 

13 5 13 

14 3 14 

15 4 14 

16 5 13 

17 4 14 

18 4 15 

19 5 14 

20 3 14 

21 4 14 

22 4 14 

23 3 14 

24 4 14 

25 4 14 

26 4 14 

27 4 14 

From Table 6, it is observed that the proposed algorithm has more 

Pareto points than the weighted sum method which is more desirable.  

Mean Ideal Point (MID) 

Another factor for measuring performance is mean ideal point which 

means the closeness of Pareto point solutions and ideal points 

(Arjmand & Najafi, 2015). This metric is formulated as below. 
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MID
n








 

(37) 

which n shows the number of Pareto solutions, and f1j, f2j implies the 

first and the second objective values of the ith objective function. 

With regard to the above, MID measurement for these two 

algorithms is calculated and presented in Table 7. 
 

Table 7. The mean ideal point for the sum weighted method and the proposed algorithm 

Experiment run The weighted sum method The proposed algorithm 

1 50.285 16.26 

2 50.86 16.28 

3 50.48 15.26 

4 48.14 15.32 

5 47.45 15.66 

6 46.65 15.85 

7 48.85 15.65 

8 49.95 14.98 

9 50.15 15.62 

10 50.23 14.35 

11 49.32 15.62 

12 48.65 14.95 

13 50.62 15.84 

14 48.61 14.63 

15 48.23 14.29 

16 50.31 14.36 

17 49.32 14.63 

18 48.96 15.13 

19 50.31 14.91 

20 48.65 14.35 

21 49.42 14.62 

22 48.54 15.61 

23 48.61 15.48 

24 48.56 15.87 

25 49.62 14.51 

26 49.63 14.62 

27 48.16 14 

Table 7 presents that the proposed algorithm possesses is less mean 

ideal points than the weighted sum method and these values are 

preferable for us. 



 Evaluating the Effectiveness of Integrated Benders Decomposition Algorithm and …    569 

 

Maximum Spread (MS) 

The last metric used here is maximum spread (Zitzler, 1999), and it is 

calculated as below. 

2

1: 1:
1

(max min )
M

i i

m mi Q i Q
m

D f f
 



 
 

(37) 

Those M and Q are the number of objective functions and the 

number of Pareto solutions, respectively. A higher value of MS is 

more desirable; the desirable values are the bigger ones. Table 8 

presents the details. 
 

Table 8. The maximum spread for the sum weighted method and the proposed algorithm 

Experiment run The sum weighted method The proposed algorithm 

1 81 360 

2 80 352 

3 78 356 

4 83 364 

5 65 362 

6 69 378 

7 58 365 

8 85 345 

9 75 390 

10 91 393 

11 69 410 

12 73 423 

13 56 351 

14 74 362 

15 81 453 

16 82 342 

17 86 385 

18 92 345 

19 63 362 

20 62 312 

21 85 432 

22 69 423 

23 73 329 

24 82 356 

25 86 375 

26 92 346 

27 91 395 

By using the t-test, Table 9 shows that there is a significant 

difference between the means of experiments which are used here. 
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In the next section (Tables 10 and 11), same experiments are 

designed to compare the effectiveness of the proposed algorithm and 

the classic form of Benders decomposition. 
 

Table 9. The t-test results for the sum weighted method and the proposed algorithm 

The performance metrics The t-test 

 
The p-value Result Final result 

NPS 0 H0 is rejected proposed algorithm 

MID 0 H0 is rejected proposed algorithm 

MS 0 H0 is rejected proposed algorithm 

 

Table 10. The results of NPS, MID, and MS for the classic BDA 

Run NPS MID MS 

1 4 40 65 

2 5 39 62 

3 5 42 36 

4 5 45 59 

5 4 44 75 

6 4 39 74 

7 4 45 76 

8 5 38 72 

9 3 37 71 

10 3 46 70 

11 4 51 65 

12 3 36 68 

13 4 44 67 

14 5 44 76 

15 5 38 73 

16 5 37 71 

17 4 42 72 

18 4 38 70 

19 4 37 64 

20 4 44 65 

21 5 33 63 

22 5 41 62 

23 4 43 60 

24 4 49 69 

25 3 39 73 

26 3 38 74 

27 3 52 75 

 

Table 11. The t-test results for the comparison between the classic BDA and the proposed 

algorithm 

The performance metrics The t-test 

 
The p-value Result Final result 

NPS 0 H0 is rejected Proposed algorithm 

MID 0.003 H0 is rejected Proposed algorithm 

MS 0 H0 is rejected Proposed algorithm 
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Regarding to Tables above and t-test results from the comparison 

between the proposed algorithm, the classic BDA, and the sum 

weighted method. It is observed that there is a significant difference 

between these algorithms.  

Conclusion 

In this paper, integrated BDA and epsilon constraint have been 

applied for multi-objective facility location model; the primary goal of 

this model is to find the optimal number of potential customers, the 

minimum cost and high efficiency to serve. In this regard, for the 

uncertainty of demand, Monte Carlo approach is applied. Firstly, by 

using epsilon constraint the proposed model converts into the single 

one, then BDA is used, in this case, the original model is divided into 

two segments; the master problem and the sub-problem. In this 

approach, the master problem includes facility location objective and 

strategic decision and the sub problem possesses DEA objective. This 

model is an extension of Klimberg and Ratick (2008). The capacitated 

facility is located in conjunction with the analysis of data coverage in 

a deterministic approach, while the proposed model is considered with 

the demand uncertainty. The studied approach is compared with the 

classic BDA under deterministic and uncertainty cases. Results show 

that the proposed approach is more stable in comparison with the 

classic form of BDA and the weighted sum method. The proposed 

algorithm has been applied for the particular problem which was 

introduced by Klimberg and Ratick (2008) and has been compared 

with the weighted sum method that Klimberg and Ratick (2008) 

utilized to solve their problem. The statistical analysis and results 

show that there exist significant improvements in the proposed 

algorithm against the weighted sum method and the classic BDA. 

As a future work, it is recommended to apply the proposed solution 

approach for other multi-objective models. Also, it is interesting to use 

some improvements regarding BDA /epsilon approach to accelerate/ 

improve the proposed algorithm. Regarding uncertainty, this paper 

used Monte Carlo method, it is suggested to use other uncertainty 

cases. 
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