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1. Introduction 

Generally, there are two methods for modeling and identifying 

the hysteresis [1]. First method is based on hysteresis physical 

characteristics and some experimental coefficients. This method 

is rarely used as it is unable to detect some of the physical 

properties that affect the hysteresis and likewise its lack of 

generalization among different cases. Second method is based on 

hysteresis phenomenology and describes the phenomenon merely 

by mathematics. Among research studies conducted based on 

phenomenology, due to the need to describe the hysteretic 

behavior of SMA, phenomenological models based on thermo-

mechanics of crystalline-phase-transition has been developed for 

SMA materials [2]. In these type of models,  Boyd and Lagoudas 

model which is developed based on Gibbs free energy [3] and 

Brinson model which is based on Helmholtz free energy, are 

more popular. Brocca et al. also introduced a 3-D model using 

microplane and one dimensional Brinson model [4]. In addition, 

there are numerous models developed based on thermo-

mechanics and Gibbs free energy and Helmholtz free energy [5]. 

Due to widespread applications of (one-dimensional) shape 

memory alloy actuators, many constitutive models are developed 

to describe 1-D actuators. Including in these models are Tanaka, 

Liang and Rogers and modified Brinson models [6] , [7]. Among 

these models, Brinson, Liang and Rogers model are developed 

based on Helmholtz free energy. Poorasadion et al. improved 

Brinson model for asymmetrical hysteresis behavior and 

implemented it in modeling of a two-dimensional beam element 

[8]. Dutta et al. developed hysteresis differential model to 

describe phase transition in crystalline forms and heat transfer of 

the SMA’s actuator [9].  Among purely mathematical methods 

that models the SMA hysteresis behavior, the models based on 

play hysteresis operator can be mentioned. Zakerzadeh et al. 

modeled a cantilever beam with SMA actuator wires using   

Krasnoselskii-Pokrovskii (KP) hysteresis model [10]. In addition, 

they modeled hysteresis behavior of the mentioned dynamic 

system using Preisach model and neural network. The model was 

validated by experimental data [11]. In another paper the  

generalized Prandtl-Ishlinskii (PI) method was used by them to 

model the mentioned dynamic system and used the inverse of the 

developed model in a feed-forward controller to control the 

deflection at the end of the beam [12]. Another method based on 

mathematics to model hysteresis of smart materials is 

combination of Fuzzy Logic and Neural networks or ANFIS.  
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Tafazoli et al. used ANFIS method to model hysteresis of a 

morphing wing with SMA actuator [13]. Rezaeeian et al. 

modeled system including SMA actuator with ANFIS method 

and controlled it with feed-forward controller [14]. There are 

other mathematical methods that employs differential models to 

describe the hysteresis behavior. Because this paper focuses on 

this type of methods, in the rest of this paper the history of this 

type of hysteresis modeling as well as identification and control 

of these methods (not SMA only) will be stated. One of the most 

important differential methods for hysteresis modeling is Duhem 

rate-independent model [15-17]. Generalization of this model is 

used as a basis to develop other hysteresis models such as Dahl, 

LuGre and Maxwell-Slip [18] friction models as well as Bouc-

Wen hysteresis model. Xie et al. used Duhem model and neural 

network to design a state-observer to control Piezo-electric 

actuator [19]. Zhou et al. used the same hysteresis model to 

describe the piezo-electric actuator behavior [20]. Jayawardhana 

et al. used the dissipativity approach to analyze dynamic stability 

of electromagnetic-based actuators by Duhem method [21]. In 

addition to the above mentioned research studies, in Aiki et al. 

Duhem differential equations are used to illustrate the correlation 

of stress and strain in SMA wires [22]. One of the other 

hysteresis differential models is Jiles-Atherton (J-A) model 

which is independent of input rate (namely rate-independent 

model). This model was presented first for the modeling of 

hysteresis behavior in ferromagnetic materials. Annakkage et al. 

