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1.   Introduction 

Functionally graded materials (FGMs) are the 

nonhomogeneous composite materials in which mechanical 

properties vary continuously from one surface to the other by 

varying the volume fraction of their constituent, gradually. The 

FGMs have aerospace applications such as thermal barrier 

materials [1, 2].  

A thick-walled pressure vessel under internal and external 

pressure is one of the prevalent problems in engineering 

mechanics. Pressure vessels have enormous industrial 

applications, such as the nuclear, oil, petrochemical, and 

chemical fields [3]. The FGMs are used in pressure vessels 

containing high temperature fluids in different industries because 

of their advantage of both mechanical and thermal properties, 

simultaneously. FG coatings can be used in pressure vessels due 

to their protective role for metallic or ceramic substrates against 

heat penetration, wear, corrosion and oxidation [4]. 

Having investigated the literature of functionally graded (FG) 

spheres and cylinders, it is known that there are several 
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investigations dealing with the stress analysis of spherical and 

cylindrical pressure vessels subjected to pressure loading. Bufler 

[5] developed the analysis of laminated composite hollow spheres 

under internal and/or external pressure. Eslami et al. [6] carried 

out an analytical study to obtain the thermal and mechanical 

stresses in a hollow thick sphere made of functionally graded 

material. Considering heat conduction and Navier equations, they 

also obtained the radial stress, hoop stress, radial displacement 

and temperature profile as a function of radial coordinate. You et 

al. [7] studied the elastic response of hollow spheres made of 

functionally graded materials subjected to internal and external 

pressure. Two different kinds of pressure vessels were considered 

in their study: FG vessel and a vessel consists of two 

homogeneous layers with FG layer in between. Poultangari et al. 

[8] performed an analytical study to obtain the thermal and 

mechanical stresses in a FG sphere vessel under non-

axisymmetric thermomechanical loads. Chen and Lin [9] carried 

out an analysis to obtain the elastic response of thick FG spherical 

vessels considering exponential variation of Young’s modulus.  

Presenting a new approach, Tutuncu and Temel [10] 

performed an analytical study to obtain stress components in the 
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pressurized hollow FG cylinders, disks, and spheres. Taking into 

account linear and exponential material variation patterns, Saidi 

et al. [11] presented an exact closed-form solutions to obtain 

displacement and stresses in the thick-walled FG spherical 

pressure vessels. Sadeghian and Toussi [12] obtained elastic and 

perfectly plastic thermal stresses in a FG spherical vessel 

subjected to thermal and mechanical loading. In their study, both 

mechanical and thermal properties were assumed to vary in the 

radial direction according to power law function. Using a 

layerwise mixed shell theory, Carrera and Soave [13] analyzed 

the stresses in a composite pressure vessel with an interlayer of 

FG subjected to mechanical and thermal loadings. Parvizi et al. 

[14] presented an analytical elastic-plastic solution for thick-

walled cylinders made of FG AlA359/SiCp subjected to internal 

pressure and thermal loading.  

Based on power-law variation of material properties, 

analytical and numerical studies for a FG hollow sphere subjected 

to mechanical and thermal loads were presented by Bayat et al. 

[15]. Moreover, they carried out finite element simulation of 

process to verify the accuracy of the analytical solution. Nejad et 

al. [16] presented an exact closed-form solutions for stresses and 

displacements in FG thick-walled pressurized spherical shells. 

They assumed an exponential law formula for variation of 

material properties. Boroujerdy and Eslami [17] evaluated 

thermal instability of shallow spherical shells made of FG and 

surface-bonded piezoelectric actuators. They obtained the 

equilibrium equations based on the classical theory of shells and 

the Sanders nonlinear kinematics equations. Saadatfar and 

Aghaie-Khafri [18] investigated static behavior of a FG magneto-

electro-elastic hollow sphere under hydrothermal loading in the 

spherically symmetric state. They assumed Winkler elastic 

foundation on the inner and/or outer surfaces of the sphere and a 

power law variation in material properties. Considering the 

combined uniform pressure and thermal loading condition, 

Parvizi et al. [19] presented an exact analytical thermo-elasto-

plastic solution for thick-walled spheres made of FGMs. 

Considering three different plasticization from inner, through 

thickness and outer radii, they formulated the problem and 

validated the results by FE model. Alikarami and Parvizi [20] 

presented an exact theoretical elasto-plastic solution to obtain 

stress components for thick-walled cylinder made of FGMs 

subjected to combined pressure and thermal loading.  

