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Abstract 

Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-

posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a 

novel computational procedure based on finite differences method and league championship algorithm to solve a 

one-dimensional inverse heat conduction problem. At the beginning, we use the Crank-Nicolson semi-implicit 

finite difference scheme to discretize the problem domain and solve the direct problem which is a second-order 

method in time and unconditionally stable. The consistency, stability and convergence of the method are 

investigated. Then we employ a new optimization method known as league championship algorithm to estimate 

the unknown boundary condition from some measured temperature on the line. League championship algorithm 

is a recently proposed probabilistic algorithm for optimization in continuous environments, which tries to simulate 

a championship environment wherein several teams with different abilities play in an artificial league for several 

weeks or iterations. To confirm the efficiency and accuracy of the proposed approach, we give some examples for 

the engineering applications. Results show an excellent agreement between the solution of the proposed numerical 

algorithm and the exact solution.   

Keywords: Inverse problem, League championship algorithm, Finite differences scheme, Numerical 

solution. 

 

 

 

 

 

 

 

 

                                                           
Corresponding Author. * 

mo.ebrahimi@ut.ac.irEmail address:  

 

http://fnst.ut.ac.ir/en/network
mailto:mo.ebrahimi@ut.ac.ir


Vol. 48, No. 2, December 2017 

286 

1. Introduction 

In many industrial problems it is necessary to specify 

the temperature inside some objects or determine the 

temperature in a boundary which both of them are 

unreachable or the temperature is very high to be 

measured by a thermometer. In such cases the 

temperature can be calculated from some measured 

temperature history at a fixed location that is 

measurable. The thermal properties in heat conduction 

problems has a great importance for temperature field 

in many engineering problems. The thermal 

properties, such as the heat capacity and the thermal 

conductivity, can be considered temperature-

dependent, because these values can be changed by the 

variation of temperature especially for large 

variations. The identification of these properties and 

temperatures is called inverse problems and especially 

in this cases Inverse heat conduction problems which 

are known as IHCPs in the literature [1-7] 

Shidfar et al. have solved a nonlinear inverse heat 

conduction problem to estimate unknown diffusion 

coefficients by using the Taylor’s series expansion as 

one of the examples of IHCPs [5]. In another paper, 

Shidfar et al. have used the same method to find the 

unknown function in an inverse problem and it showed 

different uses of these methods [4]. Ebrahimi et al. 

have introduced a new method to solve a two 

dimensional inverse heat conduction problem by using 

the Monte Carlo method and represented a biological 

example to show the advantages of IHCPs in other 

branches of science [1]. Farnoosh and Ebrahimi have 

employed the same method to find diffusion 

coefficient as a thermal property of a one dimensional   

inverse heat conduction problem [2]. 

Luo and Yang  have defined and solved an IHCP for 

estimation of total heat exchange factor in reheating 

furnace by solving an inverse heat conduction problem  

[3]. Furthermore Li et al. have studied the conductive 

heat flux from concrete to liquid nitrogen by solving 

an inverse heat conduction problem [6]. Li et al. have 

investigated a modified space marching method using 

future temperature measurements for transient 

nonlinear inverse heat conduction problem [7]. 

The above examples from the literature are described 

to show the different kinds and advantages of IHCPs. 

This paper represents a numerical estimation of 

temperature distribution in a one dimensional inverse 

parabolic problem using a combined numerical-

probabilistic algorithm. The proposed algorithm is 

based on finite differences scheme to solve directed 

problem and LCA algorithm to estimate the unknown 

coefficients via an optimization problem. As inverse 

problems are usually ill posed problems and hard to 

solve it needs to use a very stable method to discretize 

the partial differential equation [1-7]. The Crank-

Nicolson method as a finite differences method is a 

far-reaching method to solve partial differential 

equations and it is unconditionally stable as was 

proven by Crank and Nicolson [8, 9]. The advantage 

of a semi-implicit method is that retains much of the 

speed of the implicit method without sacrificing all of 

the higher quality. 