presented a new  model based on the J-A model  for modeling the 

hysteresis in magnetic materials at  low frequencies and 

accurately described the asymmetric interior  hysteresis loops 

[23]. In addition, modeling and identification of magnetic 

behavior in magneto-electric composite material  by J-A model 

was performed by Pop and Călţun  [24]. Further research in this 

area include identifying the model parameters by using 

identification method based on Genetic Algorithm (GA) [25], 

Particle Swarm Optimization (PSO) [26] and Differential 

Evolution [27]. As noted previously, Bouc-Wen differential 

model [28], [29] is a Duhem type model. Due to its ability in 

describing hysteresis loops with different trigonometric features 

it has widespread applications. One of the modification made and 

developed on this model is asymmetric Bouc-Wen model and  

Bouc-Wen-Baber-Noori (BWBN) to explain pinching hysteresis 

behavior [30]. Ikhouane et al. studied on dynamic specifications 

of Bouc-Wen hysteresis model including domain stability, free 

response and energy loss and have categorized model parameter 

[31].  Li et al. analyzed the model in terms of dynamics in order 

to explain non-linear behavior of SDOF oscillator [32]. In 

another research, Awrejcewicz et al. introduced a model to 

describe hysteresis behavior in Magneto-rheological Damper 

(MR Damper) and Ni-Ti poly-crystal (SMA’s super elastic 

feature) by using  Massing-Bouc-Wen framework [33]. Peng et 

al. used Bouc-Wen hysteresis model to predict hysteresis 

behavior of non-linear systems with lag (such as magneto-

rheological damper). They discretized the model to configure it 

in a multi-layer feed-forward neural network system and trained 

the neural network with experimental data [34].  Zhu et al. 

analyzed parameter specifications in normalized Bouc-Wen 

model and introduced offline identification method based on LS 

(Least-Square) method to identify model parameters by using 

experimental data at constant frequencies for a mild steel damper 

[35]. Zhu et al. used asymmetrical Bouc-Wen model with offline 

identification method based on LS to identify a real system 

parameters including piezo-ceramic actuator [36]. In another 

research, Wei used asymmetric Bouc-Wen model with online 

identification method based on LS to precisely identify hysteresis 

behavior  of a rate-dependent piezo-ceramic actuator (at 

inconstant frequencies) [37]. Sengupta et al. modeled structural 

hysteresis behavior of a reinforced concrete beam-column by  

Bouc-Wen-Baber-Noori (BWBN) model and identified model 

parameters by using Genetic Algorithm (GA) using experimental 

data (earthquake) [38]. One of the research studies in the field of 

identifying the Bouc-Wen model parameters is performed by 

Charalampakis et al., They introduced identification method 

based on Greedy Ascent Hill Climbing (GAHC) and Saw-tooth 

GA model for identifying the parameters of a non-linear mass-

spring-damper model (elastic-plastic spring) described by Bouc-

Wen model . They tested the ability of the method  by using data 

accompanied with noise and without noise [39]. To improve the 

efficiency of SMA application, it is required to perform research 

on SMA modeling as well as control its hysteresis behavior. 

Having considered these requirements, In this paper, a 

mathematical model is proposed to describe the hysteresis 

behavior of a mechanical system attached to SMA wire actuators 

using Bouc-Wen hysteresis model and feed-forward Artificial 

Neural Network (ANN). Due to failure of linear mass-spring-

damper equations of classical Bouc-wen model to explain the 

hysteresis behavior of SMA actuators, we have also applied 

significant changes in the equations of classic Bouc-Wen model 

to accurately describe the SMA hysteresis loops. In addition, we 

have used flexibility of the neural network systems to describe 

Bouc-Wen output in the main equation. To evaluate the 

developed model, the simulated data sets from a real system are 

used. The result shows the acceptable accuracy of the developed 

model with respect to the validation data. The paper is organized 

as follows. Section 2 is dedicated to the Bouc-Wen hysteresis 

model. In this section the mathematical equations and application 

of this model are described in details. In section 3, an SMA 

hysteresis modeling method based on the Bouc-Wen and feed-

forward ANN is presented. Parameters calibration and 

identification of the developed model are described in section 4. 

In section 5, a real system simulation data are used in order to 

verify the modified model. The presented model is evaluated 

using simulated data sets in section 6. Finally, the concluding 

comments are provided in section 7. 

2. Bouc-Wen Hysteresis Model 

Bouc-Wen model is considered to be a differential method of 

general hysteresis modeling techniques. As it is a Duhem-type, it 

inherently is rate-independent model. Moreover, this model is 

honored due to its mathematical characteristics which is capable 

of indicating remarkable resilience in describing hysteresis 

behavior governed in hysteretic systems. However, the general 

model only can describe symmetric hysteresis loops and just 

expresses hysteresis loops in hardening and softening shapes. 

