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Abstract

In this paper, layerwise theory (LT) along with the first, second and third-order shear deformation theories
(FSDT, SSDT and TSDT) are used to determine the stress distribution in a simply supported square sandwich
plate subjected to a uniformly distributed load. Two functionally graded (FG) face sheets encapsulate an
elastomeric core while two epoxy adhesive layers adhere the core to the face sheets. The sandwich plate is
assumed to be symmetric with respect to its core mid-plane. First, second and third-order shear deformation
theories are used to model shear distribution in the adhesive layers as well as others. Results obtained from the
three theories are compared with those of finite element solution. Results indicate that finite element analysis
(FEA) and LT based on the first, second and third-order shear deformation theories give almost the same
estimations on planar stresses. Moreover, the out-of-plane shear stresses obtained by FEA, are slightly different
from those of LT based on FSDT. The differences are decreased on using LT based on SSDT or TSDT.
Additionally, SSDT and TSDT predict almost the same distribution for the two planer stress and out-of-plane
shear stress components along the face sheet thickness. Furthermore, third-order shear deformation theory
seems to be more appropriate for prediction of out-of-plane shear stress at lower values of a/h ratio.

Keywords: Stress distribution, Layerwise theory, Second-order shear deformation, Third-order shear deformation,
Sandwich plate.
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1. Introduction

Most of the literature available on the sandwich
composite plates which is based on LT have dealt with
FSDT. Liu et al. [1] used differential quadrature finite
element method (DQFEM) along with LT based on an
expansion of Mindlin’s first-order shear deformation
theory to study laminated composites and sandwich
plates. The DQFEM solutions were compared with
various models in the literature. Very good agreements
with exact solutions that were based on a similar LT were
observed. Fares et al. [2] studied stress distribution in a
plate based on LT while its thickness was divided into n
layers. They assumed a continuous change in
displacement along the thickness. Application of FSDT
theory was also used by Thai et al. [3], Ferreira et al. [4]
and Roque et al. [5] to perform the static deformation and
vibrational analysis of a sandwich plates by means of LT.
Application of functional graded materials were used by
Farahmand and Atai [6], Afshin et al [7] and Goodarzi
etal [8] to analyze spherical vessel, rotating thick
cylindrical pressure vessels and nanoplates, respectively.
Gharibi et al. [9] studied elastic analysis of FG rotating
thick cylindrical pressure vessels by using power series
method of frobenius. The vessel is considered in both
plane stress and plane strain conditions. They illustrate
that the inhomogeneity constant provides a major effects
on the mechanical behaviors of the vessel. In another
work, Mantari et al. [10] performed the static and
dynamic analysis of laminated composite and sandwich
plates and shells, using a new higher-order shear
deformation theory. The governing equations and
boundary conditions were derived using principle of
virtual work. The static and dynamic results were then
presented for cylindrical and spherical shells and plates
based on simply supported boundary conditions. The
accuracy of their results were verified using the available
results in the literature. In Ref. [11], Nguyen-Xuan et al.
performed isogeometric finite element analysis of a
composite sandwich plate, using a higher-order shear
deformation theory. The static, dynamic and buckling
behavior of rectangular and circular plates were
investigated based on different boundary conditions.
They observed good agreements between their results
and work of others which were based on analytical
solutions.

Many researches have carried out variety of works
related to nanostructures elements such as nanorod,
nanobeam and nanoplates. Goodarzi et al. [12] studied
thermo-mechanical vibration analysis of FG circular and
annular nanoplate based on the visco-pasternak
foundation by using strain gradient theory. Farajpour et
al. [13] studied vibration of piezoelectric nanofilm based
electromechanical sensors via higher order nonlocal
strain gradient theory. In this research by using higher
order nan-local elasticity, strain gradient theory and
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Hamilton’s principle, the equations of motion are
derived. Farajpour et al. [14-16] studied surface effects,
large amplitude vibration and buckling analysis of
nanoplates subjected to external electric and magnetic
potentials. Mohammadi et al. [17] studied shear buckling
of orthotropic rectangular plate. In this work, nan-local
elasticity theory studied to determined shear buckling of
orthotropic single layered graphene sheets. Mohammadi
et al. [18, 19] studied the effect of shear in plane load on
the vibration of circular, annular and rectangular plates.
In these research by using nonlocal elasticity theory
vibration analysis of orthotropic single layered graphene
sheets studied. In Ref [20], Farajpour et al. studied
buckling analysis of orthotropic nanoplates in thermal
environment. In this investigation the higher order
nonlocal strain gradient theory used to determine the
influences of higher order deformation. Ghabezi and
Farahani [21] studied adhesive bonded joint
reinforcement by incorporation of nano alumina
particles. This paper was experimental investigation on
the effects of the addition nanoparticles to woven. The
shear tensile test shows that variation of the nanoparticles
led to increase the joint strength.

Finite element analysis of laminated composite plates
using a higher-order shear deformation theory with
assumed strains was performed by Lee and Kim [22].
They used a new four-node laminated plate by using a
higher-order shear deformation theory. Several
numerical examples were carried out and their results
were compared with work of others. They concluded that
their proposed method was very effective to remove the
locking phenomenon and produces reliable numerical
solutions for most laminated composite plate structures.
In Ref. [23], Houari et al. developed a new higher-order
shear and normal deformation theory to simulate the
thermo elastic bending of functionally graded (FG)
material sandwich plates. Their theory accounted for
both shear deformation and thickness stretching effects
using a sinusoidal variation in all displacements across
the thickness without requiring any shear correction
factor. Numerical examples were presented to verify the
accuracy of the proposed theory. Dynamic behavior of
fiber reinforced plastic sandwich plates with PVC foam
core was investigated by Meunier and Shenoi [24]. The
deduced equations of motion which included the
viscoelastic properties of the constitutive materials were
used to determine the natural frequencies and modal loss
factors of a specific composite sandwich plate. They
concluded that to determine the dynamic response of
fiber reinforced sandwich structures, the viscoelastic
properties of constitutive materials and their temperature
and frequency dependency should not be omitted.
Shishesaz et al. [25] studied local buckling of composite
plates subjected to compressional load. In this research,
the proposed analysis will predict the delamination shape
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of a composite plate during delamination process in post-
buckling mode.

