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Abstract 

In this paper, layerwise theory (LT) along with the first, second and third-order shear deformation theories 

(FSDT, SSDT and TSDT) are used to determine the stress distribution in a simply supported square sandwich 

plate subjected to a uniformly distributed load. Two functionally graded (FG) face sheets encapsulate an 

elastomeric core while two epoxy adhesive layers adhere the core to the face sheets. The sandwich plate is 

assumed to be symmetric with respect to its core mid-plane. First, second and third-order shear deformation 

theories are used to model shear distribution in the adhesive layers as well as others.  Results obtained from the 

three theories are compared with those of finite element solution. Results indicate that finite element analysis 

(FEA) and LT based on the first, second and third-order shear deformation theories give almost the same 

estimations on planar stresses. Moreover, the out-of-plane shear stresses obtained by FEA, are slightly different 

from those of LT based on FSDT. The differences are decreased on using LT based on SSDT or TSDT. 

Additionally, SSDT and TSDT predict almost the same distribution for the two planer stress and out-of-plane 

shear stress components along the face sheet thickness. Furthermore, third-order shear deformation theory 

seems to be more appropriate for prediction of out-of-plane shear stress at lower values of a/h ratio. 

Keywords: Stress distribution, Layerwise theory, Second-order shear deformation, Third-order shear deformation, 

Sandwich plate. 
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1.   Introduction 

Most of the literature available on the sandwich 

composite plates which is based on LT have dealt with 

FSDT. Liu et al. [1] used differential quadrature finite 

element method (DQFEM) along with LT based on an 

expansion of Mindlin’s first-order shear deformation 

theory to study laminated composites and sandwich 

plates. The DQFEM solutions were compared with 

various models in the literature. Very good agreements 

with exact solutions that were based on a similar LT were 

observed. Fares et al. [2] studied stress distribution in a 

plate based on LT while its thickness was divided into n 

layers. They assumed a continuous change in 

displacement along the thickness. Application of FSDT 

theory was also used by Thai et al. [3], Ferreira et al. [4] 

and Roque et al. [5] to perform the static deformation and 

vibrational analysis of a sandwich plates by means of LT. 

Application of functional graded materials were used by 

Farahmand and Atai [6], Afshin et al [7] and Goodarzi 

et.al [8] to analyze spherical vessel, rotating thick 

cylindrical pressure vessels and nanoplates, respectively. 

Gharibi et al. [9] studied elastic analysis of FG rotating 

thick cylindrical pressure vessels by using power series 

method of frobenius. The vessel is considered in both 

plane stress and plane strain conditions. They illustrate 

that the inhomogeneity constant provides a major effects 

on the mechanical behaviors of the vessel. In another 

work, Mantari et al. [10] performed the static and 

dynamic analysis of laminated composite and sandwich 

plates and shells, using a new higher-order shear 

deformation theory. The governing equations and 

boundary conditions were derived using principle of 

virtual work. The static and dynamic results were then 

presented for cylindrical and spherical shells and plates 

based on simply supported boundary conditions. The 

accuracy of their results were verified using the available 

results in the literature. In Ref. [11], Nguyen-Xuan et al. 

performed isogeometric finite element analysis of a 

composite sandwich plate, using a higher-order shear 

deformation theory. The static, dynamic and buckling 

behavior of rectangular and circular plates were 

investigated based on different boundary conditions. 

They observed good agreements between their results 

and work of others which were based on analytical 

solutions. 

Many researches have carried out variety of works 

related to nanostructures elements such as nanorod, 

nanobeam and nanoplates. Goodarzi et al. [12] studied 

thermo-mechanical vibration analysis of FG circular and 

annular nanoplate based on the visco-pasternak 

foundation by using strain gradient theory. Farajpour et 

al. [13] studied vibration of piezoelectric nanofilm based 

electromechanical sensors via higher order nonlocal 

strain gradient theory. In this research by using higher 

order nan-local elasticity, strain gradient theory and 

Hamilton’s principle, the equations of motion are 

derived. Farajpour et al. [14-16] studied surface effects, 

large amplitude vibration and buckling analysis of 

nanoplates subjected to external electric and magnetic 

potentials. Mohammadi et al. [17] studied shear buckling 

of orthotropic rectangular plate. In this work, nan-local 

elasticity theory studied to determined shear buckling of 

orthotropic single layered graphene sheets. Mohammadi 

et al. [18, 19] studied the effect of shear in plane load on 

the vibration of circular, annular and rectangular plates. 

In these research by using nonlocal elasticity theory 

vibration analysis of orthotropic single layered graphene 

sheets studied. In Ref [20], Farajpour et al. studied 

buckling analysis of  orthotropic nanoplates in thermal 

environment. In this investigation the higher order 

nonlocal strain gradient theory used to determine the 

influences of higher order deformation. Ghabezi and 

Farahani [21] studied adhesive bonded joint 

reinforcement by incorporation of nano alumina 

particles. This paper was experimental investigation on 

the effects of the addition nanoparticles to woven. The 

shear tensile test shows that variation of the nanoparticles 

led to increase the joint strength. 