Akis [21] carried out an analytical study to obtain the elastic, 

partially plastic and fully plastic stress components in the 

spherical vessels made of FG materials under pressure. 

Atashipour [22] presented an analytical solution to obtain stress 

components in a thick-walled spherical homogeneous pressure 

vessel with an inner coating of FG material subjected to internal 

and external hydrostatic pressure. Loghman and Parsa [23] 

presented an analytical solution to obtain magneto-thermo-elastic 

response of a thick-walled cylinder with FG coating layer. They 

achieved the minimum stress and displacement condition by 

controlling the FG coating parameters. Wang et al. [24] studied 

the thermomechanical behavior of pressure vessel FG coating 

layer. Assuming tubular vessel with two hemisphere caps, they 

presented a close-form elastic solution and applied FE analysis to 

verify the theoretical results. Afshin et al. [25] presented a 

transient thermo-elastic analysis of a rotating thick cylindrical 

pressure vessel made of FGM subjected to axisymmetric 

mechanical and transient thermal loads under arbitrary boundary 

and initial conditions. They achieved the exact solution of time 

dependent temperature distribution and transient hoop, radial and 

axial stress components under general thermal boundary 

conditions. Gharibi et al. [26] studied stresses and the 

displacements of rotating exponential FGM thick hollow 

cylindrical under pressure using fundamental equations of 

elasticity and FSM. They obtained that the inhomogeneity 

constant provides a major effect on the mechanical behaviors of 

the exponential FG thick cylindrical under pressure. Ghajar et al. 

[27] presented the analysis of transient thermoelastic response of 

a FG non-axisymmetric viscoelastic cylinder. From the results of 

their study, it was concluded that, appropriate material 

inhomogeneities can improve the magnitudes of stress 

components, especially shear stress. 

Reviewing the literature, it is found that the focus of the 

researchers was placed into the elastic and elasto-plastic analyses 

of homogenous and FG vessels. However, the investigation 

regarding thick-walled vessels comprising both homogenous and 

FG layers have remained so limited. Most of the above 

investigations were focused on the thick-walled hollow spheres 

with entire wall in FG while only a FG coating can be suitable for 

practical applications due to its reasonable manufacturing cost 

and avoid encountering technological limitations. Therefore, the 

elasto-plastic analysis of such spherical pressure vessels is 

important. 

In this study, the elasto-plastic analytical solution for thick-

walled spherical homogeneous pressure vessel with an inner FG 

coating subjected to hydrostatic pressure is presented for the first 

time. Having developed formulae for stresses and deformation in 

the vessel, the condition for incipient yielding at the inner surface 

of FG coating is established. Then, the condition for development 

of plastic zone in the FG layer is investigated and the stress field 

in both elastic and plastic regions of FG layer as well as the 

elasto-plastic boundary radius are obtained. After having a fully 

plastic FG layer, the condition for incipient yielding at the inner 

surface of homogenous material is evaluated. The similar analysis 

for development of plastic zone in the homogenous part is also 

carried out. The FE simulation of process was performed using 

ABAQUS/Explicit in order to validate the results of theoretical 

analysis. 

2.   Problem formulation 

Fig. 1 shows the schematic of an internally coated spherical 

pressure vessel subjected to internal (𝑃𝑖) and external (𝑃𝑜) 

pressure. Here, 𝑅𝑖, 𝑅𝑜 and 𝑅𝑐 are the inner, outer, and the 

interface radii, respectively.  

It is well-known that the strength of materials during a 

process is defined using the modulus of elasticity 𝐸 and the yield 

limit 𝜎0 as the material properties. As a result, in this paper, these 

two material properties are assumed to vary in the radial direction 

for FG coating layer (
i cR r R  ) of pressure vessel according 

to the relations 
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where 𝐸0 and 𝜎𝑐 are the reference values of 𝐸 and 𝜎0 in that 

order, 𝑟 the radial coordinate and 𝑛 and 𝑚 are the grading 

parameters [21]. 

 

Fig. 1 An internally coated spherical pressure vessel under internal (𝑃𝑖) and 

external (𝑃𝑜) pressures 

 

In this problem, spherical coordinates (𝑟, 𝜃, 𝜙) are assumed. 