Thai et al. [26], presented a generalized layerwise
higher-order shear deformation theory for laminated
composite and sandwich plates. Their work introduced a
higher-order shear deformation theory in each layer such
that the continuity in displacement and transverse shear
stresses at the layer interfaces was ensured. Similar to the
first and higher-order shear deformation theories, their
method required only five variables. In comparison with
the shear deformation theories based on the equivalent
single layer, they claimed that their proposed theory was
capable of producing a higher accuracy for inter-laminar
shear stresses. Sarangan and Singh [27] studied higher-
order closed-form solution of laminated composite and
sandwich plates. In their work, new shear deformation
theories were developed to analyze the static, buckling
and free vibration responses of laminated composites and
sandwich plates using Navier closed form solution
technique. The governing differential equations and
boundary conditions were obtained using the virtual
work principle. Their results showed that the proposed
shear strain functions have significant effects on
structural responses.

In spite of the extensive literature available on
behavior of sandwich composite plates, there still
remains other questions which yet have to be answered.
For this purpose, this work deals with stress distribution
in a five-layer rectangular sandwich composite plate
composed of a central polymeric core adhered to FG
cover sheets by means of two adhesive layers. The whole
structure is subjected to a uniformly distributed
transverse load and is simply supported on all four edges.
Since any excessive stress in the adhesive layers may
lead to a bond separation between the face sheets and the
core, and hence failure of the overall structure, it
becomes very important to have a full understanding on
distribution of stresses in each layer and the important
factors influencing their magnitude, and possibly their
locations. This leads to a better understanding on the
behavior of the overall structure and hence, can prevent
any possible failure due to the application of any
excessive load.

Although FSDT predicted accurate results on planer
stresses, magnitudes of out-of-plane shear stresses which
appeared to be constant along the adhesive thickness
based on FSDT, did not quite match those of finite
element results and work of others. In this text, LT along
with higher-order shear deformation theories (second
and third orders) will be used to investigate their
applicability and effect on stress distribution in a five-
layer sandwich composite plate. The effect of other
factors on final results will be also investigated. The
major advantage of LT along with higher-order shear
deformation theories compared to FSDT is that to predict
accurate results on out-of-plane shear stresses. But the
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major limitation of the theory appeared when the
thickness of the sandwich plate becoming large or the
ratio of the sandwich plate thickness to its length
becoming large.

2. Derivation of the governing equations

In this section, the governing equations relating
stresses to strains in a five-layer, square, simply
supported sandwich plate based on LT and SSDT or
TSDT are derived. Figure 1 illustrates the sandwich plate
with two FG face sheets under uniformly distributed

transverse load (|, . The modulus of elasticity of each face

sheets along its thickness is defined by Eq. (1). It is
assumed that the Poisson’s ratio of each face sheet is
constant. In Eq. (1), indices ¢ and m correspond to the
ceramic and metal, n is the material number, and E is the
elastic modulus. V¢ corresponds to the volume fraction of
ceramic composition in metal. Moreover, hi, h, and h;
correspond to the thickness of the face sheets, adhesive
layers and core, respectively (see Fig. 1).

Based on SSDT and TSDT, planar displacement
components along the thickness of each layer change
according to the second and third-order polynomials,
respectively. These polynomials are written in terms z
coordinate described locally in each layer along the
thickness of the plate. Assuming a continuous
displacement across the layers, the displacement fields in
each layer based on the SSDT and TSDT are deduced and
given in appendices A and B, respectively.

E(2)=(E, ~Eqy Ve +Eqy-

Top face
n sheet

1 z—[%+h2+%)

1,.\2 © 2)

2 ! 1)
where v, - W Y Bottom

1 Z+[;+hz+g) face sheet
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Here, u(k), v and wk) indicate the displacement
components along x, y and z directions in the k™ layer,
respectively. Numbering of the layers is shown in Fig. 1.
Moreover, u and v are the corresponding displacement
components measured along x and y directions at the core
mid-plane (z=0), respectively. Additionally, it is assumed

that the out-of-plane displacement w(K)is only a function
of x and y and a perfect bond exists between all layers.
The adhesive layers are assumed to be void free. Based
on linear elasticity, the strain components in the k" layer
can be written in terms of displacements, as in Egs. (2).
Substituting for displacement components from
Appendices A and B in Egs. (2), the strain vector in each
layer of the five-layer composite sandwich plate, for the
two postulated models (SSDT and TSDT), may be
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written as in Egs. (3). In these equations, to apply SSDT,
a1=1, ap=0 while for TSDT, &y=0 and ap=1. Moreover,

m(k) m(k) m(k) m(k) m(k)
y 0 Ve 0V oand yy,

represent the m““—order polynomial coefficients of the
strains for the k™ layer. The stress-strain relationship in
the k™ layer may be written in terms of Eq. (4). Here,

the components &, &

[Qé")] is the stiffness matrix of the k™ layer. In Eq. (5),

E(k), G(k)and u(k) correspond to the modulus of
elasticity, shear modulus and Poisson’s ratio of the k"
layer respectively.
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Fig. 1. The five-layer simply supported sandwich plate with functionally graded face sheets under uniformly
distributed load g.

i= (k) (k) (k) (i= i i

Writing the expression for potential energy and (=1, 2’_ A (J_l_’ 2) glve-n o
setting its variation equal to zero, as in Eq. (6), the  Appendices C and D are fully expressed in Appendix E.
equilibrium equations based on SSDT and TSDT are  Since simply support bou_ndary condition is used on all
extracted and presented in Appendices C and D, four edges, then the _dlsplacerr_]ent components and
respectively. In Eq. (6), qois the magnitude of the curvatures can be defined as in Egs. (7). In these

uniform load applied to the top surface of the sandwich  €quations, umn, Vmn, Wmn, &% (+) () and

X mn’ ¢y mn' ¥Yx mn
plate. Additionally, parameters n(*), u(®), () and &%) (K)

Vy o are the constants yet to be determined.
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Where
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On using Egs. (7) in conjunction with
displacements and rotational components given in
Appendices A and B, and then substituting the results

where

M8

a(xy) By Sin(ex)sin(5y)

o0
>
=1

m=1n

Based on the second and third-order shear
deformation theories along with LT, a family of forces
and moments are developed which are given in Appendix
E. Here, matrices A, B, D, E, F, H, J and L which are
introduced in equilibrium equations of each layer are

expressed in Eqgs. (E3) and (E4). Coefficients ( )mn in

Egs. (7) are obtained by solving the system of equations
given in Appendices C and D.

