تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,503 |
تعداد مشاهده مقاله | 124,121,260 |
تعداد دریافت فایل اصل مقاله | 97,228,046 |
فعالیت ضد قارچی اسانس گیاهان دارویی در برابر قارچ Mycogone perniciosa، عامل بیماری حباب تر و اثر آنها بر قارچ دکمهای | ||
کنترل بیولوژیک آفات و بیماری های گیاهی | ||
مقاله 11، دوره 6، شماره 1، خرداد 1396، صفحه 111-119 اصل مقاله (502.71 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jbioc.2017.63359 | ||
نویسندگان | ||
مهدی بهنامیان* 1؛ زیور نجفی2؛ مهدی داوری3؛ سارا دژستان4 | ||
1استادیار، گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل | ||
2دانشجوی سابق کارشناسی ارشد، گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل | ||
3دانشیار، گروه گیاه پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
4استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
چکیده | ||
یکی از بیماریهای رایج قارچ دکمهای در ایران، بیماری حباب تر است که توسط قارچ Mycogone perniciosa ایجاد میشود. در مطالعه حاضر، به منظور توسعه کنترل بیولوژیک و تولید محصول سالم، اثر ضدقارچی اسانس برخی گیاهان دارویی معطر به عنوان جایگزینی برای قارچکشهای شیمیایی مورد بررسی قرار گرفت. برای این منظور، قارچ M. perniciosa از قارچ دکمهای سفید (Agaricus bisporus cv. Sylvan 737) مبتلا به بیماری حباب تر جداسازی شد. سپس به منظور ارزیابی امکان کنترل بیولوژیک قارچ عامل بیماری، اثر شش اسانس گیاه سیر، پونه، پونه کوهی، اسطوخودوس، آویشن کوهی و اکالیپتوس در برابر M. perniciosa و اثر آنها روی میسلیوم قارچ دکمهای سفید در غلظتهای 100، 500، 1000، 1500 و 2000 میکرولیتر در لیتر مورد بررسی قرار گرفت. طبق نتایج، آویشن کوهی و پونه کوهی بسیار سمی بوده و حداقل غلظت بازدارندگی (MIC) و قارچکشی (MFC) آنها روی M. perniciosa به ترتیب 300 و 500 میکرولیتر بر لیتر بود. اسانس سیر، اثر قارچکشی خود را روی M. perniciosa (1000 میکرولیتر بر لیتر) در غلظتی پایینتر از قارچ دکمهای (1400 میکرولیتر بر لیتر) نشان داد. بهطور کلی، اسانسهای سیر و اسطوخودوس به ترتیب به عنوان مؤثرترین و ضعیفترین اسانسها علیه M. pernociosa شناخته شدند. آنالیز GC-MS نیز نشان داد که به ترتیب Trisulfide, di-2-propenyl، Piperitenone oxide، Thymol، 1,8-Cineole، Thymol و Spathulenol اجزای اصلی شش اسانس فوق میباشند. با توجه به نتایج و با درنظرگرفتن ذائقه مصرفکنندگان به نظر میرسد اسانس سیر میتواند پس از تحقیقات تکمیلی به عنوان یک جایگزین مناسب ترکیبات شیمیایی برای کنترل بیماری حباب تر مد نظر قرار گیرد. | ||
کلیدواژهها | ||
پونه؛ حباب تر؛ سیر؛ قارچ خوراکی؛ کنترل بیولوژیک | ||
عنوان مقاله [English] | ||
Antifungal activity of medicinal plant essential oils against Mycogone perniciosa, causal agent of wet bubble and their effects on button mushroom | ||
نویسندگان [English] | ||
Mahdi Behnamian1؛ Zivar Najafi2؛ Mahdi Davari3؛ Sara Dezhsetan4 | ||
1Assistant Professor, Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran | ||
2Former M.Sc. Student, Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran | ||
3Associate Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran | ||
4Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran | ||
چکیده [English] | ||
One of the most common pathogenic diseases of the button mushroom in Iran is wet bubble (Mycogone perniciosa). In this study, in order to develop a biological control system and production of healthy crop, the antifungal effect of aromatic medicinal plants were assayed as a safe replacement for chemical fungicides. M. perniciosa was isolated from infected A. bisporus cv. Sylvan 737. In order to evaluate the biocontrol possibility, the effect of six medicinal plant essential oils including garlic, horsemint, oregano, lavender, kotschyam thyme and eucalyptus were tested against M. perniciosa and evaluated their effects on button mushroom mycelium at 100, 500, 1000, 1500 and 2000 µl l-1 in vitro. Based on the results, kotschyam thyme and oregano were more toxic and minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) for M. perniciosa were 300 and 500 µl l-1, respectively. Interestingly, among the investigated essential oils, garlic oil showed a fungicidal effect on M. perniciosa at a lower concentration (MFC=1000 µl l-1) than button mushroom (MFC=1400 µl l-1). In general, garlic and lavender essential oils were found as the most effective and weakest oils against M. perniciosa, respectively. GC-MS analysis demonstrated that Trisulfide, di-2-propenyl, Piperitenone oxide,Thymol,1,8-Cineole, Thymol and Spathulenol were the main components of the above essential oils, respectively. It seems that garlic oil can be considered as a good alternative in biological control of wet bubble diseaseaccording to this research and considering consumerist tastes after additional researches. | ||