Finite element analysis of laminated composite plates 

using a higher-order shear deformation theory with 

assumed strains was performed by Lee and Kim [22]. 

They used a new four-node laminated plate by using a 

higher-order shear deformation theory. Several 

numerical examples were carried out and their results 

were compared with work of others. They concluded that 

their proposed method was very effective to remove the 

locking phenomenon and produces reliable numerical 

solutions for most laminated composite plate structures. 

In Ref. [23], Houari et al. developed a new higher-order 

shear and normal deformation theory to simulate the 

thermo elastic bending of functionally graded (FG) 

material sandwich plates. Their theory accounted for 

both shear deformation and thickness stretching effects 

using a sinusoidal variation in all displacements across 

the thickness without requiring any shear correction 

factor. Numerical examples were presented to verify the 

accuracy of the proposed theory. Dynamic behavior of 

fiber reinforced plastic sandwich plates with PVC foam 

core was investigated by Meunier and Shenoi [24]. The 

deduced equations of motion which included the 

viscoelastic properties of the constitutive materials were 

used to determine the natural frequencies and modal loss 

factors of a specific composite sandwich plate. They 

concluded that to determine the dynamic response of 

fiber reinforced sandwich structures, the viscoelastic 

properties of constitutive materials and their temperature 

and frequency dependency should not be omitted. 

Shishesaz et al. [25] studied local buckling of composite 

plates subjected to compressional load. In this research, 

the proposed analysis will predict the delamination shape 
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of a composite plate during delamination process in post-

buckling mode. 

Thai et al. [26], presented a generalized layerwise 

higher-order shear deformation theory for laminated 

composite and sandwich plates. Their work introduced a 

higher-order shear deformation theory in each layer such 

that the continuity in displacement and transverse shear 

stresses at the layer interfaces was ensured. Similar to the 

first and higher-order shear deformation theories, their 

method required only five variables. In comparison with 

the shear deformation theories based on the equivalent 

single layer, they claimed that their proposed theory was 

capable of producing a higher accuracy for inter-laminar 

shear stresses. Sarangan and Singh [27] studied higher-

order closed-form solution of laminated composite and 

sandwich plates. In their work, new shear deformation 

theories were developed to analyze the static, buckling 

and free vibration responses of laminated composites and 

sandwich plates using Navier closed form solution 

technique. The governing differential equations and 

boundary conditions were obtained using the virtual 

work principle. Their results showed that the proposed 

shear strain functions have significant effects on 

structural responses.  

In spite of the extensive literature available on 

behavior of sandwich composite plates, there still 

remains other questions which yet have to be answered. 

For this purpose, this work deals with stress distribution 

in a five-layer rectangular sandwich composite plate 

composed of a central polymeric core adhered to FG 

cover sheets by means of two adhesive layers. The whole 

structure is subjected to a uniformly distributed 

transverse load and is simply supported on all four edges. 

Since any excessive stress in the adhesive layers may 

lead to a bond separation between the face sheets and the 

core, and hence failure of the overall structure, it 

becomes very important to have a full understanding on 

distribution of stresses in each layer and the important 

factors influencing their magnitude, and possibly their 

locations. This leads to a better understanding on the 

behavior of the overall structure and hence, can prevent 

any possible failure due to the application of any 

excessive load.  

Although FSDT predicted accurate results on planer 

stresses, magnitudes of out-of-plane shear stresses which 

appeared to be constant along the adhesive thickness 

based on FSDT, did not quite match those of finite 

element results and work of others. In this text, LT along 

with higher-order shear deformation theories (second 

and third orders) will be used to investigate their 

applicability and effect on stress distribution in a five-

layer sandwich composite plate. The effect of other 

factors on final results will be also investigated. The 

major advantage of LT along with higher-order shear 

deformation theories compared to FSDT is that to predict 

accurate results on out-of-plane shear stresses. But the 

major limitation of the theory appeared when the 

thickness of the sandwich plate becoming large or the 

ratio of the sandwich plate thickness to its length 

becoming large. 

2.   Derivation of the governing equations 

In this section, the governing equations relating 

stresses to strains in a five-layer, square, simply 

supported sandwich plate based on LT and SSDT or 

TSDT are derived. Figure 1 illustrates the sandwich plate 

with two FG face sheets under uniformly distributed 

transverse load 0q . The modulus of elasticity of each face 

sheets along its thickness is defined by Eq. (1). It is 

assumed that the Poisson’s ratio of each face sheet is 

constant. In Eq. (1), indices c and m correspond to the 

ceramic and metal, n is the material number, and E is the 

elastic modulus. Vc corresponds to the volume fraction of 

ceramic composition in metal. Moreover, h1, h2 and h3 

correspond to the thickness of the face sheets, adhesive 

layers and core, respectively (see Fig. 1). 