3. Numerical results and discussion

Based on the governing equations derived in the
previous section, stress distribution in a five-layer
sandwich plate is now investigated. Proper relations are
used to deduce the results which are based on each one
of the two shear deformation theories (SSDT or TSDT).
The results based on FSDT and finite element findings
are imported from the first part of the paper for further
comparison.

3.1. Three-layer sandwich plate

To find the effect of second and third-order shear
deformation theories on final results, as the first step, a
three-layer sandwich plate (with no adhesive layer) is
postulated as shown in Fig. 2. Here, the simply

back in Egs. (2), strains in each layer are determined.
Applying Fourier series to define this uniform load,
one may write;

16q,, m and n are odd.
B =1 mnr2 (8)
0 mor n are even.
supported, square, orthotropic sandwich plate is
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subjected to a uniformly distributed transverse load ¢,

on its top face. The geometric dimensions of the
sandwich plate are selected such that its total thickness is
ten percent of its overall length. Moreover, the thickness
of each face sheet is assumed to be equal to 10 percent of
the overall thickness. Allowing the thickness of each
adhesive layer to approach zero and neglecting the terms
associated with these two layers in current formulations,
a solution to displacement field “w” and stress

components s, , o, and -, are obtained based on LT

along with FSDT, SSDT, and TSDT. The stiffness
matrices for the core and face sheets were selected
according to Egs. (9) [28], where R is assumed to be a
constant number.

The finite element findings and the non-dimensional
results for different points based on three dimensional
elasticity deduced from Ref. [28] are superimposed for
further comparison. The results at five different points
(1-5) are shown in Table 1. These values are non-
dimensionalized according to Eq. (10). The geometric
positions of these points are given in Table 2. The results
in Table 1 are deduces for three different values of R. It
is observed that the order of accuracy in prediction of
planar stress components &y and &y (compared to 3-D

elasticity solution) at each one of these points, based on
FSDT, SSDT, and TSDT is almost the same for all values
of R listed in this table.
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Fig. 2. Three-layer simply supported sandwich plate.

Table 1. Comparison of the results based on LT along with FSDT, SSDT and TSDT and those of analytical solution
obtained from Ref. [28] for h/h=0.1,hy/h=0.8, h3/h=0.1 (three layer composite sandwich plate).

R_[Q] face sheet w ox ay Tyz
~ [Qlcore Point1 | Point2 Point3 Point4 | Point2 Point3 Point4 | Point5
Ref. [28] 688.58 | 36.021 28.538 28.538 | 22.210 17.669 17.669 | -1.9826

LT FSDT 705.08 | 37.471 29.924 29.924 | 21.827 17.460 17.460 | -1.7839
% Difference 2.40 4.03 4.86 4.86 -1.72 -1.18 -1.18 -10.02

1 LT SSDT 705.26 | 37.467 29.922 29.922 | 21.828 17.461 17.461 | -1.9650
% Difference 2.42 4.01 4.85 4.85 -1.72 -1.18 -1.18 -0.89
LT TSDT 707.52 | 37.506 29.942 29.942 | 21.860 17.483 17.483 | -1.8917
% Difference 2.75 412 492 4.92 -1.58 -1.05 -1.05 -4.58
Ref. [28] 258.97 | 60.353 46.623 9.3402 | 38.491 30.097 6.1607 | -3.2675
LT FSDT 263.04 | 62.155 49.435 9.8871 | 37.974 30.368 6.0737 | -3.1839
% Difference 1.57 2.99 6.03 5.86 -1.34 0.90 -1.41 -2.56

5 LT SSDT 263.14 | 62.146 49.431 9.8861 | 37.978 30.371 6.0742 | -3.1767
% Difference 1.61 2.97 6.02 5.84 -1.33 0.91 -1.40 -2.78
LT TSDT 263.31 | 62.193 49.476 9.8951 | 38.003 30.389 6.0778 | -3.3521
% Difference 1.68 3.05 6.12 5.94 -1.27 0.97 -1.35 2.59
Ref. [28] 159.38 | 63.322 48.857 4.903 | 43566 33.413 3.4995 | -3.5154
LT FSDT 160.31 | 66.398 52.484 5.2484 | 42.892 34.274 3.4274 | -3.6555
% Difference 0.58 4.86 7.42 7.04 -1.55 2.58 -2.06 3.99

10 LT SSDT 160.37 | 66.389 52.479 5.2479 | 42.896 34.277 3.4277 | -3.6541
% Difference 0.62 4.84 7.41 7.03 -1.54 2.59 -2.05 3.94
LT TSDT 160.39 | 66.423 52.536 5.2536 | 42.916 34.292 3.4291 | -3.9118
% Difference 0.63 4,90 7.53 7.15 -1.49 2.63 -2.01 11.28
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3.802 0.879 0 0 0
0.879 1.996 0 0 0
Qfacesheet = R core where Qore =| © 0 1015 0 0 9)
0 0 0 0.608 0
0 0 0 0 1
W(E’ ‘oncore (1’1) o o T
Wee 22 ’ X:7XY oz :J’ *Xzzﬂ (10)
ha, 6% Y %

Table 2. Geometric position and location of points 1-5 defined in Table 1, according to the coordinate system shown

in Fig. 2.
Point’s number 1 2 3 4 5
Location, on the Core Face sheet Face sheet Core Face sheet
x Coordinate al2 al2 al2 al2 al2
y Coordinate b/2 b/2 b/2 b/2 0
z Coordinate 0 h/2 hp/2 hp/2 ho/2

Compared to 3-D elasticity solution, the out-of-plane
shear stress component 7, , at point 5 is well predicted by

SSDT compared to the other two. Consequently, it
appears that LT along with SSDT is well capable of
predicting the out-of-plane shear stress component 7y,

as well as other stress components &y and &y and
deflection w, in a three layer sandwich composite plate.