کلیدواژهها [English] | ||
biological control, Mushroom, Garlic, horsemint, wet bubble | ||
مراجع | ||
Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2011) Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European Journal of Clinical Microbiology and Infectious Diseases 30: 41-50. Amiri H (2012) Essential oils composition and antioxidant properties of three Thymus species. Evidence-Based Complementary and Alternative Medicine, Article ID 728065, 8 pages doi:10.1155/2012/728065. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils – a review. Food and Chemical Toxicology 46: 446-475. Bozovic M, Pirolli A, Ragno R (2015) Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: biological activities and chemistry. Molecules 20: 8605-8633. Calvo-Gomez O, Morales-Lopez J, Lopez MG (2004) Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of garlic oil obtained by hydrodistillation. Journal of Chromatography A 1036: 91-93. Cantore PL, Iacobellis NS, De Marco A, Capasso F, Senatore F (2004) Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. Journal of Agricultural and Food Chemistry 52: 7862-7866. Chen S, Oh SR, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D (2006) Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Research 66: 12026-12034. Darvishi E, Omidi M, Bushehri AA, Golshani A, Smith ML (2013) Thymol antifungal mode of action involves telomerase inhibition. Medical Mycology 51: 826-834. D’auria FD, Tecca M, Strippoli V, Salvatore G, Battinelli L, Mazzanti G (2005) Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Medical Mycology 43: 391-396. Davari M, Ezazi R (2016)Study on the effects of four medicinal plant essential oils and two Trichoderma species on biocontrol of grapefruit rot fungi. Biological Control of Pests and Plant Diseases 5: 1-12. Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology 74: 101-109. Elaissi A, Rouis Z, Ben Salem NA, Mabrouk S, Ben Salem Y, Bel Haj Salah K, Aouni M, Farhat F, Chemli R, Harzallah-Skhiri F, Larbi Khouja M (2012) Chemical composition of 8 Eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complementary and Alternative Medicine 12: 81. Elshafie HS, Mancini E, Sakr S, De Martino L, Mattia CA, De Feo V, Camele I (2015) Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit. Journal of Medicinal Food 18: 929-934. Farzaneh M, Kiani H, Sharifi R, Reisid M, Hadiana J (2015) Chemical composition and antifungal effects of three species of Satureja (S. hortensis, S. spicigera, and S. khuzistanica) essential oils on the main pathogens of strawberry fruit. Postharvest Biology and Technology 109: 145-151. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal 23: 213-226. Fournomiti M, Kimbaris A, Mantzourani I, Plessas S, Theodoridou I, Papaemmanouil V, Kapsiotis I, Panopoulou M, Stavropoulou E, Bezirtzoglou EE, Alexopoulos A (2015) Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumonia. Microbial Ecology in Health & Disease 26: 23289. http://dx.doi.org/10.3402/mehd.v26.23289. Gavanji S, Mohammadi E, Larki B, Bakhtari A (2014) Antimicrobial and cytotoxic evaluation of some herbal essential oils in comparison with common antibiotics in bioassay condition. Integrative Medicine Research 3: 142-152. Glamoclija J, Sokovic M, Grubisic D, Vukojevic J, Milinekovic I, Ristic M (2009) Antifungal activity of Critmum maritimum essential oil and its components against mushroom pathogen Mycogone perniciosa. Chemistry of Natural Compounds 45: 96-97. Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chemistry 103: 1449-1456. Hussain AI, Anwar F, Nigam PS, Ashraf M, Gilani AH (2010) Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture 90: 1827-1836. Iqbal T, Hussain AI, Chatha SAS, Naqvi SAR, Bokhari TH (2013) Antioxidant activity and volatile and phenolic profiles of essential oil and different extracts of wild mint (Mentha longifolia) from the Pakistani flora. Journal of Analytical Methods in Chemistry, Article ID 536490, 6 pages, http://dx.doi.org/10.1155/2013/536490. Kim JW, Kim YS, Kytung KH (2004) Inhibitory activity of essential oils of garlic and onion against bacteria and yeasts. Journal of Food Protection 67: 499-504. Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99: 8788-8795. Küçükbay FZ, Kuyumcu E, Çelen S, Azaz AD, Arabaci T (2014) Chemical composition of the essential oils of three Thymus taxa from Turkey with antimicrobial and antioxidant activities. Records of Natural Products 8: 110-120. Kunicka-Styczyn´ ska A, Sikora M, Kalemba D (2009) Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. Journal of Applied Microbiology 107: 1903-1911. Li WR, Shi QS, Dai HQ, Liang Q, Xie XB, Huang XM, Zhao GZ, Zhang LX (2016) Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Scientific Reports 6: 22805-22813. Maffei M (1988) A chemotype of Mentha longifolia (L.) Hudson particularly rich in piperitenone oxide. Flavour and Fragrance Journal 3: 23-26. Mancini E,Cameleb I,Elshafie HS,De Martino L,Pellegrino C,Grulova D,De Feo V (2014) Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the southern Apennines (Italy). Chemistry & Biodiversity 11: 639-651. Marchese A, Orhan IE, Daglia M, Barbieri R, Lorenzo AD, Nabavi SF, Gortzi O, Izadi M, Nabavi SM (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chemistry, doi: http://dx.doi.org/10.1016/j.foodchem.2016.04.111 Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. International Journal of Food Microbiology 67: 187-195. Mazooji A, Salimpour F, Danaei M, Akhoondi Darzikolaei S, Shirmohammadi K (2012) Comparative study of the essential oil chemical composition of Thymus kotschyanus Boiss. & Hohen var. kotschyanus from Iran. Annals of Biological Research 3: 1443-1451. Mnayer D, Fabiano-Tixier AS, Petitcolas E, Hamieh T, Nehme N, Ferrant C, Fernandez X, Chemat F (2014) Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 19: 20034-20053. Moghaddam M, Farhadi N (2015) Influence of environmental and genetic factors on resin yield, essential oil content and chemical composition of Ferula assa-foetida L. populations. Journal of Applied Research on Medicinal and Aromatic Plants 2: 69-76.Mohammadi Goltapeh E, Pourjam E (2005) Principles of mushroom cultivation. Tarbiat Modares University Press, 626p. In Persian. Mota KSL, Pereira FO, Oliveira WA, Lima IO, Lima EO (2012) Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules 17: 14418-33. Pina-Vaz C, Gonçalves Rodriguez A, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro L,Cavaleiro C, Gonçalves MJ, Martinez-de-Oliveira J (2004) Antifungal activity of Thymus (oils and their major compounds). Journal of the European Academy of Dermatology and Venereology 18: 73-78. Pinto E, Goncalves MJ, Hrimpeng K, Pinto J, Vaz S, Vale-Silva LA, Cavaleiro C, Salgueiro L (2013) Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products 51: 93-99. Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial Agents and Chemotherapy 54: 5062-5069. 10.1128/AAC.01050-10. Russo M, Galletti GC, Bocchini P, Carnacini A (1998) Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link) Ietswaart): a preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. Inflorescences. Journal of Agricultural and Food Chemistry 46: 3741-3746. Sánchez MA, Turina AV, García DA, Nolan MV, Perillo MA (2004) Surface activity of thymol: implications for an eventual pharmacological activity. Colloids and Surfaces B: Biointerfaces 34: 77-86. Shahriar A (2013) Identification of pathogenic fungi in mushroom production units in Ardabil province. M.Sc Thesis, University of Mohaghegh Ardabili, Ardabil, Iran. Sharma MV, Sagar A, Joshi M (2015) Study on antibacterial activity of Agaricus bisporus (Lang.) Imbach. International Journal of Current Microbiology and Applied Science 4: 553-558. Sokovic M, Van Griensven LJLD (2006) Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology 116: 211-224. Tanovic B, Potocnik I, Stanisavljevic B, Dordevic M, Rekanovic E (2006) Response of Verticillium fungicola var. fungicola, Mycogone perniciosa and Cladobotyum sp. mushroom pathogens to some essential oils. Pesticides and Phytomedicine 21: 231-237. Tsao S, Yin M (2001) In vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. Journal of Medical Microbiology 50: 646-649. Yang D, Michel L, Chaumont JP, Millet-Clerc J (2000) Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 148: 79-82. Yazgi M, Awad D, Jreikous B (2015) Screening of the antifungal activity of plant Mentha longifolia crude extracts against two fungi Alternaria citri and Fusarium moniliforme. Journal of Entomology and Zoology Studies 3: 359-364. Zuzarte M, Goncalves MJ, Cavaleiro C, Cruz MT, Benzarti A, Marongiu B, Maxia A, Piras A, Salgueiro L (2013) Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Industrial Crops and Products 44: 97-103. | ||
آمار تعداد مشاهده مقاله: 632 تعداد دریافت فایل اصل مقاله: 1,118 |