تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,090,083 |
تعداد دریافت فایل اصل مقاله | 97,193,784 |
Simulation of the Mode I fracture of concrete beam with cohesive models | ||
Journal of Computational Applied Mechanics | ||
مقاله 6، دوره 48، شماره 2، اسفند 2017، صفحه 207-216 اصل مقاله (650.82 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2017.235183.152 | ||
نویسندگان | ||
Shahriar Shahbazpanahi* 1؛ Masoud Paknahad2 | ||
1Department of Civil Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran | ||
2Faculty of Civil Engineering, Mahallat Institute of Higher Education, Mahallat, Iran | ||
چکیده | ||
Crack propagation modeling in quasi-brittle materials such as concrete is essential for improving the reliability and load-bearing capacity assessment. Crack propagation explains many failure characteristics of concrete structures using the fracture mechanics approach. This approach could better explain the softening behavior of concrete structures. A great effort has been made in developing numerical models; however, some models involve complex expressions with too many parameters, and the results are in some cases inaccurate. In this investigation, a numerical approach is developed to model the fracture process zone (FPZ). Based on the modified crack closure integral (MCCI) method, a new nonlinear spring is proposed to be placed between the interfacial node pairs to model crack propagation. A new strain energy release rates for Mode I is calculated as a function of opening in the softening part. Two benchmark beams are simulated by the ABAQUS software for the accuracy of cohesive zone model. The model decreases complexity of predicting crack propagation. It is observed that the cohesive zone model is robust, accurate and able to model the crack growth in the concrete beam. The prediction of the crack path is close to the experimental results (up to 90%). The peak loads had approximately 7.7% difference compared with the previous experimental loads. The accuracy of displacement in the present study is 15.9% compared with previously model at the same load intensity. | ||
کلیدواژهها | ||
ABAQUS؛ Fracture؛ Cohesive؛ propagation؛ Beam | ||
مراجع | ||
[1]Shahbazpanahi, S., Kamgar, A., 2015, A novel numerical model of debonding of FRP-plated concrete beam. Journal of the Chinese Institute of Engineers, 8, 24-32
[2]Shahbazpanahi, S.; Hejazi, F.; Paknahad, M.; Rahimipour, A.; Nassimi, M. R., 2018,Modeling crack propagation in RC beam–column joints. Tehnički Vjesnik - Tehnical Gazette, In Press
[3]Shi, Z. Crack analysis in stuctural concrete, theory and aplication; Butterworth-Heinemann: Burlington, USA, 2009.
[4]Esfahani, M. R., 2007, Fracture mechanics of concrete, Tehran Polytechnic press: Tehran Iran.
[5]Shahbazpanahi, S.,2017, Mechanical analysis of a shear-cracked RC beam. Acta Scientiarum. Technology , 39 (3), 285-290.
[6]Kaplan, M. E., 1961, Crack propagation and the fracture concrete. ACI Journal, 58 (5), 591- 610.
[7]Shi, Z., Ohtsu, M., Suzuki, M., Hibino, Y., 2001, Numerical analysis of multiple cracks in concrete using the discrete approach. J. Struct. Eng., 127 (9), 1085-1091.
[8]Shahbazpanahi, S., Ali, A. A. A., Aznieta, F. N., Kamgar, A., Farzadnia, N., 2013, A simple and practical model for FRP-reinforced cracked beam. European Journal of Environmental and Civil Engineering, 18(3), 293-306.
[9]Kiranea, K., Bazant, Z., 2015, Size effect in Paris law for quasibrittle materials analyzed by themicroplane constitutive model M7. Mechanics Research Communications, 60-64.
[10]Dong, W., Yang, D., Kastiukas, G., Zhang, B., 2016, Experimental and numerical investigations on fracture process zone of rock-concrete interface. Fatigue and Fracture of Engineering Materials and Structures, 40(5), 820-835.
[11]Ouzaa , K., Benmansour, M. B., 2014, Cracks in continuously reinforced concrete pavement. Arabian Journal for Science and Engineering, 39, 8593-8608.
[12]Shahbazpanahi, S., Ali, A. A. A., Aznieta, F. N., Kamkar, A., Farzadnia, N., 2013, Modelling of the fracture process zone to improve the crack propagation criterion in concrete. Journal of the South African Institution of Civil Engineering, 55 (3), 2- 9.