3.2. Five-layer sandwich plate

To further examine the applicability of LT along with
higher-order shear deformation theories to a five-layer
sandwich composite plate, two adhesive layers between
the core and face sheets were added to the previous
model. The postulated model which is shown in Fig. 1, is
simply supported on all four edges and subjected to a
uniformly distributed transverse load qg on its top face.

The resulting square sandwich plate is assumed to be
symmetric with respect to its core mid-plane. The
mechanical properties of each layer are defined in Table
3. Tables 4 to 6 compare the results on deflection w, &y

and 7y , based on LT along with SSDT and TSDT and

those of FEA and FSDT. Here, due to symmetry in
geometry of the plate and loading, &x=&y . For the

assumed values of hy, hy and hz in Table 4, based on n=1,
it is observed that the resulting values for w, &y and 7y,

, which are obtained based on the second-order and third-
order shear deformation theories, match those of FEA
and FSDT. The percentage differences between FE
results and those of shear deformation theories seem to
be reduced for higher values of a/h, almost at all points
given in Table 4. The accuracy in values of 7y, along

line 1 (in the top face sheet as in Fig. 1) increases with
implementation of higher-order shear deformation
theories in current analysis. At points 7, 8 and 9 (these
points lie in the top adhesive layer), application of
higher-order shear deformation theories does not seem to
improve much the values of 7y, atthe core-adhesive and

adhesive-cover sheet interfaces. However, higher values
of a/h result in higher values of w, &y and 7y, , and their

accuracy.

Table 3. Mechanical properties of the five-layer sandwich plate.

Sheet type

Mechanical properties

Face sheet (AL- ALpO3) [29]

Em=70GPa; E.=380GPa;vm=1-=0.3

Epoxy (Epo-tek 301-2) [30]

E=3.664GPa;v=0.3

Core (Elastomeric Foam code 4) [31, 32]

E=1.5GPa;v=0.463

Figure 3 shows the non-dimensional changes in
planer stress ( &y ) in the top face sheet along its thickness

direction based on the three shear deformation theories
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and FEA. Two different values of n = 0.5and n =2.0 are
selected for this purpose (see Figs. 3(a) and (b)). The
upper and bottom layers of the top cover sheet experience
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the same absolute values of in-plane stresscy, as the
composite plate undergoes bending due to the applied
transverse load g, . For the selected values of n, LT along
with FSDT seems to predict similar values for &y as the

other shear stress theories and FEA do. Similar results
are obtained for other cover sheet thicknesses (see Figs.
3(c) and (d)). According to Fig. 3(d), a thicker cover
sheet results in lower values of 5y . Variations in &y and

Tyz inthe top face sheet along x and z directions at y=b/2

, are shown in Fig. 4. Clearly, one can observe that SSDT
and TSDT almost predict similar distributions for these
two stress components along the foregoing directions.

The effect of cover sheet thickness on deflectionw, &y
and 7y, at different points is shown in Table 5.

According to these results, a sandwich composite plate
with a thicker cover sheet experiences lower values of w
and & (at the mid-center of the plate), while 7y, seems

to be slightly increased at points which are located on
each of its interfaces (see the results for points 7-9 and
those on line 1).

The effect of cover sheet thickness on deflection w,
oy and 7y, at different points is shown in Table 5.

According to these results, a sandwich composite plate
with a thicker cover sheet experiences lower values of w
and & (at the mid-center of the plate), while 7y, seems

to be slightly increased at points which are located on
each of its interfaces (see the results for points 7-9 and
those on line 1). Figure 5 shows the non-dimensional
changes in out-of-plane shear stress 7y, in the top face
sheet along its thickness. Here, it has been assumed that
n=1. For a/h=15, the second and third-order shear
deformation theories seem to predict almost the same
distributions for 7y, . These results appear to be slightly

different from those of FEA. According to this figure,
higher values of a/h (20 and 30), result in higher values
of 7y, in the top face sheet. The corresponding results

predicted by finite element findings, approach those of
third-order shear deformation theory for higher values of
a/h. This means that with a decrease in overall plate
thickness compared to its width a (thinner plate), FSDT
becomes more applicable for prediction of 7y, .
Consequently, third-order shear deformation theory
seems to be more appropriate for prediction of out-of-
plane shear stress 7y, at lower values of a/h ratio.

Figures 6 illustrates the distributions of peeling stress o
in the upper epoxy adhesive layer at y=b/2 based on
h/h=0.1, ho/h=0.02,h3/h=0.76,a/h=20 and n=1. Second-

order and third-order shear deformation theories are used
to extract these results (Figs. 6(a)) and 6(b) respectively).
According to both theories, the magnitudes of peeling
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stress o, appear to be constant along the adhesive layer

thickness. Additionally, both theories predict the same
amount of peeling stress for all values of x and z.
According to Fig. 6(c), there is a close tie between finite
element results and those of current solution based on
first, second and third-order shear deformation theories.

Figures 7 shows the effect of any change in material
parameter n and the adhesive thickness hi on non-
dimensionalized planer stress Gy in the epoxy adhesive

layer. These results that are plotted along the adhesive
thickness are based on the first, second and third-order
shear deformation theories. The final element simulation
findings are also superimposed for further comparison.
The three foregoing theories seem to predict almost the
same distributions along the thickness direction with a
good accuracy. The maximum difference between finite
element findings and those based on LT appears to be 9%
(Fig. 7(a), n=0.5). For higher values of n, the percentage
difference is decreased. According to Figs. 7(c) and 7(d),
it is observed that any increase in thickness h; results in
a decrease in planer stress Gy in the adhesive layer. This

variation along the adhesive thickness (h,) seems to be
linear. Fig. 7(d) indicates that the maximum difference
between final element simulation results and those of LT
that occurs at the adhesive-face sheet interface ( z/hp=0.5

) is about 3%.