Based on SSDT and TSDT, planar displacement 

components along the thickness of each layer change 

according to the second and third-order polynomials, 

respectively. These polynomials are written in terms z 

coordinate described locally in each layer along the 

thickness of the plate. Assuming a continuous 

displacement across the layers, the displacement fields in 

each layer based on the SSDT and TSDT are deduced and 

given in appendices A and B, respectively. 

   E z E E V E
c m c m

   , 
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face sheet 

Here, ( )ku , ( )kv and ( )kw indicate the displacement 

components along x, y and z directions in the kth layer, 

respectively. Numbering of the layers is shown in Fig. 1. 

Moreover, u and v are the corresponding displacement 

components measured along x and y directions at the core 

mid-plane (z=0), respectively. Additionally, it is assumed 

that the out-of-plane displacement ( )kw is only a function 

of x and y and a perfect bond exists between all layers. 

The adhesive layers are assumed to be void free. Based 

on linear elasticity, the strain components in the kth layer 

can be written in terms of displacements, as in Eqs. (2). 

Substituting for displacement components from 

Appendices A and B in Eqs. (2), the strain vector in each 

layer of the five-layer composite sandwich plate, for the 

two postulated models (SSDT and TSDT), may be 
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written as in Eqs. (3). In these equations, to apply SSDT,

11a  , 02a   while for TSDT, 01a  and 12a  . Moreover, 

the components
( )m k

x , 
( )m k

y , 
( )m k

xy , 
( )m k

xz and 
( )m k

yz  

represent the mth-order polynomial coefficients of the 

strains for the kth layer. The stress-strain relationship in 

the kth layer may be written in terms of Eq. (4). Here, 

 k

ij
Q   is the stiffness matrix of the kth layer. In Eq. (5), 

 E k ,  G k and  k  correspond to the modulus of 

elasticity, shear modulus and Poisson’s ratio of the kth 

layer respectively. 
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Fig. 1. The five-layer simply supported sandwich plate with functionally graded face sheets under uniformly 

distributed load qo. 

 

 

Writing the expression for potential energy and 

setting its variation equal to zero, as in Eq. (6), the 

equilibrium equations based on SSDT and TSDT are 

extracted and presented in Appendices C and D, 

respectively. In Eq. (6), 0q is the magnitude of the 

uniform load applied to the top surface of the sandwich 

plate. Additionally, parameters  
N

i

k
,  

M
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k
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R

j

k
 (j=1, 2) given in 

Appendices C and D are fully expressed in Appendix E. 

Since simply support boundary condition is used on all 

four edges, then the displacement components and 

curvatures can be defined as in Eqs. (7). In these 

equations, umn , vmn , wmn ,  k

x mn
 , 

 k

y mn
 ,  k

x mn
 and 
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 are the constants yet to be determined.  
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On using Eqs. (7) in conjunction with 

displacements and rotational components given in 

Appendices A and B, and then substituting the results 

back in Eqs. (2), strains in each layer are determined. 

Applying Fourier series to define this uniform load, 

one may write; 
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m and n are odd. 

(8) 
m or n are even. 

     

 

Based on the second and third-order shear 

deformation theories along with LT, a family of forces 

and moments are developed which are given in Appendix 

E. Here, matrices A, B, D, E, F, H, J and L which are 

introduced in equilibrium equations of each layer are 

expressed in Eqs. (E3) and (E4).  Coefficients  mn
 in 

Eqs. (7) are obtained by solving the system of equations 

given in Appendices C and D. 

 

3.   Numerical results and discussion 

Based on the governing equations derived in the 

previous section, stress distribution in a five-layer 

sandwich plate is now investigated. Proper relations are 

used to deduce the results which are based on each one 

of the two shear deformation theories (SSDT or TSDT). 

The results based on FSDT and finite element findings 

are imported from the first part of the paper for further 

comparison. 

 

3.1. Three-layer sandwich plate 

To find the effect of second and third-order shear 

deformation theories on final results, as the first step, a 

three-layer sandwich plate (with no adhesive layer) is 

postulated as shown in Fig. 2. Here, the simply 

supported, square, orthotropic sandwich plate is 

subjected to a uniformly distributed transverse load 0q

on its top face. The geometric dimensions of the 

sandwich plate are selected such that its total thickness is 

ten percent of its overall length. Moreover, the thickness 

of each face sheet is assumed to be equal to 10 percent of 

the overall thickness. Allowing the thickness of each 

adhesive layer to approach zero and neglecting the terms 

associated with these two layers in current formulations, 

a solution to displacement field “w” and stress 

components
x

 , 
y

  and 
xz

  are obtained based on LT 

along with FSDT, SSDT, and TSDT.  The stiffness 

matrices for the core and face sheets were selected 

according to Eqs. (9) [28], where R is assumed to be a 

constant number. 