Since the Bouc-Wen model can describe non-linear and 

hysteresis part of a dynamical system, its non-linear output is 

usually interpreted using linear function in a linear dynamical 

system. The equations of this model and the mentioned 

dynamical systems are given in the following coupled equations: 

2 22 (1 ) ( )n n nx x x z u t         (1) 

( )
n n

z Ax x z sign z x z     (2) 

where equation (1) denotes a mass-spring-damper system while 

equation (2) or Bouc-Wen equation represents non-linear part of 

the spring and its output for the expression of non-linear response 

of springs has been used in the equation (1). In equation (1), x, ẋ 

and  ẍ are the displacement, velocity and acceleration of the mass 
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in mass-spring-damper system respectively. In addition, z is the 

parameter related to the non-linear part of the system which is 

obtained from equation (2). In addition, u(t) is system’s input or 

external stimulus to the system. ωn  and ξ are natural frequency 

and damping ratio of the linear system, respectively. δ is a 

parameter which is used to determine whether the spring behaves 

linearly or non-linearly. Therefore, its value is variable from [0 1] 

interval. It means that when spring acts purely linear δ=1 and 

when it acts purely non-linear δ=0. 

In Bouc-Wen equation (eq. (2)), ẋ acts as input to the equation 

while z is the hysteresis output of the equation. In the mentioned 

model, A, α, β and n are dimensionless coefficients that 

determine the shape and slope of hysteresis loops. Therefore, 

these coefficients should be identified by the experimental 

measured data. Overall, A, α and β are used to illustrate hysteresis 

loop’s dimensions and n is used to determine the sharpness of the 

hysteresis loops. Generally, for the set of real numbers the shape 

and dimensions of hysteresis loops could be identical for 

different sets of the mentioned coefficients. Therefore, for 

avoidance of duplication, the equations have been used under 

conditions in which, A = 1 and |α|+|β |= 1 , n ≥ 1 . 

Fig. 1. illustrates the output of the Bouc-Wen model (i.e. z) as a 

function of mass displacement input (i.e. x) when A = 1 ,α =0.4 , 

β = 0.6 and n = 1 . 

 

Figure 1. Output of Bouc-Wen model z verses input x. 

3. SMA Hysteresis Modeling  

As mentioned in the introduction section, Bouc-Wen model has 

been developed to describe the hysteresis behavior of mechanical 

structures and dynamical systems. However, the classical version 

of Bouc-Wen model (equation (2)) is incapable of describing the 

hysteresis behavior of SMA materials.  As a result, this version 

of the model has not been yet directly used to describe the 

behavior of systems actuated by SMA actuators, precisely. Hence 

the classical version of the Bouc-Wen model needs to be changed 

accordingly.  

In systems with SMA actuation, SMA temperature, the voltage or 

electrical current are literally system input and strain of the SMA 

actuator or displacement of the body attached to the actuator is 

system output. Therefore, in a developed model in this study, we 

try to decrease the correlation of system’s input to dynamic of 

system, using some mathematical tricks. 

In the following coupled equations, the single input-single output 

(SISO) developed model based on the classical Bouc-Wen model 

is introduced in order to describe the hysteresis behavior of 

systems actuated by SMA actuators: 

2

min2 (2 1) ( , ) ( ( ) )n nx x x net x z k u t u         (3) 

( )
n n

z Ax x z sign z x z     (4) 

 

In equation (3), ωn  and ξ are in accordance with the previous 

definitions given previously. However, since they do not present 

physical characteristics in the current developed model, their 

values have been set arbitrarily and are user-defined. It is 

recommended that the values of ωn  and ξ be chosen in a way that 

the dynamic system responds to the input in the fastest way and 

the transient response of the equation becomes damped as fast as 

possible. Hence, it is desired to choose ξ = 0.7 and ωn assigns a 

high value  [40]. 

It has been suggested that the value of δ which is introduced to 

determine the major hysteresis loop be selected in [0, 1]. It is 

evident that the hysteresis loop gets smaller as the value of δ 

reaches the lower limit of the mentioned interval. 