Based on the second-order shear deformation theory
and n=1, the non-dimensional out-of-plane displacement
w for the x-y plane located at y=b/2 in the core’s mid-
plane, is plotted in Fig. 8(a). Similar results based on
other shear deformation theories and those of finite
element findings are also shown for further comparison.
Although LT seems to be able to predict this
displacement component with a good accuracy,
application of higher-order shear deformation theories
does not seem to have a meaningful effect on these
results.

4. Conclusions

In this study LT along with FSDT, SSDT, and TSDT
were used to investigate the stress distribution in a five-
layer sandwich plate subjected to a uniform distributed
load. The aim of this study was to determine the
applicability of LT along with the effect of other higher-
order shear deformation theories on stress distribution in
different layers of a simply supported composite
sandwich plate. The effect of these theories on overall
plate displacement was also studied. According to the
results, for the assumed values of hi, hy, and hs, the
deduced values of displacement and planer stress, based
on LT along with higher-order shear deformation
theories (second and third), match those of FEA and
FSDT. The accuracy of out-of-plane shear stress values



z/h ]

z/h ]

01
021
0.3F
041

-0.5
1]

01
021
0.3F
041

-0.5 £
1]

Raissi et al.

in the top face sheet along line 1 increases with
implementation of higher-order shear deformation
theories, although similar values at the core-adhesive and
adhesive-cover sheet interface do not seem to be
considerably improved. Higher values of a/h result in
higher values of displacement, planer stress and out-of-
plane shear stress, and their accuracy. The percentage
differences between FE results and the three shear
deformation theories seem to be reduced for higher
values of a/h ratio (thinner composite plates), almost at
all points introduced in this analysis. Additionally, SSDT
and TSDT almost predict the same distribution for the
two planer stress and out-of-plane shear stress
components along the cover sheet thickness (as well as
x-direction). Moreover, third-order shear deformation
theory seems to be more appropriate for prediction of
out-of-plane shear stress at lower values of a/h ratio. The
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results indicate that for the three shear deformation
theories used in this analysis, the same distribution for
out-of-plane shear stress is obtained in the core. The peak
values of this stress occur at the plate edges.

According to the results, the magnitudes of peeling
stress appear to be constant along the adhesive thickness.
All three theories predict the same amount of peeling
stress in the adhesive layer, at all values of x and z.
Higher values of n result in higher values of planer stress
in the core. Although LT along with FSDT seem to be
well capable of predicting transverse displacement,
application of higher-order shear deformation theories do
not seem to have a meaningful effect on this component.
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Fig. 3. Variations in &y along the cover sheet thickness on the line joining point 3 to 2 fora/h=20. (a) n=0.5, /h=0.1, (b)
n=2,m/h=0.1, (c) n=L, /h=0.15, (d) n=1, h/h=0.2.



zlh1

e,

LRSS
\;g&
O

Vol. 48, No. 2, December 2017

TR

N RN
R R H
O R Y

ittt
g”“:\“-::\“?\\\\“\\\\\\'\

2/h1 05 0 ‘ Wi

SRR Ny
T H T
““Q\\\\‘\\\\\\t\‘t‘\‘\\\“\?\\\\\\\\\
Rt

SR HHnHh
G

xR

rleq

LT along with TSDT

(d)

Fig. 4. Variations in oy and 7y; along x and z directions at y=b/2 in the top face sheet, based on
h/h=0.1, hp/h=0.02, h3/h=0.76,a/h=20 and n=1 (a) LT along with SSDT (b) LT along with SSDT (c) LT along with TSDT (d)

—e—FsoT
—&— 5507
—+—TSDT
———ANSYS

e e

0
—'"-m__\q —&—Fs0T 04l
~y —a— 5507
B ——Ts0T 0af
\\q S —==aAnsvs
~ k
L E 0.2
\ i oaf
\
: — §
1 N
i 01
o i
A 02}
/
/ A 1 e
/ ! s
’ s
7 Y 0.4arF
L L L L r L L LN
T 2 3 4 50 8 7 8 ° 9 05,
tﬂlq
(@)
a
5
® —& —F30T
04 b —&— 3307 |
03 \\ —+—Ts0T ||
———ANSYS
02 4
o1 \\ 4
R
-~ BN, N
= [t} % \ 1
N \
a1 \°\q A 1
\
| ® ]
02 N
03 J
04 u\e J
s ‘ . ‘ (N
] 2 ] B E] il 12
T
L

©

Fig. 5. Variations of ZTXZ along the thickness at line 1 (see Fig. 1) in the top face sheet for n=1,m/h=0.1, (a) a/h =15, (b)

a/h=20,(c) a/h=30.

243



Raissi et al.

Table 4. Comparison of the results based on LT along with FSDT, SSDT and TSDT and those of FEA based on hy/h=0.1, hy /h=0.02, h3/h=0.76,n=1.

W oy Txz
% Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Max value on  Point 7 Point 8 Point 9
line 1

FEA (ANSYS) 925988 2245300 27.4050 1.7005 1.5445 0.87270 6.4038 5.0129 4.9987 4.9967
LT FSDT 95.4725 2345918  27.6297 1.6905 1.5667 0.82660 5.8674 5.0057 5.0057 4.9783
% Difference 3.10 4.48 0.82 0.59 1.44 5.28 8.38 0.14 0.14 0.37

15 LT SSDT 95.5060 2347331  27.6859 1.6907 1.5669 0.82656 6.4372 5.0384 4.9680 4.9609
% Difference 3.14 4,54 1.02 0.58 1.45 5.29 0.52 0.51 0.61 0.72
LT TSDT 95.471 234.8117 27.5668 1.6895 1.5600 0.82692 6.3735 4.9507 4.9506 4.9481
% Difference 3.10 4,58 0.59 0.65 1.00 5.25 0.47 1.24 0.96 0.97
FEA (ANSYS)  215.7120 | 388.8250 52.5050 3.3380 3.1130 1.6301 7.7001 6.8244 6.8177 6.8140
LT FSDT 220.7483 | 388.790 51.8240 3.2365 3.0681 1.5016 5.6587 6.8113 6.8113 6.8238
% Difference 2.33 0.01 1.30 3.04 1.44 7.88 26.60 0.19 0.09 0.14