 LCA method or or league championship algorithm is 

a stochastic meta-heuristic algorithm for optimizing 

numerical functions which is introduced as a sport 

driven algorithm. This methodology simulates some 

sport teams competitions in a league. New solutions 

are generated by metaphorical strengths, weaknesses, 

opportunities, threats (SWOT) analysis which is new 

planning of coaches for the next games. The main 

thing that makes a team stronger than the other is the 

strength of its players which is the quantity of each 

variable and could be changed as random variables 

[10]. 

In fact there is a very simple path to solve the IHCPs 

that is shown in the Fig. 1:   

 

 
Fig. 1: A framework for solving inverse problems 
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The main part that have been changed in several ways 

to have different solutions is the optimization part of 

the chart. Some has used classic ways to optimize the 

numerical functions and some has used heuristic and 

meta-heuristic methods. Probabilistic methods as 

heuristic and meta-heuristic methods are faster but 

classic methods are more accurate than the others. You 

can use each of them in the case that you have much of 

time and currency or you need less accuracy.  

Many of these methods have been used during the 

years to solve one-dimensional inverse heat 

conduction problems [2, 11-22]. In the following some 

of them have been named along with their benefits as 

a solution. 

Farnoosh and Ebrahimi have introduced a numerical 

algorithm involving the combined use of the finite 

differences scheme and Monte Carlo method for 

estimating the diffusion coefficient in a one-

dimensional nonlinear parabolic inverse problem [2]. 

Then they introduce a random search algorithm in 

Monte Carlo method for global optimization and they 

found that this method is performable for parallel 

processing.  

Shivanian and Khodabandehlo have proposed and 

investigated an application of meshless local radial 

point interpolation on a one-dimensional inverse heat 

conduction problem [15]. Jolly and Autrique have 

applied a semi-analytic conjugate gradient method to a 

simple inverse heat conduction problem [13].  Beck 

and Woodbury have studied sensitivity coefficient 

insights, filter coefficients, and intrinsic verification of 

inverse heat conduction problems [11]. Duda has  

presented numerical and experimental verification of 

two methods for solving an inverse heat conduction 

problem [12]. Lu et al. have studied A two-

dimensional inverse heat conduction problem for 

simultaneous estimation of heat convection 

coefficient, fluid temperature and wall temperature on 

the inner wall of a pipeline [14].  

 Woodbury and Beck have examined the structure of 

the Tikhonov regularization problem and concludes 

that the method can be interpreted as a sequential filter 

formulation for continuous processing of data [21]. 

Lee et al. have applied an inverse algorithm based on 

the conjugate gradient method and the discrepancy 

principle to solve the inverse hyperbolic heat 

conduction problem in estimating the unknown time-

dependent surface heat flux in a living skin tissue from 

the temperature measurements taken within the tissue 

[18]. Pourgholi et al. have proposed a numerical 

algorithm combined with the genetic algorithm and 

least squares method to solve inverse heat conduction 

problems [20]. Also they used the parallel processing 

as a benefit of the genetic algorithm to speed up the 

processing time. 

Movahedian and Boroomand have introduced a 

numerical algorithm to solve inverse and direct layered 

materials by expressing the solution with some series 

of exponential basis functions (EBFs) defined in space 

and time as the main idea of that presented method 

[19]. Some examples have approved the stability of the 

algorithm. Fernandes et al. have proposed a transfer 

function identification (or impulse response) method 

to solve inverse heat conduction problems [17]. That 

technique was based on Green’s function and the 

equivalence between thermal and dynamic systems. 

The work was concluded with the application of the 

technique in an experimental case of temperature 

estimation at the tool-work-piece interface during a 

machining process. Cui et al. have proposed an 

optimization technique, using which the relaxation 

factor is adaptively updated at each iteration, rather 

than a constant during the whole iteration process [16]. 

One- and two-dimensional transient nonlinear inverse 

heat conduction problems was involved, and the 

instability issues occurred in their previous works were 

reconsidered [13]. 

Wu et al. have introduced an inverse algorithm based 

on the conjugate gradient method and the discrepancy 

principle to solve the inverse hyperbolic heat 

conduction problem with the dual-phase-lag heat 

transfer models [22]. Results was shown that an 

excellent estimation on the time-dependent pulse heat 

flux could be obtained. The existence and uniqueness 

of the solutions to this problem and also some more 

applications are discussed [2, 11-22] But, the 

numerical solutions of these problems are far from 

satisfactory.  