The finite element findings and the non-dimensional 

results for different points based on three dimensional 

elasticity deduced from Ref. [28] are superimposed for 

further comparison. The results at five different points 

(1-5) are shown in Table 1. These values are non-

dimensionalized according to Eq. (10).  The geometric 

positions of these points are given in Table 2. The results 

in Table 1 are deduces for three different values of R. It 

is observed that the order of accuracy in prediction of 

planar stress components x  and y (compared to 3-D 

elasticity solution) at each one of these points, based on 

FSDT, SSDT, and TSDT is almost the same for all values 

of R listed in this table. 
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Fig. 2. Three-layer simply supported sandwich plate. 

 

 

Table 1. Comparison of the results based on LT along with FSDT, SSDT and TSDT and those of analytical solution 

obtained from Ref. [28] for / 0.1, / 0.8,  / 0.11 2 3h h h h h h    (three layer composite sandwich plate). 

xz y x w  
 

 

 

Q
facesheet

R
Q Core

 
Point 5 Point 4 Point 3 Point 2 Point 4 Point 3 Point 2 Point 1 

-1.9826 17.669 17.669 22.210 28.538 28.538 36.021 688.58 Ref. [28] 

1 

-1.7839 17.460 17.460 21.827 29.924 29.924 37.471 705.08  LT FSDT 

-10.02 -1.18 -1.18 -1.72 4.86 4.86 4.03 2.40 % Difference  

-1.9650 17.461 17.461 21.828 29.922 29.922 37.467 705.26 LT SSDT 

-0.89 -1.18 -1.18 -1.72 4.85 4.85 4.01 2.42 % Difference 

-1.8917 17.483 17.483 21.860 29.942 29.942 37.506 707.52 LT TSDT 

-4.58 -1.05 -1.05 -1.58 4.92 4.92 4.12 2.75 % Difference 

-3.2675 6.1607 30.097 38.491 9.3402 46.623 60.353 258.97 Ref. [28] 

5 

-3.1839 6.0737 30.368 37.974 9.8871 49.435 62.155 263.04 LT FSDT 

-2.56 -1.41 0.90 -1.34 5.86 6.03 2.99 1.57 % Difference 

-3.1767 6.0742 30.371 37.978 9.8861 49.431 62.146 263.14 LT SSDT 

-2.78 -1.40 0.91 -1.33 5.84 6.02 2.97 1.61 % Difference 

-3.3521 6.0778 30.389 38.003 9.8951 49.476 62.193 263.31 LT TSDT 

2.59 -1.35 0.97 -1.27 5.94 6.12 3.05 1.68 % Difference 

-3.5154 3.4995 33.413 43.566 4.903 48.857 63.322 159.38 Ref. [28] 

10 

-3.6555 3.4274 34.274 42.892 5.2484 52.484 66.398 160.31 LT FSDT 

3.99 -2.06 2.58 -1.55 7.04 7.42 4.86 0.58 % Difference 

-3.6541 3.4277 34.277 42.896 5.2479 52.479 66.389 160.37 LT SSDT 

3.94 -2.05 2.59 -1.54 7.03 7.41 4.84 0.62 % Difference 

-3.9118 3.4291 34.292 42.916 5.2536 52.536 66.423 160.39 LT TSDT 

11.28 -2.01 2.63 -1.49 7.15 7.53 4.90 0.63 % Difference 
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Q RQ
facesheet core

     where 

3.802 0.879 0 0 0

0.879 1.996 0 0 0

0 0 1.015 0 0

0 0 0 0.608 0

0 0 0 0 1

Q
core

 
 
 
 
 
 
 
 

 (9) 

 
a b

, ,0   1,1
2 2

, , ,

w Q
core x xzw

xzhq q q qx
o

y

y
o o o


 


 
 
       (10) 

  

Table 2. Geometric position and location of points 1-5 defined in Table 1, according to the coordinate system shown 

in Fig. 2. 

Point’s number 1 2 3 4 5 

Location, on the Core Face sheet Face sheet Core Face sheet 

x Coordinate a/2  a/2  a/2  a/2  a/2  

y Coordinate b/2  b/2  b/2  b/2  0 

z Coordinate 0 /2h  /22h  /22h  /22h  

Compared to 3-D elasticity solution, the out-of-plane 

shear stress component 
xz

 at point 5 is well predicted by 

SSDT compared to the other two. Consequently, it 

appears that LT along with SSDT is well capable of 

predicting the out-of-plane shear stress component xz  

as well as other stress components x  and y and 

deflection w , in a three layer sandwich composite plate. 

3.2. Five-layer sandwich plate 

To further examine the applicability of LT along with 

higher-order shear deformation theories to a five-layer 

sandwich composite plate, two adhesive layers between 

the core and face sheets were added to the previous 

model. The postulated model which is shown in Fig. 1, is 

simply supported on all four edges and subjected to a 

uniformly distributed transverse load 0q  on its top face. 