In addition, small deformations are considered in a loading 

spherical symmetry (
   ). Considering the conventional 

symbols for the stresses and strains [28], the Hooke’s law reads  

1
[ 2 ]
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where 𝜀𝑖
𝑃 is the plastic strain components, 𝜀𝑖

𝑇 is the total strain 

components, 𝜎𝑖 are the stress components in radial and 

circumferential directions, 𝐸(𝑟) the radius-dependent modulus of 

elasticity and 𝜈 the Poisson’s ratio. Poisson’s ratio is considered 

constant in vessel. It should be noted that values for Poisson’s 

ratios in the coating layer and the wall of the vessel are assumed 

equal. 

For elastic stress condition 0P

i  . Hence, using Eqs. (2) and 

(3) and strain-displacement relations ( T

r du dr  and T u r  ), 

the stresses are written as  
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The mechanical behavior of the structure is determined by the 

equilibrium equation, as follows: 

2
( ) 0r

r

d

dr r



    . (6) 

2.1.   Elastic solution 

2.1.1.   FG coating layer 

Supposing the variation of modulus of elasticity for coating 

material is according to the Eq. (1), the governing differential 

equation is obtained as 

2
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The general solution of above equation is 
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where 𝐶1𝐹 and 𝐶2𝐹 are the arbitrary integration constants and 

8
9 (10 ).

1
K n n


   


 (9) 

The stresses in the FG coating layer reduce to: 
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(11

) 

Here, superscript 𝐶 − 𝐸 denote FG coating layer in elastic 

state.  
 

2.1.2.   Homogeneous material 

Since the modulus of elasticity for homogeneous material is 

constant, the governing differential equation will be written as 

2
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The general solution of above equation is: 
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where 𝐶1𝐻 and 𝐶2𝐻 are the arbitrary integration constants. Here, 

superscript 𝐻 − 𝐸 denote homogenous body in elastic state.  

Substituting Eq. (12) within Eqs. (4) and (5), the stresses in 

the homogeneous body reduce to: 
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Using boundary and continuity conditions, the arbitrary 

integration constants are obtained for system of structure/coating.  
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Considering 0oP   and applying the hydrostatic pressure on 

inner and outer surfaces as boundary conditions: 

( ) 0,H E

r oR    (16) 

( ) ,C E

r i iR P     (17) 

and continuity conditions in the interface of vessel and 

coating in 𝑟 = 𝑅𝑐: 

( ) ( ),H E C E

c cu R u R   (18) 

( ) ( ),H E C E

r c r cR R    (19) 

By solving the four algebraic equations simultaneously, 

values of arbitrary integration constants are obtained. 

2.2.   Onset of yield 

Yielding commences at the inner surface for a homogenous 

spherical pressure vessel as known from the previous studies 

[29].The relation
r  is established for FG spherical pressure 

vessels subjected to internal pressure throughout just like in 

homogeneous ones. However, yielding could start at different 

surfaces of FG depending on the values of functionally grading 

parameters 𝑛 and 𝑚. It is known from the previous studies [21] 

that, the parameter 𝑛 has a greater influence on the yielding 

behavior. For the values of 0n  , the yielding may start at the inner 

surface, at the outer surface or at both surfaces of FG coating 

layer simultaneously. Furthermore, for the values of 0n  , the 

coating layer may fail at the inner or outer surfaces or inside the 

vessel. In this study, it is assumed that the yielding starts from the 

inner surface of FG coating layer of spherical pressure vessel. As 

a result, the positive value of 𝑛 is considered. 

For the values of 0n  , the yielding starts at the inner surface 

of FG coating layer at 
ir R  according to Tresca’s yield 

criterion i.e.
0r    . The other modes of yielding onset for 

the values of 0n   are not considered. The elastic limit internal 

pressure (𝑃𝑒1) to start yielding at the inner surface of FG coating 

layer is determined by evaluating the coating layer stresses at 𝑅𝑖 
and using Tresca’s condition. 𝑃̅𝑒𝑗 is the non-dimensional elastic 

limit pressure defined by
0 ( )ej ej iP P R . Furthermore, the 

elastic limit internal pressure (𝑃𝑒2) to start plastic deformation at 

the inner surface of homogenous structure is determined by 

evaluating the homogenous structure stresses at 𝑅𝑐 and using 

Tresca’s condition.  