[13]Biscaia, H. C., Chastre, C., Silva, M. A. G., 2014, Linear and nonlinear analysis of bond-slip models for interfaces between FRP composites and concrete. Composites: Part B, 45, 1554-1568.
[14]Hillerborg, A., Modeer, M., Petersson, P. E., 1976, Analysis of crack formation and crack growth in concrete by means of mechanics and finite element. Cement and Concrete Research, 6, 773-782.
[15]Dong, W., Wu, Z., Zhou, X., Dong , L., Kastiukas, G. FPZ evolution of mixed mode fracture in concrete: Experimental and numerical. Engineering Failure Analysis 2017, 75.
[16]Shahbazpanahi, S., Ali, a. a. a., Aznieta, F., Kamgar, A., Farzadnia, N., 2012, A simple method to model crack propagation in concrete. Constructii Journa, 13 (1), 41-50.
[17]Yang, Z. J., Liu, G., 2008, Towards fully automatic modelling of the fracture process in quasi-brittle and ductile materials: a unified crack growth criterion. Journal of Zhejiang university science, 9 (7), 1862-1775.
[18] Dugdale, D. S., 1960, Yielding of steel sheets containing slits. J Mech Phys Solid, 8 (2), 100-104.
[19]Shahbazpanahi, S., Abang, A. A., Aznieta, F., Kamgar, A., Farzadnai, N. A, 2014, Theoretical method for fracture resistance of shear strengthened RC beams with FRP, 39(5), 3591-3597.
[20]Palmieri, V., Lorenzis, L. D., 2014, Multiscale modeling of concrete and of the FRP-concrete interface. Engineering Fracture Mechanics, 131, 150-175.
[21]Said, A. M., Nehdi, M. L., 2004,Use of FRP for RC frames in seismic zones:Part I. Evaluation of FRP beam-column joint rehabilitation techniques. Applied Composite Materials, 11, 205-226.
[22]Xie, D., Waas, A. M., 2006, Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Engineering Fracture Mechanics, 73 (13), 1783-1796.
[23]Xu, F., Wu, Z., Zheng, J., Zhao, Y., Liu, K., 2011, Crack extension resistance curve of concrete considering variation of FPZ length. J. Mate. Civ. Eng., ASCE, 23 (5), 703-710.
[24]Simon, K. M., Kishen,. A, 2017, Multiscale approach for modeling fatigue crack growth in concrete. International Journal of Fatigue, 98, 1-13.
[25]Shokrieh, M. M., Rajabpour-Shirazi, H., Heidari-Rarani, M., Haghpanahi, M., 2012, Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Computational Materials Science, 65, 66-73.
[26]Xie, D., Salvi, A. G., Sun, C., Waas, A. M., Caliskan, A. I., 2006, Discrete Cohesive Zone Model to Simulate Static Fracture in 2D Triaxially Braided Carbon Fiber Composites. Journal of Composite Materials 2006, 40(22), 2025- 2046.
[27]Xie, D., Biggers, S. B. J., 2006, Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements in Analysis and Design, 42 (11), 977 - 984.
[28]Jeang, F. L. Hawkins, N. M., 1985, Non-linear analysis of concrete fracture; Report No. SM 85-2; University of Washington: USA.
[29]Wu, Z., Rong, H., Zheng, J., Xu, F., 2011, An experimental investigation on the FPZ properties in concrete using digital image correlation technique. Engineering Fracture Mechanics, 78 (17), 2978-2990.
[30]Arrea, M., Ingraffea, A. R., 1982, Mixed-mode crack propagation in mortar and concrete, Report No. 81-13, Department of Structural Engineering: Cornell University.
[31] Xie, M., Gerstle, W. H., 1995, Energy-based cohesive crack propagation modeling. Journal of Engineering Mechanics, ASCE, 121 (12), 1349-1458.
[32]Bresler, B., Scordelis, A. C., 1963, Shear strength of reinforced concrete beams. American Concrete Institute, ACI, 60 (40), 51-72.
[33] Yang, Z. J., Chen, j., 2005, Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams. Engineering Fracture Mechanics, 72 (14), 2280-2297. | ||
آمار تعداد مشاهده مقاله: 670 تعداد دریافت فایل اصل مقاله: 724 |