The resulting square sandwich plate is assumed to be 

symmetric with respect to its core mid-plane. The 

mechanical properties of each layer are defined in Table 

3. Tables 4 to 6 compare the results on deflection w , x

and xz , based on LT along with SSDT and TSDT and 

those of FEA and FSDT. Here, due to symmetry in 

geometry of the plate and loading, yx  . For the 

assumed values of h1, h2 and h3 in Table 4, based on n=1, 

it is observed that the resulting values for w , x and xz

, which are obtained based on the second-order and third-

order shear deformation theories, match those of FEA 

and FSDT. The percentage differences between FE 

results and those of shear deformation theories seem to 

be reduced for higher values of a/h, almost at all points 

given in Table 4. The accuracy in values of xz  along 

line 1 (in the top face sheet as in Fig. 1) increases with 

implementation of higher-order shear deformation 

theories in current analysis. At points 7, 8 and 9 (these 

points lie in the top adhesive layer), application of 

higher-order shear deformation theories does not seem to 

improve much the values of xz  at the core-adhesive and 

adhesive-cover sheet interfaces. However, higher values 

of a/h result in higher values of w , x and xz , and their 

accuracy. 

 

Table 3. Mechanical properties of the five-layer sandwich plate. 

Sheet type Mechanical properties 

Face sheet    2 3AL AL O  [29] 70 ; 380 ; 0.3E GPa E GPam c m c       

Epoxy (Epo-tek 301-2) [30] 3.664 ;  0.3E GPa     

Core (Elastomeric Foam code 4) [31, 32] 1.5 ;  0.463E GPa     

 

Figure 3 shows the non-dimensional changes in 

planer stress ( x ) in the top face sheet along its thickness 

direction based on the three shear deformation theories 

and FEA. Two different values of n = 0.5 and n = 2.0 are 

selected for this purpose (see Figs. 3(a) and (b)). The 

upper and bottom layers of the top cover sheet experience 
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the same absolute values of in-plane stress x , as the 

composite plate undergoes bending due to the applied 

transverse load 0q . For the selected values of n, LT along 

with FSDT seems to predict similar values for x  as the 

other shear stress theories and FEA do. Similar results 

are obtained for other cover sheet thicknesses (see Figs. 

3(c) and (d)). According to Fig. 3(d), a thicker cover 

sheet results in lower values of x . Variations in x and

xz  in the top face sheet along x and z directions at b/2y

, are shown in Fig. 4. Clearly, one can observe that SSDT 

and TSDT almost predict similar distributions for these 

two stress components along the foregoing directions.  

The effect of cover sheet thickness on deflection w , x  

and xz  at different points is shown in Table 5. 

According to these results, a sandwich composite plate 

with a thicker cover sheet experiences lower values of w  

and x (at the mid-center of the plate), while xz  seems 

to be slightly increased at points which are located on 

each of its interfaces (see the results for points 7-9 and 

those on line 1). 

The effect of cover sheet thickness on deflection w , 

x  and xz  at different points is shown in Table 5. 

According to these results, a sandwich composite plate 

with a thicker cover sheet experiences lower values of w  

and x (at the mid-center of the plate), while xz  seems 

to be slightly increased at points which are located on 

each of its interfaces (see the results for points 7-9 and 

those on line 1). Figure 5 shows the non-dimensional 

changes in out-of-plane shear stress xz  in the top face 

sheet along its thickness. Here, it has been assumed that 

n=1. For a/h=15, the second and third-order shear 

deformation theories seem to predict almost the same 

distributions for xz . These results appear to be slightly 

different from those of FEA. According to this figure, 

higher values of a/h (20 and 30), result in higher values 

of xz  in the top face sheet. The corresponding results 

predicted by finite element findings, approach those of 

third-order shear deformation theory for higher values of 

a/h. This means that with a decrease in overall plate 

thickness compared to its width a (thinner plate), FSDT 

becomes more applicable for prediction of xz . 

Consequently, third-order shear deformation theory 

seems to be more appropriate for prediction of out-of-

plane shear stress xz  at lower values of a/h ratio. 

Figures 6 illustrates the distributions of peeling stress z  

in the upper epoxy adhesive layer at b/2y  based on  

/ 0.1,  / 0.02, / 0.76, a/ 201 2 3h h h h h h h     and n=1. Second-

order and third-order shear deformation theories are used 

to extract these results (Figs. 6(a)) and 6(b) respectively). 

According to both theories, the magnitudes of peeling 

stress z  appear to be constant along the adhesive layer 

thickness. Additionally, both theories predict the same 

amount of peeling stress for all values of x and z. 

According to Fig. 6(c), there is a close tie between finite 

element results and those of current solution based on 

first, second and third-order shear deformation theories.  

Figures 7 shows the effect of any change in material 

parameter n and the adhesive thickness h1 on non-

dimensionalized planer stress x  in the epoxy adhesive 

layer. These results that are plotted along the adhesive 

thickness are based on the first, second and third-order 

shear deformation theories. The final element simulation 

findings are also superimposed for further comparison. 