 

2. Mathematical Formulation 

In this section direct and inverse problems are 

introduced. In subsection 2.1 the direct problem its 

formulation which are concerned to determination of 

surface temperature in a road, is considered also in 

subsection 2.2 an inverse heat conduction problem 

which is raised from the above mentioned direct 

problem is introduced.     

3. Direct Problem 

The mathematical formulation of a one-dimensional 

linear parabolic problem is given as follows: 

Consider that 0ft  and let 

 ( , ) : (0,1), (0, )  fT x t x t t , and to determine the 

function ( , )T x t for the initial and boundary value 

problem: 

   , , , 1,    t xx fT x t T x t x t t                 (1) 

   , , 1  T x f x x                               (2) 

   , ,   fT t p t t t                              (3) 

   1, ,   fT t q t t t                             (4) 

Where ( )f x  is a known and continuous function, ( )p x  

and ( )q x  are infinitely differentiable known functions 
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and ft  is the time of the last measurement of the case. 

The problem which is numbered by Eqs. (1) to (4) is a 

direct problem. The direct problem shown here is 

interested with the determination of the distribution of 

the temperatures on a one dimensional environment 

when the initial condition ( )f x and the boundary 

conditions ( )p x  and ( )q x  are known continuous 

functions. Fig. 2 shows the physics of a one 

dimensional heat conduction problem. 

 

 

Fig. 2: One dimensional heat conduction example 

3.1. Inverse Problem 

Now, we consider the above heat conduction problem 

while function ( )q t  is unknown and an over specified 

condition is also considered available. To specify the 

unknown condition ( )q t  some additional information 

is needed. This information is some internal 

temperature measurements.  

 1 1, ( ), 0 1,     mT x t s t x t t                  (5) 

It is absolutely clear that for an unknown boundary 

condition ( )q t  the problem is under-determined and 

there is several answers. It is evident that to have a 

unique solution we are imposed to have additional 

information.  

Friedman has shown that, if ( )f x , ( )p t  and ( )q t  are 

continuous functions and the (0) (0)f p  then the 

problem (Eqs. (1) to (5)) has a unique solution [23]. 

4. Numerical Algorithm 

In this section the numerical algorithm which is used 

in this study in details is discussed. The Crank-

Nicolson as a finite difference scheme is used for 

discretizing the problem domain is discussed in 

subsection 3.1. 

In subsection 3.1.1 and 3.1.2 the stability, consistency 

and convergence of the scheme are respectively 

proved. 

Finally in subsection 3.2 LCA method is introduced. 

4.1. Finite difference method for discretizing 

To discretize the problem domain the Crank-Nicolson 

scheme as a semi-implicit finite difference approach is 

employed: 

   1 1 1
1 1 1 1 1

2

2 2

2

  
    



       


n n n n n n
n n i i i i i i

i i
t

T T T T T TT T

x
                                                                                (6) 

By letting 
22






t
r

x
 we obtain: 

1 1 1
1 1 1 12(1 ) 2(1 )  
          n n n n n n

i i i i i irT r T rT rT r T rT                                                                                    (7) 

 

So By using Eq. (7), the following linear algebraic system of equations is divided: 
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N NN
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     (8) 

Linear system (8) has 1N  unknown essential values 

through the boundary 1x . 

4.1.1. Stability of the finite difference scheme 

The stability of the scheme is discussed in this session. 

The scheme that is used is unconditionally stable. To 

prove stability by the Fourier series method, Von 

Neumann’s method, it is assumed that the error 

function is: 

ˆ n i i x n
iE e                                                         (9) 

where  te and   in general, is a complex 

constant. The error could not be increased as t  

increases provided that: 
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1                                                                   (10) By Substituting n
iE  into Eq. (2-7): 

ˆ ˆ ˆ( 1) ( 1) ( 1) ( 1) ( 1)

ˆ ˆ ˆ( 1) ( 1)

2(1 )

2(1 )

       

    

    

  

i i x n i i x n i i x n

i i x n i i x n i i x n

re r e re

re r e re

  

  

  

  

                                                                          (11) 

Divided by 
ˆ i i x ne    leads to: 

ˆ ˆ ˆ ˆ
2(1 ) 2(1 )            i x i x i x i xre r re re r re                                                                                  (12) 

Hence 

2

2 2

4 sin 2 42 1
4 sin 2 4 sin 2

2 2


 

  
 

 

x
r

x x
r r




 

                                                                                                 (13) 

From Eq. (13) it is concluded that for all positive 

values of r the condition (10) is true. Therefore, the 

finite differences scheme (7) is unconditionally stable. 