Considering Tresca’s yield criterion i.e.
r  , slight 

variation in the FG parameters causes change location from 

ir R  to
cr R . As a result, there are critical parameters that 

would be start yielding concurrently at both surfaces. The 

corresponding conditions can be defined as: 

0( ) ( ) ( ),C E C E

i r i iR R R      (20) 

( ) ( ) .H E H E

c r c cR R      (21) 

If one of the parameters 𝑛, 𝑚 and 𝑃𝑖  to be set, the other two 

parameters are determined by solving Eqs. (20) and (21). 

Considering the given value of parameter 𝑛, the values of 

parameter 𝑚 and the limit 
1 2e eP P P  can be obtained from Eqs. 

(20) and (21) is that the condition for the assembly to yield 

simultaneously at both surfaces. For example, assigning 0.3  ,

2o iR R  , 1.2c iR R  , 0.9n  , one finds 2.3993m   and

1 2 0.6325e eP P  by solving Eqs. (20) and (21). 

𝑛 and 𝑚 values satisfying Eqs. (20) and (21) are donated as 

𝑛𝑐𝑟 and 𝑚𝑐𝑟  to make clear the start of yield. If 
crn n and

crm m , then plastic deformation commences at both the inner 

surface of FG coating layer and inner surface of homogenous 

structure concurrently. If
crm m  , then the assembly yields at 

the inner surface of FG coating layer and at the outer surface of 

coating layer when
crm m . Here, the condition of 

crm m is 

considered.  

For 0n  (constant 𝐸), one obtains 3crm   and 
1 0.5833eP 

by the solution of the Eqs. (20) and (21). It has been reported that 

if 0n  and 3crm m    at the elastic limit pressure 𝑃̅𝑒1 on the 

spherical pressure vessel made by FG, the result of expression
C E C E

r   is constant and equal to 𝜎0 throughout the coating 

layer [21]. 
 

2.3.   Elasto-Plastic solution 

2.3.1.   FG coating layer 

Considering 
r  throughout the assembly, Tresca’s yield 

criterion will be 

0 .C E C E

r      (22) 

Using the equilibrium equation, Eq.(6) and 
0

C E C E
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from Eq. (22), the stress expressions in the plastic region are 

determined as 
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where 𝐶3𝐹 is an unknown coefficient. Here, superscript 𝐶 −
𝑃 denote FG coating layer in plastic state. Using these stresses, 

the incompressibility 2 0P

r r

   and the strain-displacement 

relations, the expression 2T T

r r  is determined and simplified 

as follows: 

1 2 3

2
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du u
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where 
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The general solution is 
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2.3.2.   Homogenous material 

The stresses at a homogenous spherical pressure vessel given 

by Mendelson [29] are 

3 2 ( ),H P
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3 (2 ( ) 1) ,H P
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Where 𝐶3𝐻 is an unknown coefficient. Here, superscript 𝐻 −
𝑃 denote homogenous body in plastic state. Using these stresses, 

the incompressibility 2 0P

r r

    and the strain-displacement 

relations, the expression 2T T

r r  is determined and simplified 

as follows 
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The general solution is 
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3.   Finite Element Simulation 

The finite element simulation is applied using ABAQUS 

software to verify the accuracy of the present analytical solution. 

Fig. 2 shows FE model of spherical pressure vessel with FG 

coating layer. The axisymmetric model of the vessel is considered 

in order to reduce the computational cost. FG coating layer is 

divided into 10 layers along the radial direction to simplify the 

model. According to Eq. (1), the material properties of each 

section are calculated for FG coating. Considering the mesh 

sensitivity analysis, the model consists of 1320 CAX4T-type 

elements and 1395 nodes.  

 
Fig. 2 FE model of spherical pressure vessel with inner FG coating divided into 

10 sections 

4.   Results and discussion 

The type of FG coating layer and the homogenous structure 

material used in the analysis is a steel (
0 200 E GPa  , 0.3  ,

430 c MPa  ). Furthermore, the values of 2o iR R   and 

1.2c iR R  are considered. The dimensionless variables are used 

to illustrate the numerical results as follows: 

0

0 0

; ; .
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i i c i

uEr
r i u

R R R R




 
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(33) 

 

4.1.   Elastic 

Considering 0.9n  , the elastic solution requires the 

determination of four unknown coefficients: 𝐶1𝐻, 𝐶2𝐻, 𝐶1𝐹 and 

𝐶2𝐹 . The following four conditions are applied: 

( ) 0H E

r oR    
(34) 

( )C E

r i iR P     
(35) 

( ) ( )H E C E

c cu R u R   
(36) 

( ) ( )H E C E

r c r cR R    
(37) 

Fig. 3 shows the variations of dimensionless radial stress, 

circumferential stress and displacement versus dimensionless 

radial coordinate (
ir r R ) at internally coated spherical 

pressure vessel. It is noteworthy that, the displacement and radial 

stress curve are continuous through the thickness, as expected. 