The three foregoing theories seem to predict almost the 

same distributions along the thickness direction with a 

good accuracy. The maximum difference between finite 

element findings and those based on LT appears to be 9% 

(Fig. 7(a), n=0.5). For higher values of n, the percentage 

difference is decreased. According to Figs. 7(c) and 7(d), 

it is observed that any increase in thickness h1 results in 

a decrease in planer stress x  in the adhesive layer. This 

variation along the adhesive thickness (h2) seems to be 

linear. Fig. 7(d) indicates that the maximum difference 

between final element simulation results and those of LT 

that occurs at the adhesive-face sheet interface ( / 0.52z h 

) is about 3%.  

Based on the second-order shear deformation theory 

and n=1, the non-dimensional out-of-plane displacement 

w for the x-y plane located at b/2y  in the core’s mid-

plane, is plotted in Fig. 8(a). Similar results based on 

other shear deformation theories and those of finite 

element findings are also shown for further comparison. 

Although LT seems to be able to predict this 

displacement component with a good accuracy, 

application of higher-order shear deformation theories 

does not seem to have a meaningful effect on these 

results. 

4.   Conclusions 

In this study LT along with FSDT, SSDT, and TSDT 

were used to investigate the stress distribution in a five-

layer sandwich plate subjected to a uniform distributed 

load. The aim of this study was to determine the 

applicability of LT along with the effect of other higher-

order shear deformation theories on stress distribution in 

different layers of a simply supported composite 

sandwich plate. The effect of these theories on overall 

plate displacement was also studied. According to the 

results, for the assumed values of h1, h2, and h3, the 

deduced values of displacement and planer stress, based 

on LT along with higher-order shear deformation 

theories (second and third), match those of FEA and 

FSDT. The accuracy of out-of-plane shear stress values 
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in the top face sheet along line 1 increases with 

implementation of higher-order shear deformation 

theories, although similar values at the core-adhesive and 

adhesive-cover sheet interface do not seem to be 

considerably improved. Higher values of a/h result in 

higher values of displacement, planer stress and out-of-

plane shear stress, and their accuracy. The percentage 

differences between FE results and the three shear 

deformation theories seem to be reduced for higher 

values of a/h ratio (thinner composite plates), almost at 

all points introduced in this analysis. Additionally, SSDT 

and TSDT almost predict the same distribution for the 

two planer stress and out-of-plane shear stress 

components along the cover sheet thickness (as well as 

x-direction). Moreover, third-order shear deformation 

theory seems to be more appropriate for prediction of 

out-of-plane shear stress at lower values of a/h ratio. The 

results indicate that for the three shear deformation 

theories used in this analysis, the same distribution for 

out-of-plane shear stress is obtained in the core. The peak 

values of this stress occur at the plate edges. 

According to the results, the magnitudes of peeling 

stress appear to be constant along the adhesive thickness. 

All three theories predict the same amount of peeling 

stress in the adhesive layer, at all values of x and z. 

Higher values of n result in higher values of planer stress 

in the core. Although LT along with FSDT seem to be 

well capable of predicting transverse displacement, 

application of higher-order shear deformation theories do 

not seem to have a meaningful effect on this component. 

 

  
(a)  (b) 

  
 (c)  (d)  

Fig. 3. Variations in x  along the cover sheet thickness on the line joining point 3 to 2 for a/ 20h . (a) 0.5 ,   / 0.11n h h  , (b) 

2,  / 0.11n h h  , (c) 1,   / 0.151n h h  , (d) 1,   / 0.21n h h  . 
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(a) (b) 

  
(c) (d) 

Fig. 4. Variations in x and xz  along x and z directions at b/2y  in the top face sheet, based on 

/ 0.1,  / 0.02,  / 0.76, a/ 201 2 3h h h h h h h     and n=1 (a) LT along with SSDT (b) LT along with SSDT (c) LT along with TSDT (d) 

LT along with TSDT

 

 
 

(a)  (b)  

 
(c)  

Fig. 5. Variations of xz along the thickness at line 1 (see Fig. 1) in the top face sheet for 1,  / 0.11n h h  , (a) a / 15  h  , (b) 

a/ 20h , (c) a / 30  h  . 
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Table 4. Comparison of the results based on LT along with FSDT, SSDT and TSDT and those of FEA based on / 0.1,   / 0.02,  / 0.76,  11 2 3h h h h h h n    . 