4.1.2. Consistency of the finite difference scheme 

In this section the consistency of the scheme (7) is 

investigated and it is proved that the finite differential 

scheme is consistent with the parabolic partial 

differential Eq. (1).  

By Taylor's expansion: 

1 2

3

1( ) ( )
2

1 ( ) ...,
6

     

  

n n n n
i i t i tt i

n
ttt i

T T t T t T

t T
                    14) 

1 1 1 2 1 3 1
1

1 1( ) ( ) ( ) ...
2 6

    
       n n n n n

i i x i xx i xxx iT T x T x T x T                                                                    (15) 

1 1 1 2 1 3 1
1

1 1( ) ( ) ( ) ...
2 6

    
       n n n n n

i i x i xx i xxx iT T x T x T x T                                                                    (16) 

Hence the local truncation error (LTE) at the ( , 1)i n mesh point: 

1 1 1 2

2

1 1LTE ( ) ( ) ( )
2 12

1 1( ) ( ) ...
2 12

       

    

n n n n
i t xx i tt i xxxx i

n n
tt i xxxx i

T T t T x T

t T x T
                                                                               (17) 

But T  is the solution of differential equation and 
1( ) 0 n

t xx iT T  therefore 1 2LTE 0 0    n
i t x . 

Now as the 0 t  and 0 x then LTE 0 .  

Consequently, the finite differences scheme (7) is 

consistent with the parabolic Eq. (1).  

From 3.1.1 and 3.1.2 and Lax's equivalence theorem it 

obviously follows that the answer converges to exact 

solution T as x tends to zero [24]. 

4.2. League Championship Algorithm 

LCA is a global optimization over a continuous search 

space which is a population based algorithmic 

framework. All like this algorithms do something like 

that moving a population of possible solutions into 

specialized areas of search space to seek the optimum. 

As all other algorithm a set of answers in the search 

space must be chosen randomly as a priori answer for 

the initial form of the LCA. In this method ''league'' is 

used as the sporting terminology for the population. 

LCA consists in evolving gradually the combination 

of the population in consecutive iterations, as the size 

of population is constant. Some times to be consistent 

“week” may be used in place of “iteration”. Any 

solution of the population is one of teams (L is the 

number of teams and is an even number) and is 

considered as the team’s current formation. Therefore 

the ''team i'' is the ''ith member of the population'' and 

its current formation refers to its solution. The value 

of each solution of the population can be calculated by 

the cost function and fitness value as a degree of 

adaptation to objective which is aimed is certain. The 

fitness value is the playing strength of any team 

formation. As all other population based algorithms 

this algorithm change the formation of any team in 

each season into a better formation to get the best 

formation. It is the artificial match analyses processor 

work to change the formation into a better one. Many 

of population based algorithms are Evolutionary 

Algorithms (EA) which during the iterations the 

fitness of individuals are improved [25]. As a pseudo 

evolutionary algorithm, selection in LCA is very 

greedy which replaces in each iteration the current best 

formation with a better team formation having a more 

adaptive playing strength. All the algorithm will 

terminate after certain number of seasons which 

represented by S and any season has 1L  week. At 
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last each algorithm has ( 1)S L  iterations.  

Fig. 3 shows the LCA flowchart. The method has 

paradigms which focuses on the relative comparison 

of individuals instead of their absolute fitness gains. 

Therefore the algorithm ensures that the win 

possibility for the better solution (team) is greater than 

the win possibility of the weaker solution (team).  

Consider that any team like X has the list of players 

1 2( , ,..., ) nX x x x  which are the coefficients of 

optimizing functional which should be optimized and 

the team arrangement in iteration t  for the team 

number i  can be shown as 1 2( , ,..., )t t t t
i i i inX x x x . 