The trend of circumferential stress yields a slight change in the 

interface surface when shifting from FG coating layer to 

homogenous structure. Similar results have also reported by 

previous studies [22, 30]. It is obvious that there exists good 

agreement between analytical and FE results and the accuracy of 

analytical solution is verified. It should be noted that the good 

agreement between analytical and FE results can be seen in the 

following solutions of this study.   

A dimensionless yield variable 𝜆𝑦 is presented to check the 

radial location of the yielding onset in elastic state [21]. 

Considering Tresca’s yield criterion, the yielding starts at the 

radial location 
yr r when 

0( ) ( ) ( ).y r y yr r r     (38) 

If the both sides divide by
0 ( ) ( )m

i c i cR R R  , the 

simplified equation is  

( ) [ ( ) ( )] 1.mi

y r y

y

R
r r

r
     (39) 

Therefore, the yield variable is defined as 

( ) [ ( ) ( )].mi

y y r y

y

R
r r

r
      (40) 

It is notable that when
epr r , then ( ) 1y epr  at an elastic-

plastic border, and 1y  in the elastic state.
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(a)  

(b) 

 
(c) 

Fig. 3 Comparison of analytical results and FE solution for elastic response of internally coated spherical pressure vessel for 𝑛 = 0.9 (a) displacement (b) radial stress 
(c) tangential stress

 

First, considering 0.9n  , the other critical FG parameter and 

the corresponding elastic limit internal pressure are calculated as

2.3993crm   and 
1 2 0.6325e eP P  by solving the Eqs. (20) and 

(21). Fig. 4 shows the corresponding yield variable at FG coating 

layer. As can be seen 1y   at the inner surface of FG coating 

layer and the inner surface of homogenous structure. It is clear 

that the yielding commences at the both surface simultaneously. 

However, it may not be easily distinguishable by following the 

stresses distribution near the both surface. The consequent 

stresses and displacement are shown in Fig. 5. From the data file 

of Fig. 5, it can be obtained that (1.2) 0.3374r   and

(1.2) 0.3082  . Therefore, it follows that

(1.2) (1.2) 0.6456r   , and further
2.3993

0 (1.2) (1.2) (1.2) 0.6456m    , which validates

0(1.2) (1.2) (1.2)r    . 

 

Fig. 4 Yield variable at FG coating layer of pressure vessel for 𝑛 = 0.9, 𝑚 =
𝑚𝑐𝑟 = −2.3993 at 𝑃̅𝑒1 = 𝑃̅𝑒2 = 0.6325
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(a) 

 
(b) 

 
(c)  

(d) 
Fig. 5 Comparison of analytical results and FE solution for elastic response of internally coated spherical vessel for 𝑛 = 0.9, 𝑚 = 𝑚𝑐𝑟 = −2.3993 at 𝑃̅𝑒1 = 𝑃̅𝑒2 =

0.6325 (a) displacement (b) radial stress (c) tangential stress (d) yield variable

Considering 0.9n  , the effect of the parameter 𝑚 on 𝜆𝑦 is 

shown in Fig. 6. The critical parameter of

2.3993 (= ), 2, 1crm m    and 0 is considered and the variation 

of the yield variable 𝜆𝑦 are plotted for this pressure vessel in Fig. 

6. It is clear that when
crm m , the yielding commences at the 

inner surface of coating layer that is a desirable mode. By 

increasing the value of parameter 𝑚, the difference between 

radial and circumferential stresses at FG coating layer increase 

and lead to yielding starts later at the inner surface of 

homogenous structure.   

Fig. 7 shows the elastic limit pressure versus the radial 

parameter (
i cR R ) for different 𝑛 and 𝑚 values. As can be seen, 

the curve with 0m  , 0n  is in agreement to homogeneous coating 

material. As mentioned before, for the values of 0n  , other modes 

of yielding may be occur i.e. yield commencing at the inner or 

outer surfaces or inside the coating layer of vessel with the same 

yield condition. For example, the pressure vessel with 0.4n    and 

2m   is considered. The corresponding elastic limit pressure was 

obtained as 0.5622eP  considering Tresca’s yield criterion at 

inner surface of coating layer i.e.
0( ) ( ) ( )C C

i r i iR R R    . 