The term net(x ,z) expresses the feed-forward Artificial Neural 

Network (ANN) having two inputs, x (system displacement) and 

z (Bouc-Wen’s output). In other words, our feed-forward neural 

network has replaced the linear function in classical Bouc-Wen 

model to assist describing the hysteresis behavior of SMA. In the 

developed model we  try to use the ability of  ANNs in 

explaining sophisticated non-linear functions straightly and make 

the system’s hysteresis part to appear in equation (3) (mass-

spring-damper) non-linearly. Same as the classical model, u(t) 

states the system’s stimulus input which is SMA temperature for 

the SMA actuated systems. Also, umin is as well the initial 

temperature of the SMA actuator. 

As it is seen in equation (4), parameters of A ,α ,β and n are 

similar to the parameters for the classical model explained in the 

previous part. However, the key point in selecting these 

parameters depend on understanding the logic behind using the 

Bouc-Wen hysteresis model in the developed model. The main 

idea of using Bouc-Wen model in the developed model is to 

construct a new variable (i.e. z parameter) which is to be 

independent of x as neural network input. In the current 

developed model, due to the fact that ANNs illustrate a surface, 

by using Bouc-wen model, hysteresis output (i.e. x) has been 

arranged. 

As a result, according to the given explanation and understanding 

the logic behind the Bouc-Wen model, it is recommended that 

Bouc-Wen parameters (A ,α ,β and n) be selected in such a way 

to have the least error between the output of the developed model 

and some simulation data of a real system. If the mentioned 

desire does not happen by changing the parameters, it then is 

suggested to multiply the input of Bouc-Wen model ẋ into a 

relatively large coefficient ν and to change the parameters again. 

It should be mentioned that the value of z is not real and makes 

no sense in physical terms. In order to have better insight about 

the model, in Fig. 2, the block-diagram of the developed model is 

shown. 
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4. Identification of the Developed Model Parameters  

In order to identify the parameters of the developed model, we 

need to have system states and their corresponding initial 

conditions. Therefore, we need to measure time history of system 

states including system displacement, velocity and acceleration  

(x , ẋ and ẍ) as well as SMA temperature (model input, u(t) ) by 

proper sensors designated for the dynamic system. It should be 

noted that, it is required that initial conditions of dynamic states 

(x0  and ẋ0), as well as ambient temperature (i.e. system’s initial 

temperature umin ) to be known. 

It was noted before that how the parameters of the model should 

be selected. However, neural network structure and dimensions 

(i.e. number of layers, number of neurons and neurons function) 

are selected based on system’s hysteresis behavior and it must be 

trained based on the measured experimental data of the real 

system. Block diagram of the training procedure of neural 

network based on measured data is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

It should be noted here that initial states of the dynamic system 

including x(0), ẋ(0)  and ẍ(0)  are known. But after selecting 

parameters of the developed model we use some data related to ẋ 

in order to determine the initial state value of z, (i.e. z(0)) and 

then we can solve Bouc-Wen equation by setting z(0)=0. As a 

result, the initial stable value of z for the main hysteresis loop is 

acquired and we use this value as z(0) to train ANN. 

 

5. Model Parameters Selection & ANN Training  

In order to train the ANN used in the model and verify the model, 

data related to simulation of a real system in MATLAB 8.1 are 

used. This system consists of a mass (with mass m), a linear 

spring (with stiffness k) and a viscous damper (with damping 

coefficient c) that is actuated by an SMA wire (Fig. 4.). In this 

simulated system, SMA behavior has been demonstrated using 

Brinson phenomenological model [7]. 

System’s equation of motion is expressed in equation (5): 

( )mx cx kx F t    (5) 

where F(t) is the SMA force applied to the mass. This system is 

stimulated with a Nitinol (Ni-Ti) SMA wire having 180 mm 

length and SMA wire’s initial strain is 4.6% when the dynamic 

system is in equilibrium. Mass, spring stiffness and viscous 

damping ratio are 5kg, 1000 N/m and 200 N.s/m, respectively. In 

addition, ambient temperature is 20 ºC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass displacement (x in Fig. 6) of the simulated system is 

derived when temperature profile (u(t) ) shown in fig. 5 is applied 

to the SMA wire. The hysteresis diagram between the SMA 

temperature and the mass displacement is plotted in Fig. 7. 