Now assume that the team k had won l  so it is 

reasonable that if the team i wants to win l  its playing 

style should be like k and in the other hand if k had 

lost team l  and team i wants a win its playing style 

should be in the opposite direction of k . So by 

defining the t t
i jX X  we appoint to the differences 

between i and j . So by the Eq.s like (18) to (21) we 

use the treats and opportunities of the previous wins 

and losses to get the next best playing style: 

 

Fig. 3: LCA flowchart [10] 

 (S/T equation)     1
1 1 1 2

     t t t t t t t
id id id id id kd id id jdx b y r x x r x x                                                             (18)  

(S/O equation)     1
2 1 1 2

     t t t t t t t
id id id id kd id id id jdx b y r x x r x x                                                              (19) 

(W/T equation)     1
1 1 2 2

     t t t t t t t
id id id id id kd id jd idx b y r x x r x x                                                             (20) 
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(W/O equation)     1
2 1 2 2

     t t t t t t t
id id id id kd id id jd idx b y r x x r x x                                                            (21) 

where l Is the index of the team that will play with team 

i  at week 1t  and j is the index of the team that has 

played with team i  at week t  k  is the index of the team 

that has played with team i  at week t  based on the 

league schedule 1idr  and 2idr  are random uniform 

numbers in  0,1 .   is a coefficient that control the 

acceleration toward the best answer and run away from 

the worst. b  is the best choice and y  is the dimension 

coefficient. 

The Eq. (18) is based on the strengths and weaknesses 

those make treads or opportunities of the other teams 

which makes them a winner or loser and with these 

equations next optimizing variables of team i  like 

1 2, ,..., nx x x  can be calculated.  

Hence it is expected that the direction of the search is 

toward winner (better solution) and in opposition of 

loser (weaker solution). Like this algorithms moves the 

population toward the reach areas and at the same time 

they escape from poor local areas. Unlike most of 

algorithms which just go through the better solution in 

the search area, LCA avoids from some locals in the 

search space (supplied by the league schedule module). 

For this reason the LCA has more speed and can work 

on various types of the problems with complexities and 

lots of local minima or maxima. Therefore in this 

method we can set the smaller or greater rate of changes 

dynamically.   

5. Numerical Experiment 

In this section, it is going to demonstrate some 

numerical results for determining T and ( )q t  in the 

inverse problem mentioned Eqs. (1) to (5). Therefore 

the following examples are considered and the solution 

is obtained. Remember that in IHCPs there are two 

sources of estimation errors. The first is the unavoidable 

bias deviation (or deterministic error). The second one 

is the variance due to the amplification of measurement 

errors (stochastic error). The mean squared error or total 

error has the global effect of deterministic and 

stochastic considered in its terms [26]: 
1

2
2

1

1
( )



 
  
  

N

i i

i

S T T
N

                                      (22)  

where N is the total number of estimated values, iT  

are calculated values from interpolated equation and 

iT  are exact values of ( )q t . 

Example 1. In an engineering experiment, when we 

have the set of experimental data 

  , sin cos , 1   T x x x x   

 
2

, , 1  tT t e t  

and overspecified data (additional condition) 

   0.5, , 0.05,

1,2,...,20

  



i i iT t s t t i

i
 

We obtain the unique exact solution:  
2

( ) , 1   tq t e t           (23) 

To give a clear overview of the present method, the 

above example will be considered. Therefore the 

unknown function ( )q t  is defined as the following 

form: 

( ) ( ) btq t a e                                                      (24) 

 

where a  and b  are unknown coefficients which 

should be find in the optimization procedure by 

LCA. Now, the computation as a procedure to 

estimate the unknown coefficients are repeated until: 
77.9 10 S  

 

when the number of teams in league was 16 and the 

number of competition seasons was 500 season. 

The results are shown in Tables 1, 2, 3 and Fig. 4 and 

Fig. 5. Table 1 shows the error between the exact 

boundary condition ( )q t  and The calculated 

boundary condition ( )q t . 

 

Table 1: Comparison between exact ( )q t  and calculated ( )q t for example 1. 