The consequent stresses and displacement are shown in Fig. 8. It 

can be seen that, the yielding also commences at the inner surface 

of FG coating layer. 

 
Fig. 6 Variation of yield variable in an internally coated spherical vessel for 𝒏 =

𝟎. 𝟗 using 𝒎 as a parameter 
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Fig. 7 Variation of elastic limit internal pressure 𝑷̅𝒆𝟏 using 𝒏 and 𝒎 as 

parameters for an internally coated spherical pressure vessel 

As previously mentioned, the desired state is that the yielding 

starts at the inner surface of FG coating layer and the plastic 

region expands in the coating layer. Then the coating layer is 

completely deformed, plastically. Yielding commences at the 

inner surface of homogenous structure and the plastic 

deformation develops at this part. In order to establish such 

conditions, 0.9n   and 1.3m    is considered. It should be noted 

that there are other values of graded parameters that satisfies these 

conditions. The corresponding elastic limit pressure was obtained 

as 
1 0.6325eP   considering Tresca’s yield criterion at inner 

surface of coating layer i.e. 
0( ) ( ) ( )C E C E

i r i iR R R     . The 

consequent stresses and displacement are shown in Fig. 9. 

 

 

 
(a) 

 
(b) 

 
(c)  

(d) 

Fig. 8 Comparison of analytical results and FE solution for elastic response of internally coated spherical pressure vessel for 𝒏 = −𝟎. 𝟒, 𝒎 = −𝟐 at 𝑷̅𝒆𝟏 = 𝟎. 𝟓𝟔𝟐𝟐 
(a) displacement (b) radial stress (c) tangential stress (d) yield variable 
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(a) 

 
(b) 

 
(c)  

(d) 

Fig. 9 Comparison of analytical results and FE solution for elastic response of internally coated spherical pressure vessel for 𝒏 = 𝟎. 𝟗, 𝒎 = −𝟏.𝟑 at 𝑷̅𝒆𝟏 = 𝟎.𝟔𝟑𝟐𝟓. 
(a) displacement, (b) radial stress, (c) tangential stress and (d) yield variable

4.2.   Elasto-plastic 

For the internal pressure
1eP P , the FG coating layer of 

pressure vessel is partially plastic in
1i epR r r  where 𝑟𝑒𝑝1 is the 

elastic - plastic border. The seven unknowns should be evaluated: 

𝐶3𝐹 and 𝐶4𝐹 (plastic FG coating), 𝐶1𝐹 and 𝐶2𝐹 (elastic FG 

coating), 𝐶1𝐻 and 𝐶2𝐻 (elastic homogenous structure) and 𝑟𝑒𝑝1. 

The following seven conditions are taken into account: 

( )C P

r i iR P     
(41) 

1 1( ) ( )C P C E

r ep r epr r    
(42) 

1 1( ) ( )C P C E

ep epr r     
(43) 

1 1( ) ( )C P C E

ep epu r u r   
(44) 

( ) ( )C E H E

r c r cR R    (45) 

( ) ( )C E H E

c cu R u R   (46) 

( ) 0H E

r oR    (47) 

 Fig. 10 shows the evolution of the plastic region at FG 

coating layer of pressure vessel. Increase in 𝑃̅ leads to expand the 

plastic region and the coating layer becomes fully plastic at

1 0.7370fpP P  . Considering 𝑃̅ in
1 1e fpP P P  , the stresses 

in partially plastic state could be obtained. For example, taking

0.6729P  , one find
1 1.0627epr  . Fig. 11 shows the 

corresponding stresses and radial displacement.  