20 LT SSDT 220.8094 | 388.7977 51.8786 3.2366 3.0681 1.5017 7.9176 6.8441 6.7750 6.8244
% Difference 2.36 0.01 1.19 3.04 1.44 7.88 2.70 0.29 0.63 0.15
LT TSDT 220.7505 | 388.8012 51.7608 3.2366 3.0680 1.5016 7.6739 6.7639 6.7639 6.8044
% Difference 2.34 0.01 1.42 3.04 1.45 7.88 0.46 0.89 0.79 0.11
FEA (ANSYS)  813.0153 | 855.2150 126.5600 7.0285 6.6055 3.4602 10.5540 10.4510 10.4410 10.4370
LT FSDT 820.4410 | 855.2670 126.6997 6.9650 6.5362 3.4051 8.3057 10.4265 10.4265 10.2556
% Difference 0.91 0.01 0.11 0.90 1.05 1.59 21.30 0.23 0.14 1.74

30 LTSSDT 820.5762 | 855.2769 126.7558  6.9679 6.5388 3.4052 10.5759 10.4596 10.3928 10.2565
% Difference 0.93 0.01 0.15 0.86 1.01 1.59 0.21 0.08 0.46 1.73
LT TSDT 820.4448 | 855.2776 126.6426  6.9623 6.5300 3.4050 10.5732 10.3956 10.3956 10.3562
% Difference 0.9138 0.01 0.07 0.94 1.14 1.60 0.18 0.53 0.43 0.77
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Table 5. The effect of face sheet thickness on deflection W and stress components &y , and 7y, , based on FEA and LT for: a/h=20,hp/h=0.02, n=1.

h,/h W ox Txz
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Max value on  Point 7 Point 8 Point 9
line 1
FEA 177.4287 | 294.9480 29.602 1.7740 1.5995 1.0008 7.9822 6.9192 6.9104 6.8878
LT FSDT 180.5988 | 294.4104 30.7128 1.7528 1.6072 0.90290 8.1229 6.9400 6.9400 6.6493
% Difference 1.79 0.18 3.75 1.20 0.4 9.78 1.76 0.30 0.43 3.46
0.15 LTSSDT 180.6921 | 294.5030 30.7761 1.7564 1.6104 0.90292 7.9875 6.9878 6.8831 6.6491
% Difference 1.84 0.15 3.97 0.99 0.68 9.78 0.07 0.99 0.40 3.47
LT TSDT 180.5992 | 294.5304 30.6673 1.7502 1.6017 0.90304 7.9712 6.8941 6.8941 6.8122
% Difference 1.79 0.14 3.60 1.34 0.14 9.77 0.14 0.36 0.24 1.10
FEA 153.5396 | 249.3700 19.1690 1.3070 1.1630 0.6275 8.3458 6.9669 6.9587 6.9579
LT FSDT 155.8694 | 248.9687  19.3489 1.2643 1.1545 0.5651 8.4281 6.8280 6.8280 6.6915
% Difference 1.52 0.16 0.94 3.27 0.73 9.94 0.99 1.99 1.88 3.83
0.2 LT SSDT 156.0109 | 249.1642 19.3943 1.2646 1.1547 0.5652 8.3795 6.8652 6.7901 6.7080
% Difference 1.61 0.08 1.18 3.24 0.71 9.93 0.40 1.46 2.42 3.59
LT TSDT 155.8702 | 249.1770  19.3091 1.2647 1.1549 0.5653 8.3444 6.8120 6.8120 6.8544
% Difference 1.52 0.08 0.73 3.24 0.70 9.91 0.02 2.22 2.11 1.49

Table 6. The effect of material parameter n on deflection W and stress components Gy , and 7yz , based on FEA and LT for: hy/h=0.1, hp/h=0.02,h3/h=0.76,a/h=20 .

n w oy Txz
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Max value on  Point 7 Point 8 Point 9
line 1
ANSYS 197.4901 | 335.02 41.210 2.5550 2.3555 1.3971 7.7714 6.8343 6.8312 6.8310
LT FSDT 202.6148 | 335.4002 42.6457 2.4339 2.2583 1.2382 7.0634 6.7360 6.7360 6.5293
% Difference 2.59 0.11 3.48 474 4.13 11.37 9.11 1.44 1.39 4.42
05 LTSSDT 202.6481 | 335.4743 42.6719 2.4354 2.2596 1.2382 7.9129 6.7642 6.7061 6.5297
% Difference 2.61 0.14 3.55 4.68 4.07 11.37 1.82 1.03 1.83 4.41
LT TSDT 202.6148 | 335.5234 42.5990 2.4312 2.2503 1.2382 7.891 6.6957 6.6957 6.6448
% Difference 2.59 0.15 3.37 4.85 4.47 11.37 1.54 2.03 1.98 2.73
ANSYS 246.5665 | 496.93 65.433 4.19 3.923 2.0275 7.4182 6.8117 6.8030 6.7977
LT FSDT 250.2409 | 495.2669 67.0358 4.1405 3.9282 1.9226 7.4738 6.8668 6.8668 6.4667
% Difference 1.49 0.33 2.45 1.18 0.13 5.17 0.75 0.81 0.94 4.87
2 LT SSDT 250.5185 | 495.2457 67.1328 4.1403 3.9280 1.9225 7.4288 6.9035 6.8247 6.6182
% Difference 1.60 0.34 2.60 1.19 0.13 5.18 0.14 1.35 0.32 2.64
LT TSDT 250.2406 | 495.2871 66.9549 4.1405 3.9280 1.9225 7.4374 6.8137 6.8137 6.7478
% Difference 1.49 0.33 2.33 1.18 0.13 5.18 0.26 0.03 0.16 0.73
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Table 7. The geometric position of the points defined in Tables 4 to 6 with the coordinate system shown in Fig. 1.
Point’s number 1 2 3 4 5 6 7 8 9
Location,onthe Core Face sheet Facesheet adhesive adhesive Core adhesive adhesive  Core

x Coordinate al/2 al2 al2 al2 al/2 al/2 al/2 al/2 al2
y Coordinate b/2 b/2 b/2 b/2 b/2 b/2 0 0 0
z Coordinate 0 h/2 h/2—hy h/2—y hg/2 hg/2 h/2—y hg/2 hg/2
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Fig. 6. Variations in &7 in the top epoxy adhesive layer based on hj/h=0.1, hp/h=0.02, h3 /h=0.76,a/h =20 and n=1 at
y=b/2 (a) LT along with SSDT (b) LT along with TSDT (c) At the adhesive-cover sheet interface.
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5. Appendix