a

h
  

 w   x   xz   

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Max value on 

line 1 

Point 7 Point 8 Point 9 

15 

FEA (ANSYS)  92.5988 224.5300 27.4050 1.7005 1.5445 0.87270 6.4038 5.0129 4.9987 4.9967 

LT FSDT 95.4725 234.5918 27.6297 1.6905 1.5667 0.82660 5.8674 5.0057 5.0057 4.9783 

% Difference 3.10 4.48 0.82 0.59 1.44 5.28 8.38 0.14 0.14 0.37 

LT SSDT 95.5060 234.7331 27.6859 1.6907 1.5669 0.82656 6.4372 5.0384 4.9680 4.9609 

% Difference 3.14 4.54 1.02 0.58 1.45 5.29 0.52 0.51 0.61 0.72 

LT TSDT 95.471 234.8117 27.5668 1.6895 1.5600 0.82692 6.3735 4.9507 4.9506 4.9481 

% Difference 3.10 4.58 0.59 0.65 1.00 5.25 0.47 1.24 0.96 0.97 

20 

FEA (ANSYS) 215.7120 388.8250 52.5050 3.3380 3.1130 1.6301 7.7091 6.8244 6.8177 6.8140 

LT FSDT 220.7483 388.790 51.8240 3.2365 3.0681 1.5016 5.6587 6.8113 6.8113 6.8238 

% Difference 2.33 0.01 1.30 3.04 1.44 7.88 26.60 0.19 0.09 0.14 

LT SSDT 220.8094 388.7977 51.8786 3.2366 3.0681 1.5017 7.9176 6.8441 6.7750 6.8244 

% Difference 2.36 0.01 1.19 3.04 1.44 7.88 2.70 0.29 0.63 0.15 

LT TSDT 220.7505 388.8012 51.7608 3.2366 3.0680 1.5016 7.6739 6.7639 6.7639 6.8044 

% Difference 2.34 0.01 1.42 3.04 1.45 7.88 0.46 0.89 0.79 0.11 

30 

FEA (ANSYS) 813.0153 855.2150 126.5600 7.0285 6.6055 3.4602 10.5540 10.4510 10.4410 10.4370 

LT FSDT 820.4410 855.2670 126.6997 6.9650 6.5362 3.4051 8.3057 10.4265 10.4265 10.2556 

% Difference 0.91 0.01 0.11 0.90 1.05 1.59 21.30 0.23 0.14 1.74 

LT SSDT 820.5762 855.2769 126.7558 6.9679 6.5388 3.4052 10.5759 10.4596 10.3928 10.2565 

% Difference 0.93 0.01 0.15 0.86 1.01 1.59 0.21 0.08 0.46 1.73 

LT TSDT 820.4448 855.2776 126.6426 6.9623 6.5300 3.4050 10.5732 10.3956 10.3956 10.3562 

% Difference 0.9138 0.01 0.07 0.94 1.14 1.60 0.18 0.53 0.43 0.77 
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Table 5. The effect of face sheet thickness on deflection w  and stress components x , and xz , based on FEA and LT for: a/ 20, / 0.02, 12h h h n   . 

1h h    w  x  xz  

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Max value on 

line 1 

Point 7 Point 8 Point 9 

0.15 

FEA  177.4287 294.9480 29.602 1.7740 1.5995 1.0008 7.9822 6.9192 6.9104 6.8878 

LT FSDT 180.5988 294.4104 30.7128 1.7528 1.6072 0.90290 8.1229 6.9400 6.9400 6.6493 

% Difference 1.79 0.18 3.75 1.20 0.4 9.78 1.76 0.30 0.43 3.46 

LT SSDT 180.6921 294.5030 30.7761 1.7564 1.6104 0.90292 7.9875 6.9878 6.8831 6.6491 

% Difference 1.84 0.15 3.97 0.99 0.68 9.78 0.07 0.99 0.40 3.47 

LT TSDT 180.5992 294.5304 30.6673 1.7502 1.6017 0.90304 7.9712 6.8941 6.8941 6.8122 

% Difference 1.79 0.14 3.60 1.34 0.14 9.77 0.14 0.36 0.24 1.10 

0.2 

FEA  153.5396 249.3700 19.1690 1.3070 1.1630 0.6275 8.3458 6.9669 6.9587 6.9579 

LT FSDT 155.8694 248.9687 19.3489 1.2643 1.1545 0.5651 8.4281 6.8280 6.8280 6.6915 

% Difference 1.52 0.16 0.94 3.27 0.73 9.94 0.99 1.99 1.88 3.83 

LT SSDT 156.0109 249.1642 19.3943 1.2646 1.1547 0.5652 8.3795 6.8652 6.7901 6.7080 

% Difference 1.61 0.08 1.18 3.24 0.71 9.93 0.40 1.46 2.42 3.59 

LT TSDT 155.8702 249.1770 19.3091 1.2647 1.1549 0.5653 8.3444 6.8120 6.8120 6.8544 

% Difference 1.52 0.08 0.73 3.24 0.70 9.91 0.02 2.22 2.11 1.49 
 

 

Table 6. The effect of material parameter n on deflection w  and stress components x , and xz , based on FEA and LT for: / 0.1,  / 0.02,  / 0.76, a/ 201 2 3h h h h h h h    . 