As mentioned before, when 0.9n   and 1.3m   , the yielding 

commences at the inner surface of homogenous structure after 

fully plastic deformation in FG coating layer. The four unknowns 

should be evaluated: 𝐶3𝐹 and 𝐶4𝐹 (plastic FG coating), 𝐶1𝐻 and 

𝐶2𝐻 (elastic homogenous structure). The following four 

conditions are considered: 

( )C P

r i iR P     
(48) 

( ) ( )C P H E

r c r cR R    
(49) 

( ) ( )C P H E

c cu R u R   
(50) 

( ) 0H E

r oR    
(51) 

The corresponding elastic limit pressure was obtained as 

2 0.7370eP   considering Tresca’s yield criterion at the inner surface 
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of homogenous structure i.e. ( ) ( )H E H E

c r c cR R     . The 

consequent stresses and displacement are shown in Fig. 12

 
Fig. 10 Evolution of plastic region in FG coating layer of spherical pressure vessel with increasing 𝑷̅ for 𝒎 = −𝟏. 𝟑 and 𝒏 = 𝟎. 𝟗 

 
(a)  

(b) 

 
(c) 

Fig. 11 Comparison of analytical results and FE solution for elastic response of internally coated spherical pressure vessel for 𝒏 = 𝟎.𝟗, 𝒎 = −𝟏. 𝟑 at 𝑷̅ = 𝟎. 𝟔𝟕𝟐𝟗 

(a) displacement (b) radial stress (c) tangential stress 
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(a)  

(b) 

 
(c) 

Fig. 12 Comparison of analytical results and FE solution for elastic response of internally coated spherical pressure vessel for 𝒏 = 𝟎.𝟗, and 𝒎 = −𝟏. 𝟑 at 𝑷̅𝒆𝟐 =
𝟎. 𝟕𝟑𝟕𝟎 (a) displacement (b) radial stress (c) tangential stress

For the internal pressure
2eP P , the homogenous structure of 

pressure vessel is partially plastic in
2c epR r r   where 𝑟𝑒𝑝2 is the 

plastic-elastic border. The seven unknowns should be evaluated: 

𝐶3𝐹 and 𝐶4𝐹 (plastic FG coating), 𝐶1𝐻 and 𝐶2𝐻 (elastic 

homogenous structure), 𝐶3𝐻 and 𝐶4𝐻 (plastic homogenous 

structure) and 𝑟𝑒𝑝2. The following seven conditions are 

considered: 

( )C P

r i iR P     
(52) 

( ) ( )C P H P

r c r cR R    
(53) 

( ) ( )C P H P

c cu R u R   
(54) 

2 2( ) ( )H P H E

ep epr r     
(55) 

2 2( ) ( )H P H E

r ep r epr r    
(56) 

2 2( ) ( )H P H E

ep epu r u r   
(57) 

( ) 0H E

r oR    
(58) 

Fig. 13 shows the evolution of the plastic region at 

homogenous structure of pressure vessel. The increase in 𝑃̅ leads 

to expand the plastic region and homogenous structure becomes 

fully plastic at
2 1.1315fpP P  . Considering 𝑃̅ in

2 2e fpP P P 

, the stresses in partially plastic state could be obtained. For 

example, taking 0.8807P  , one find
2 1.3574epr  . Fig. 14 

shows the corresponding stresses and radial displacement.  

 
Fig. 13 Evolution of plastic region in homogenous section of spherical pressure 

vessel with increasing 𝑷̅ for 𝒎 = −𝟏.𝟑 and 𝒏 = 𝟎.𝟗
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(a) 

 
(b) 

 
(c) 

Fig. 14 Comparison of analytical results and FE solution for elastic response of internally coated spherical pressure vessel for 𝒏 = 𝟎.𝟗, and 𝒎 = −𝟏. 𝟑 at 𝑷̅ =
𝟎. 𝟖𝟖𝟎𝟕 (a) displacement (b) radial stress (c) tangential stress

5.   Conclusion 

The elasto-plastic deformation behavior of a thick spherical 

pressure vessel with an inner FG coating subjected to internal and 

external hydrostatic pressures is studied using small deformation 

theory and Tresca’s yield criteria. The material types of vessel 

and coating were assumed to be homogeneous and FG, 

respectively. The modulus of elasticity and the uniaxial yield 

limit of the FG coating layer of spherical pressure vessel are 

considered to vary radially in nonlinear forms. These parameters 

for homogenous structure of pressure vessel are assumed to be 

constant. In this study, it is considered that the inner surface of 

FG coating layer is critical and plastic deformation commences 

at the inner surface of coating layer at the elastic limit internal 

pressure. Then the FG coating layer becomes fully plastic and 

yielding commences at the inner surface of homogenous 

structure. In order to satisfy this condition, the radial variation of 

FG parameters are established. An elastic analysis of the 

spherical pressure vessel was presented. Then stresses and 

deformation behavior of assembly was obtained using analytical 

expressions. Furthermore, the elasto-plastic and fully plastic 

response of this case are studied. 
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