( )t s  ( )q t  ( )q t  error  ( )t s  ( )q t  ( )q t  error  

0.05 -0.6104 -0.5888 0.0216 0.60 -0.0026 -0.0024 0.0002 

0.10 -0.3727 -0.3576  0.0150 0.70 -9.99e-4 -9.01e-4 9.79e-05 

0.20 -0.1389 -0.1319 0.0069 0.80 -3.72e-4 -3.32e-4 3.99e-05 

0.40 -0.0192 -0.0179 0.0013 0.90 -1.38e-4 -1.22e-4 1.61e-05 

0.50 -0.0071 -0.0066 0.0005 1.00 -5.17e-05 -4.52e-05 6.49e-06 

 

In Table 1 the exact (t)q , the calculated ( )q t and the 

error between them for example 1 are shown. As its 

obvious the error rate is in the E-03 order and the 

calculated answer has an excellent adjustment. 
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Fig. 4: The difference between exact (t)q  and calculated ( )q t  in example 1 

 In Fig. 4 the exact (t)q  and calculated ( )q t  

curves are shown. The accuracy of the answer is shown 

in the this figure. The bigger circle in the Fig. 4 is the 

magnified view of the smaller circle in the figure and 

it shows the adjustment of the calculated part.  

 

 

 

 
Fig. 5:  Error between the exact (t)q  and calculated ( )q t in example 1 

In Fig. 5 the error between the exact (t)q  and the calculated ( )q t  is shown. This error goes down as the 

time goes forward. 
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Table 2: Comparison between the exact and calculated temperature in example 1 

T Exact  x 0.25 x 0.75 x 1.00 T Cal  x 0.25 x 0.75 x 1.00 

t 0.00 1.4142 -3.67e-07 -1.0000 t 0.00 1.4142 -3.67e-07 -1.0000 

t 0.05 0.8633 -2.24e-07 -0.6104 t 0.05 0.8628 0.0015 -0.6104 

t 0.10 0.5270 -1.36e-07 -0.3727 t 0.10 0.5275 0.0030 -0.3727 

t 0.20 0.1964 -5.10e-08 -0.1389 t 0.20 0.1965 0.0020 -0.1389 

t 0.40 0.0272 -7.08e-09 -0.0192 t 0.40 0.0270 0.0002 -0.0192 

t 0.80 0.0005 -1.36e-10 -0.0003 t 0.80 0.0004 -1.32e-05 -0.0003 

t 1.00 7.31e-05 -1.90e-11 -5.17e-05 t 1.00 6.50e-05 -4.59e-06 -5.17e-05 

 

 

In Table 2 the exact temperatures and the calculated 

temperatures are shown. As its obvious the error rate 

is too tiny and the answer has a high accuracy.  

 

Table 3: The error in calculating temperature for example 1 

Time Error in x=0.25 Error in x=0.75 Error in x=1.00 

t 0.00 0.0000 0.0000 0.0000 

t 0.05 0.0004 0.0015 2.9999E-07 

t 0.10 0.0004 0.0030 2.0000E-07 

t 0.20 9.56E-05 0.0020 0.0000 

t 0.40 0.0002 0.0002 1.00E-08 

t 0.80 3.37E-05 1.32E-05 9.99E-11 

t 1.00 8.11E-06 4.59E-06 1.99E-11 

In Table 3 the error of calculating temperatures are 

shown and also the error rate is in E-03. As its obvious 

the error rate is too low and it makes the method 

accurate.  

 

 

Example 2. In an engineering experiment, when we 

have the set of experimental data 

 

  21
, , 1

2
  T x x x  

 , , 1  T t t t  

 

and overspecified data (additional condition) 

 

   0.5, ,   0.05,  

                                1,...,20,

  



i i iT t s t t i

i
  

We obtain the unique exact solution  

1
( ) , 1

2
   q t t t                (25) 

The unknown function ( )q t  is defined as the following 

form: 
2( )   q t a bt ct                                              (26)                                                                         

where a , b  and c  are unknown coefficients which 

should be find by LCA. Now, the computation as a 

procedure to estimate the unknown coefficients are 

repeated until: 
54.7 10 , S  

when the number of teams in league was 16 and the 

number of competition seasons was 500 season. The 

results are shown in Tables 4 to 6 and Fig. 6 and Fig. 