 

 

 

 

Figure 2. Block-diagram of SISO developed model for SMA wire 

Figure 3. Block-diagram of training procedure of neural network 

Figure 5. Temperature profile (u(t)) applied to the SMA wire in the 

simulation 

Figure 4. Dynamic system consists of mass, spring, viscous 

damper and SMA wire 
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As it was noted in the preceding section, parameters of the 

developed model are selected based on the hysteresis loops 

according to Table 1.  

As mentioned before, transient response time of the differential 

equation (1) is important to have a total response without any 

delay (lag) and therefore it is crucial to analyze the response time 

of the equation. Therefore normalized step response of equation 

(1) with the selected parameters of Table 1 is shown in Fig. 8 and 

the result verifies this issue. 

Therefore, as it can be seen in Fig. 8, response of the dynamic 

system is stabilized in less than 0.1 second and the transient 

response of the equation disappears after that time.  

For this dynamic system, Bouc-Wen input (ẋ) is multiplied by the 

coefficient υ=10 4. Bouc-Wen hysteresis diagram between the 

mass displacement and Bouc-Wen output (z) is shown in Fig. 9 

for the parameters noted in Table 1 and as a result of the applied 

input plotted in Fig. 6. 

 

 

Table 1. Developed Model’s Selected Parameters 

Symbol Quantity 

Mass-Spring-Damper Parameters 

ξ 0.7 

ω 10 4 

δ 0.505 

k 30.3 

umin 20 

Bouc-wen Parameters 

A 1 

α 0.5 

β 0.5 

n 1 

z (0) -1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simulated Mass displacement (x) 

Figure 7. Hysteresis behavior between the SMA temperature and the 

mass displacement Figure 8. Normalized time response of model for step response 

Figure 9. Bouc-wen hysteresis loops for  A = 1 ,α = 0.5 ,β = 0.5 , n = 1 

and υ = 10 4 

Ac 
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According to the block diagram, shown in Fig. 3, neural network 

targets are obtained for hysteresis loops shown in Fig. 7. In order 

to select the neural network structure, it is required to analyze the 

dimensions and shape of the hysteresis loops in neural network 

target diagram with respect to input parameters of the network. 

The mentioned diagrams have been illustrated for the normalized 

values in Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After checking Fig. 10, a feed-forward neural network with two 

input and one output consisting of three layers with the following 

specifications is selected: 

• 1st  layer (Hidden) including 6 neurons with Tansig neuron 

function. 

• 2nd  layer (Hidden) including 14 neurons with Tansig neuron 

function. 

• 3rd  layer (Output) including one neuron with Purelinear neuron 

function. 

Schematic configuration of the mentioned feed-forward neural 

network is shown in Fig. 11. 

 

 

 

 

 

 

 

6. Validation of the Model 

Now according to the neural network training and selection of the 

developed model parameters, it is required to test the model and 

have the model validated with different data sets. Since the 

training data was used to calibrate the model parameters and train 

the neural network, we first focus on the model estimation for the 

mentioned data (Fig. 5-7). Naturally, it is expected to have little 

error for the model estimation with respect to the training data 

obtained from simulation of the real model. In Fig. 12, the output 

of the model has been compared with this data (Fig.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Fig. 12, estimation of the model has a good 

accuracy for the training data and it means that the developed 

model with the selected parameters and trained ANN can predict 

the system hysteresis behavior accurately. In order to have better 

sense it should be mentioned that mean absolute error and Mean 

Squared Error (MSE) for this data are 7.20×10 -3 mm and 

6.40×10 -4  mm2, respectively. In order to better validate the 

model output, the temperature profile, u(t)  (shown in Fig. 13) is 

applied to the simulated model and mass displacement (i.e. x) of 

simulated system has been extracted. Hysteresis behavior of the 

simulated system (named 1st validation data) is plotted in Fig. 

14. In Fig. 15, the output of the developed model has been 

compared with 1st validation data. 

 

 

 

 

 

 

 

 

 

 

 

 

The output of the model has been compared with the 1st 

validation data in Fig. 15. According to this figure estimation 

error of the model has been increased  in comparison to the 

training data. However, since the training data has been used to 

train the neural network and calibrating the model parameters, it 

is expectable. Mean absolute error and MSE for this 1st-

validation data are respectively,8.43×10 -3 mm and 8.18×10 -4 

mm2. In addition, it is obvious that the model also has presented 

a suitable estimation for small minor hysteresis loops. 