n  w  x  xz  

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Max value on 

line 1 

Point 7 Point 8 Point 9 

0.5 

ANSYS  197.4901 335.02 41.210 2.5550 2.3555 1.3971 7.7714 6.8343 6.8312 6.8310 

LT FSDT 202.6148 335.4002 42.6457 2.4339 2.2583 1.2382 7.0634 6.7360 6.7360 6.5293 

% Difference 2.59 0.11 3.48 4.74 4.13 11.37 9.11 1.44 1.39 4.42 

LT SSDT 202.6481 335.4743 42.6719 2.4354 2.2596 1.2382 7.9129 6.7642 6.7061 6.5297 

% Difference 2.61 0.14 3.55 4.68 4.07 11.37 1.82 1.03 1.83 4.41 

LT TSDT 202.6148 335.5234 42.5990 2.4312 2.2503 1.2382 7.891 6.6957 6.6957 6.6448 

% Difference 2.59 0.15 3.37 4.85 4.47 11.37 1.54 2.03 1.98 2.73 

2 

ANSYS 246.5665 496.93 65.433 4.19 3.923 2.0275 7.4182 6.8117 6.8030 6.7977 

LT FSDT 250.2409 495.2669 67.0358 4.1405 3.9282 1.9226 7.4738 6.8668 6.8668 6.4667 

% Difference 1.49 0.33 2.45 1.18 0.13 5.17 0.75 0.81 0.94 4.87 

LT SSDT 250.5185 495.2457 67.1328 4.1403 3.9280 1.9225 7.4288 6.9035 6.8247 6.6182 

% Difference 1.60 0.34 2.60 1.19 0.13 5.18 0.14 1.35 0.32 2.64 

LT TSDT 250.2406 495.2871 66.9549 4.1405 3.9280 1.9225 7.4374 6.8137 6.8137 6.7478 

% Difference 1.49 0.33 2.33 1.18 0.13 5.18 0.26 0.03 0.16 0.73 
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Table 7. The geometric position of the points defined in Tables 4 to 6 with the coordinate system shown in Fig. 1. 

Point’s number 1 2 3 4 5 6 7 8 9 

Location, on the Core Face sheet Face sheet adhesive adhesive Core adhesive adhesive Core 

x Coordinate a/2   a/2  a/2  a/2  a/2  a/2  a/2  a/2  a/2  

y Coordinate b/2   b/2  b/2  b/2  b/2  b/2  0 0 0 

z Coordinate 0 /2h   /2 1h h   /2 1h h  23/h  23/h  /2 1h h  23/h  23/h  

 

 

 

 

 

 
 

(a)   (b) 

 
(c) 

Fig. 6. Variations in z  in the top epoxy adhesive layer based on / 0.1,  / 0.02,1 2h h h h    / 0.76, a / 20
3

 h h h   and n=1 at 

b/2y  (a) LT along with SSDT (b) LT along with TSDT (c) At the adhesive-cover sheet interface. 
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(a) (b) 

  

(c) (d) 

Fig. 7. Variations in x  in the top adhesive layer along the line joining point 5 to 4 (see Fig. 1) for a/ 20h , (a) 0.5,  / 0.11n h h 

, (b) 2, / 0.11n h h  , (c) 1 ,  / 0.11n h h  , (d) 1 , / 0.21n h h  .  

  
(a) (b) 

Fig. 8. Non-dimensional displacement  w  in the core at b/2y  based on / 0.1,1h h  / 0.02, 2h h / 0.76, 3h h a / 20  h   and 

n=1 (a) LT along with SSDT (b) LT along with FEA. 

5.   Appendix 

Appendix A 

 Displacement components in a five-layer composite plate, based on the SSDT. z is measured from core mid-surface.  
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  (i=1, 2, 3, 4, 5) are expressed in Eq. (7) 

Appendix B 

Displacement components in a five-layer composite plate, based on the TSDT. z is measured from core mid-surface.  
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Appendix C 

The governing equations of equilibrium in a five-layer sandwich composite plate using LT and SSDT.  
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Appendix D 

The governing equations of equilibrium in a five-layer sandwich composite plate using LT and TSDT.  
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In above equations, parameters  k
N

i
,  k

M
i

and  k
P
i

 (i=1, 2, 6), 
 k

Q
j

and 
 k

K
j

 (j=1, 2), (k=1, 2, 3, 4, 5) are expressed in 

Appendix E (Eqs. (E2)). 

Appendix E 

Definition of parameters  k
N

i
,  k

M
i

and  k
L

i
 (i=1, 2, 6), 

 k
Q

j
and 

 k
R

j
(j=1, 2), (k=1, 2, 3, 4, 5)  used in the governing 

equations of equilibrium presented in Appendix C for a five-layer sandwich composite plate using LT and SSDT.  
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and 
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(j=1, 2), (k=1, 2, 3, 4, 5)  used in the governing 

equations of equilibrium presented in Appendix D for a five-layer sandwich composite plate using LT and TSDT.  
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The elements of matrices A, B, D, E, F, H, J and L, (k=1, 2, 3, 4, 5) are given in Eqs. (E3) and (E4).  
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Where for the materials in Table 3, 
 

 0,  for   , 4,5
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