Appendix A

Displacement components in a five-layer composite plate, based on the SSDT. z is measured from core mid-surface.

2 2
OB 050 00 0 o0, 00, 00
1h33h§3 2h22hl1hl1(1(1111
D, 50 0.0 n 0 00 00 00

(A1)

(A2)



Raissi et al.

2
Sy T 0L e 0 e 0,0 (20, 2,0
(2) (3 M8 w2 m2 @) (202 (22 (2
VsV ey gy 772¢y 7722 vy tTody e 2"’y
9 D 9,00 O 02,0
2
4 :u+% ¢X3)+%WX3) %2 ¢)(( )+h722(4) (X4)+z(4)¢)((4)+z(4)2w,((4)
2
I YCR. SO IO SCNNCYSNCENC
2
W8 s % ¢£3) . % WX3) . h2¢)((4) 2 '/’x4) . % ¢)((5) . % Z(5),//X5) L0 ¢£ ). Z(5)2,//5(5)
5) (3 M @ 4 M 4 m(B) (66 (5 5)2 (5)
N ):"+7¢§)+7‘/’§/)+h2¢y )+72 (y)+7¢(y)+7z( )w(y)ﬂ( )¢§)+Z( )Zw(y
WO _,@_ B4

I)(x,y), y/)((i)(x,y) and y/g)(x,y) (i=1, 2, 3, 4, 5) are expressed in Eq. (7)
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Displacement components in a five-layer composite plate, based on the TSDT. z is measured from core mid-surface.
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In above equations & (x.y) ¢§/i)(x,y), v (xy) and .V(y‘)(x,y) (i=1, 2, 3, 4, 5) are expressed in Eq. (7)
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Appendix C

The governing equations of equilibrium in a five-layer sandwich composite plate using LT and SSDT.
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In above equations, parameters Ni(k) , Mi(k) and L(ik) (i=1, 2, 6), ng) and R(jk) (71, 2), (k=1, 2, 3,4, 5) are expressed in
Appendix E (Egs. (E1)).
Appendix D

The governing equations of equilibrium in a five-layer sandwich composite plate using LT and TSDT.
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In above equations, parameters Ni(k) , Mi(k) and pi(k) (i=1, 2, 6), ng) and ng) (171, 2), (k=1, 2, 3, 4, 5) are expressed in

Appendix E (Egs. (E2)).
Appendix E

Definition of parameters Ni(k) , v and L(ik) (i=1, 2, 6), ng) and ng) (71, 2), (k=1, 2, 3, 4, 5) used in the governing

equations of equilibrium presented in Appendix C for a five-layer sandwich composite plate using LT and SSDT.
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The elements of matrices A, B, D, E, F, H, Jand L, (k=1, 2, 3, 4, 5) are given in Egs. (E3) and (E4).
hie
( (k) B(k D(k E(k k Higk)): E Qi(j )(12 2284 ze)d i=126 (ES)
K
T2
hi
2
(/.\(k B(k D(k J(k , J j— rj]in(j )(12 22 22 24)(;1 i=4,5 (E4)
2
Where for the materials in Table 3, Qi(jk) =0, for (i#j),i=4,5
and RBF-PS discretizations with optimal shape parameter,

6. References Composite Structures, VVol. 86, pp. 16, 2008.

[1] B. Liu., A. J. M. Ferreira, Y. F. Xing, A. M. A. Neves, [5] C.M.C. Roque, J. D_. Roc_jrigues, AJ M. Ferreira: Static
Analysis of composite plates using a layerwise theory and Deformations and Vibration Analysis of Composite and
adifferential qluadrature finite element method, Composite gzr&?;’;“égs'za;ii glsc::g lgirll_i?é/elg\;vflfzeremgggiggrdet?zlz;t?gﬁl
Structures Vol. 156, pp. 6, 2016. - '

[2] M. E. Fares, M. K.pF'J_L Elmarghany, M. G. Salem, A Mechanics of Advanced Materials and Structures Vol. 20,
layerwise theory for Nth-layer functionally graded plates 6] gp.Fl:r’a ﬁ(r)nlasnd A A Atai, Parametric investigation of
including thickness stretching effects, Composite : » A A ’

Structurgs, Vol. 133, pp. 12, 2012. P auto-frettage process in thick spherical vessel made of

[3] C.H. Thai, A. J. M. Ferreira, E. Carrera, H. N. Xuan, functionally graded materials, Journal of Computational
Isogeometric analysis of laminated composite and Applied Mechanics, Vol. 47, No. 1, pp. 9, 2016. )
sandwich plates using a layerwise deformation theory, ~ [71 A. Afshin, M. Z. Nejat, K. Dastani, Transient

(4]

Composite Structures, Vol. 104, pp. 19, 2013.

A. J. M. Ferreira, G. E. Fasshauer, R. C. Batra, J. D.
Rodrigues, Static deformations and vibration analysis of
composite and sandwich plates using a layerwise theory

251

thermoelastic analysis of FGM rotating thick cylindrical
pressure vessels under arbitrary boundary and initial
conditions, Journal of Computational Applied Mechanics,
Vol. 48, No. 1, pp. 12, 2017.



Raissi et al.