 

 

Figure 10. Neural network target vs. input parameters 

Figure 11. Schematic configuration of the noted feed-forward neural 

network 
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Figure 13. Temperature profile (u(t)) – applied in 1st validation data. 

Figure 12. Comparison of the model output with the simulated data in the 

case of training data. 
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Figure 16. Temperature profile (u(t)) – applied in 2nd validation data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like previous data, 2nd validation data was obtained by applying 

the temperature profile, u(t) (shown in Fig. 16) to the simulated 

model.  The mass displacement (i.e. x) of the simulated system as 

a result of applying temperature profile has been extracted and 

hysteresis behavior of the simulated system has been plotted in 

Fig. 17. In Fig. 18 the output of the developed model has been 

compared with 2nd validation data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since hysteresis loops of the 2nd validation data (existence of 

high order minor loops) have more generality with respect to 

other two previous data, it is extremely important to validate this 

data for validation of the model prediction. According to Fig. 18, 

as hysteresis loops get more complicated, error values increase in 

comparison to training data and 1st validation data. However, the 

model estimation has a good accuracy even in the case of this 

complex hysteresis behavior while many phenomenological 

hysteresis models have difficulty to describe them.  Mean 

absolute error and MSE for 2nd case of validation data are, 

9.48×10 -2 mm and 1.50×10 -2 mm2 , respectively. The values of 

MSE and mean absolute error of x(t) for all three sets of data used 

in training and validation are shown in Table 2. 

Table 2. Error of validation 

 Training  

   Data 

1stvalidation  

     Data 

2ndvalidation  

      Data 

Mean-Absolute 

Error 

7.20×10 -3 mm 8.43×10 -3 mm 9.48×10 -2 mm 

  Mean-Squared  

    Error (MSE) 

6.40×10 -4 mm2 8.18×10 -4 mm2 1.50×10 -2 mm2 

 

Figure 14. Hysteresis behavior between the applied temperature and mass 

displacement of the simulated model for data in the 1st case of validation 

data. 

Figure 15. Comparison of the model output with the simulated data in 

data in the 1st case of validation data. 

Figure 18. Comparison of the model output with the simulated data in the 

2nd case of validation data. 

Figure 17. Hysteresis behavior between the applied temperature and mass 

displacement of the simulated model for data in the 2nd case of validation 

data. 
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7. Conclusion 

In the current research, in order to describe hysteresis behavior of 

a dynamic system actuated by an SMA actuator, the 

mathematical equations of the Bouc-Wen hysteresis model was 

introduced. Due to inability of non-linear classical Bouc-Wen 

model, a modified Bouc-Wen model was used to describe 

hysteresis loops of the system. The developed model benefited 

from the flexibility of the feed-forward neural network to 

describe output of the Bouc-Wen model in system’s dynamic 

equation in terms of non-linear complex functions. 

Afterward, the parameter selection of the developed model and 

suitable configuration for the neural network were performed for 

a dynamical system using simulated data set of the system. The 

validity of the identified model was checked by using three 

different data sets. The prediction of the model output with 

respect to the mentioned data was validated by acceptable error. 

It was seen that the maximum error of the model prediction is 

less than 10% of the real values and the MSE of the modeling 

output was a suitable value. Therefore, considering the objective 

of “output estimation of a hysteresis system”, the identification of 

the developed model was successful with an accurate estimation 

and it is considered to be proper for the modeling of the SMA 

actuated dynamical systems with hysteresis behavior. 

The advantages of the developed model are as the following: 

•Due to model physical tangibility, it is easy to estimate 

displacement, velocity and acceleration of a dynamic system 

attached to an SMA actuator and to easily design a controller for 

the dynamic system afterwards. 

• The developed model has flexibility for identifying the real 

hysteretic dynamic system as a result of considering the use of 

non-linear function in terms of neural network. 

• Using neural network has caused less limitation in selecting 

parameters of the Bouc-Wen model. Also, the complexity for 

identifying the developed Bouc-Wen model parameters limits 

only to configuration and training of the selected neural network. 
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