7. 

 

Table 4: Comparison between exact ( )q t  and calculated ( )q t  in example 2 

( )t s  ( )q t  ( )q t  error  ( )t s  ( )q t  ( )q t  error  

0.05 0.55 0.533101 1.69E-02 0.60 1.1 1.107372 7.372E-03 

0.10 0.6 0.588802 1.11E-02 0.70 1.2 1.202698 2.698E-03 

0.20 0.7 0.698108 1.89E-03 0.80 1.3 1.295228 4.772E-03 

0.40 0.9 0.908332 8.33E-03 0.90 1.4 1.384962 1.5038E-02 

0.50 1 1.00925 9.25E-03 1.00 1.5 1.4719 2.81E-02 

 

In Table 4 the exact (t)q , the calculated ( )q t and the 

error between them for example 2 are shown. It is clear 

in the table that the error rate is in the E-02 order or 

lower. So the calculated answer is precise. 

In Fig. 6 the exact (t)q  and calculated ( )q t  curves are 

shown.  The accuracy of the answer is shown inside the 
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bigger circle. The bigger circle is the magnified view 

of the smaller circle. 

In Fig. 7 the error of calculating ( )q t  and the ( )q t  is 

represented. The shape of error is because of the 

function which is estimated is in second order and the 

absolute amount of error is represented.  

In Table 5 the calculated and the exact temperatures 

are represented. As its obvious the error rate is too low 

and the answer is accurate. 

In Table 6 the error in calculating the temperatures is 

represented and the error rate is in E-02. As its obvious 

the error rate is too low and it makes the method 

accurate.  

6. Conclusion and future direction 
The presented study successfully represented a 

combined numerical and probabilistic algorithm 

involving the finite differences method in conjunction 

with league championship algorithm to solve a one-

dimensional linear parabolic inverse problem. From 

the explained example it can be seen that the 

demonstrated numerical-probabilistic method is 

efficient and accurate to estimate the unknown 

boundary condition and the results presented here 

suggest that the synthesis of the LCA method provides 

an undertaking probabilistic approach to parabolic 

inverse problem of the theory of heat transfer. The 

advantages of this approach are not limited to, 

versatility, the possibility of computing the functions 

of interest at isolated points without computing them 

on massive meshes, and the opportunity of having 

simple scalable. The numerical experiments of the 

present work show LCA is preferable when one needs 

to have an excellent estimation of the solution. 

 

Fig. 6: The difference between exact (t)q  and calculated ( )q t  in example 2 

 
Fig. 7:  Error between the exact (t)q  and calculated ( )q t in example 2 
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Table 5: Comparison between the exact and calculated temperature in example 2 

T Exact  x 0.26 x 0.73 x 1.00 T Cal  x 0.26 x 0.73 x 1.00 

t 0.00 0.034626 0.271468 0.5 t 0.00 0.034626 0.271468 0.4767 

t 0.05 0.087258 0.3241 0.552632 t 0.05 0.084048 0.313312 0.532945 

t 0.10 0.137119 0.373961 0.602493 t 0.10 0.135248 0.365476 0.591561 

t 0.20 0.236842 0.473684 0.702216 t 0.20 0.234434 0.469154 0.700499 

t 0.40 0.436288 0.67313 0.901662 t 0.40 0.436627 0.676972 0.910032 

t 0.80 0.83518 1.072022 1.300554 t 0.80 0.83625 1.072055 1.295733 

t 1.00 1.034626 1.271468 1.5 t 1.00 1.03184 1.257472 1.4719 

 

Table 6: The error in calculating temperature for example 2 

Time Error in x=0.26 Error in x=0.73 Error in x=0.1 

t 0.00 0.000513 0.008167 0.0233 

t 0.05 0.001871 0.008485 0.016916 

t 0.10 0.002408 0.00453 0.006234 

t 0.20 0.000338 0.003842 0.00679 

t 0.40 0.00107 3.24E-05 0.000533 

t 0.80 0.002786 0.013996 0.020877 

t 1.00 0.000513 0.008167 0.0233 
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