[8] M. Goodarzi, M. N. Bahrami, V. Tavaf, Refined plate

theory for free vibration analysis of FG nanoplates using

the nonlocal continuum plate model, Journal of

Computational Applied Mechanics, VVol. 48, No. 1, pp. 14,

2017.

M. Gharibi, M. Z. Nejad, A. Hadi, Elastic analysis of

functionally graded rotating thich cylindrical pressure

vessels with exponentially varying properties using power
series method of frobenius, Journal of Computational

Applied Mechanics, Vol. 48, No. 1, pp. 10, 2017.

[10] J. L. Mantari, A. S. Oktem, C. G. Soares, Static and
dynamic analysis of laminated composite and sandwich
plates and shells by using a new higher-order shear
deformation theory, Composite Structures, Vol. 94, pp.
13, 2011.

[11] H. N. Xuan, C. H. Thai, T. N. Thoi, Isogeometric finite
element analysis of composite sandwich plates using a
higher-order shear deformation theory, Composites: Part
B, Vol. 55, pp. 17, 2013.

[12] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi,
Thermo-mechanical vibration analysis of FG circular and
annular nanoplate based on the visco-pasternak
foundation, journal of Solid Mechanics, Vol. 8, No. 4, pp.
18, 2016.

[13] M. R. Farajpour, A. Rastgoo, A. Farajpour, M.
Mohammadi, Vibration of piezoelectric nanofilm based
electromechanical sensors via higher order nonlocal strain
gradient theory, IET Micro & Nano Letters, Vol. 11, No.
6, pp. 6, 2016.

[14] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface
effects on the mechanical characteristics of microtubule
networks in living cells, Mechanics Research
Communications, Vol. 57, pp. 9, 2014.

[15] A. Farajpour, M. Danesh, M. Mohammadi, Buckling
analysis of variable thickness nanoplates using nonlocal
continuum mechanics, Physica E, Vol. 44, pp. 9, 2011.

[16] A. Farajpour, M. R. H. Yazdi, A. Rastgoo, M. Loghmani,
M. Mohammadi, Nonlocal Nonlinear plate model for large
amplitude vibration of magneto-electro-elastic nanoplates,
Composite Structures, Vol. 140, pp. 14, 2015.

[17] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour,
Shear buckling of orthotropic rectangular graphene sheet
embedded in an elastic medium in thermal environment,
Composite: Part B, Vol. 56, pp. 9, 2014.

[18] M. Mohammadi, A. Farajpour, M. Goodarzi, H. S. n. pour,
Numerical study of the effect of shear in plane load on the
vibration analysis of graphene sheet embedded in an
elastic medium, Computational Materials Science, Vol.
82, pp. 11, 2014.

[19] M. Mohammadi, M. Ghayour, A. Farajpour, Free
transverse vibration analysis of circular and annular
graphene sheets with various boundary conditions using
the nonlocal continuum plate model, Composite: Part B,
Vol. 45, pp. 11, 2013.

[20] A. Farajpour, M. R. Haeri, A. Rastgoo, M. Mohammadi,
A higher order nonlocal strain gradient plate model for
buckling of orthotropic nanoplates in thermal
environment, Acta Mech, Vol. 227, pp. 19, 2016.

[21] P. Ghabezi, M. Farahani, Composite adhesive bonded
joint reinforcement by incorporation of nano-alumina
particles, Journal of Computational Applied Mechanics,
Vol. 47, No. 2, pp. 9, 2017.

(9]

252

[22] S. J. Lee, H. R. Kim, FE analysis of laminated composite
plates using a higher-order shear deformation theory with
assumed strains, Latin American Journal of Solids and
Structures, Vol. 10, pp. 25, 2013.

[23] M. S. A. Houari, A. Tounsi, A. Beg, Thermoelastic
bending analysis of functionally graded sandwich plates
using a new higher-order shear and normal deformation
theory, International Journal of Mechanical Sciences Vol.
76, pp. 10, 2013.

[24] M. Meunier, R. A. Shenoi, Dynamic analysis of composite
sandwich plates with damping modelled using high-order
shear deformation theory, Composite Structures, VVol. 24,
pp. 12, 2001.

[25] M. Shishesaz, M. Kharazi, P. Hosseini, M. Hosseini,
Buckling behavior of composite plates with a pre-central
circular delamination defect under in plane unaxial
compression, Journal of Computational Applied
Mechanics, Vol. 48, No. 1, pp. 12, 2017.

[26] C. H. Thai, A. J. M. Ferreira, M. A. Wahab, H. N. Xuan,
A generalized layerwise higher-order shear deformation
theory for laminated composite and sandwich plates based
on isogeometric analysis, Acta Mech, Vol. 227, pp. 26,
2016.

[27] S. Sarangan, B. H. Singh, Higher-order closed-form
solution for the analysis of laminated composite and
sandwich plates based on new shear deformation theories,
Composite Structures, Vol. 138, pp. 13, 2016.

[28] S. Srinivas, A. K. Rao, Bending, Vibration and Buckling
of simply supported thick orthotropic rectangular plates
and laminates, International Journal of solid structures,
Vol. 6, pp. 19, 1970.

[29] H. H. Abdelaziz, H. A. Atmane, |. Mechab, L. Boumia, A.
Tounsi, A. B. E. Abbas, Static Analysis of Functionally
Graded Sandwich Plates Using an Efficient and Simple
Refined Theory, Chinese Journal of Aeronautics, Vol. 24,
pp. 15, 2011.

[30] H. Cease, P. F. Derwent, H. T. Diehl, J. Fast, D. Finley,
Measurement of mechanical properties of three epoxy
adhesives at cryogenic temperatures for CCD
construction, Fermilab-TM, 2006.

[31] L. D. Peel, Exploration of high and negative Poisson's
ratio elastomer-matrix laminates, Physica status solidi (b),
Vol. 244, pp. 16, 2007.

[32] V. Gonca, Definition of poissin’s ratio of elastomers,
Engineering for rural development, in 10th International
scientific conference Engineering for Rural Development,
Jelgava, Latvia, 2011.



