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Abstract 

Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and 

development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of 

research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to 

solve the nonlinear thermal models. This paper focuses on the application of Legendre wavelet collocation method to 

the prediction of temperature distribution in longitudinal rectangular fin with temperature-dependent thermal 

conductivity and internal heat generation. The numerical approximations by the method are used to carry out 

parametric studies of the effects of the model parameters on the temperature distribution in the fin. The results show 

that the thermal performance of the fin is favoured at low values of thermogeometric parameter and internal heat 

generation decreases the performance of the fin. The results can serve as verification of the solutions of other methods 

of analysis of the component. 
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1. Introduction 

The production of high powered equipment in recent 

times requires effective cooling systems to avoid thermal 

breakdown of the equipment. In such quest and demand, 

fins have been used as media for passive effective 

cooling technology. The wide areas of applications of 

fins for heat transfer enhancement in thermal 

components and devices has made the subject area an 

interesting research area over many years. Moreover, the 

investigation into the effects of the inherent 

nonlinearities in the developed thermal models (due to 

its temperature-dependent thermal properties) on the 

thermal performance of the passive devices has attracted 

a large number of research works. In practice, various 

types of fins with different geometries are used, but the 

simplicity of its design, ease of construction and 

manufacturing process, has made rectangular fins to be 

widely applied in heat-transfer equipment. Also, for 

ordinary fins problem, the thermal properties of the fin 

and the surrounding medium (thermal conductivity and 

heat transfer coefficient) are assumed to be constant, but 

if large temperature difference exists within the fin, 

typically, between tip and the base of the fin, the thermal 

conductivity and the heat transfer coefficient are not 

constant but temperature-dependent.  Therefore, while 

analyzing the fin, effects of the temperature-dependent 

thermal properties must be taken into consideration. In 

carrying out such analysis, the thermal conductivity may 

be modeled for such and other many engineering 

applications by power law and by linear dependency on 

temperature while the heat transfer coefficient can be 

expressed as power law for which the exponents 

represent different phenomena as reported by Khani and 

Aziz [1], Ndlovu and Moitsheki [2]. Nonlinearity results 

in the thermal model because of thedependency of 

thermal conductivity and heat transfer coefficient on 

temperature and consequently, the model become very 

difficult to solve analytically. In other to solve the 

nonlinear model, different numerical and approximate 

analytical techniques have been employed. In one of the 

earliest work, Aziz and Enamul-Huq [3] and Aziz [4] 

applied regular perturbation expansion to study a pure 

convection fin with temperature dependent thermal 

conductivity. Method of successive approximation was 

adopted by Campo and Spaulding [5] to predict the 

thermal behaviour of uniform circumferential fins. Chiu 

and Chen [6] and Arslanturk [7] employed Adomian 

Decomposition Method (ADM) to determine the 

temperature distribution in a convective fin with variable 

thermal conductivity. Ganji [8] solved the same problem 

with the aid of the homotopy perturbation method which 

was originally proposed by He [9]. The Adomian 

decomposition method was also utilized by Chowdhury 

and Hashim [10]  to predict the temperature distribution 

of straight rectangular fin with temperature dependent 

surface flux for all possible types of heat transfer while 

Rajabi [11] applied homotopy perturbation method 

(HPM) to calculate the efficiency of straight fins with 

temperature-dependent thermal conductivity. Also, 

Mustapha [12] adopted homotopy analysis method 

(HAM) to find the efficiency of straight fins with 

temperature-dependent thermal conductivity. 

Meanwhile, Coskun and Atay [13] utilized variational 

iteration method (VIM) for the analysis of convective 

straight and radial fins with temperature-dependent 

thermal conductivity.  In a study of comparative analysis 

of methods of solution, Languri et al. [14] applied both 

variation iteration and homotopy perturbation methods 

for the evaluation of efficiency of straight fins with 

temperature-dependent thermal conductivity while 

Coskun and Atay [15] applied variational iteration 

method to analyse the efficiency of convective straight 

fins with temperature-dependent thermal conductivity. 

Atay and Coskum [16] employed variation iteration and 

finite element methods to carry out comparative analysis 

of power-law-fin type problems. Domairry and Fazeli 

[17] used homotopy analysis method to determine the 

efficiency of straight fins with temperature-dependent 

thermal conductivity.  Chowdhury et al. [18] 

investigated a rectangular fin with power law surface 

heat flux and made a comparative assessment of results 

predicted by HAM, HPM, and ADM. Khani et al. [19] 

used Adomian decomposition method (ADM) to provide 

series solution to fin problem with a temperature-

dependent thermal conductivity while Moitsheki et al. 

[20] applied the Lie symmetry analysis to provide exact 

solutions of the fin problem with a power-law 

temperature-dependent thermal conductivity while 

Hosseini et al. [21] applied homotopy analysis method 

to generate approximate but accurate solution of heat 

transfer in fin with temperature-dependent internal heat 

generation and thermal conductivity. The application of 

differential transform method (DTM) to solve 

differential equations without linearization, 

discretization or no approximation, linearization 

restrictive assumptions or perturbation, complexity of 

expansion of derivatives and computation of derivatives 

symbolically. Other researchers such as  Joneidi et al. 

[22], Moradi and Ahmadikia [23, 24] and the method 

was also used by Mosayebidorcheh et al. [25], Ghasemi 

et al. [26], Ganji and Dogonchi [27] have also adopted 

DTM to solve the fin problem. However, the search for 

the arbitrary value that will satisfy the second boundary 

condition necessitated the use of Maple or Mathematica 

software and such could result in additional 

computational cost in the generation of solution to the 

problem. This drawback is not only peculiar to DTM, 

other approximate analytical methods such as HPM, 

HAM, ADM and VIM also required additional 

computational cost and time for the determination of 

such auxiliary parameters in their procedures of 

implementation [28]. Also, most of the approximate 
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analytical methods give accurate predictions only when 

the nonlinearities are weak, they fail to predict accurately 

for strong nonlinear models. Also, the methods often 

involved complex mathematical analysis leading to 

analytic expression involving a large number terms and 

when such methods as HPM, HAM, ADM and VIM are 

routinely implemented, they can sometimes lead to 

erroneous results as observed by Fernandez [29], Aziz 

and Bouaziz [30]. In practice, approximate analytical 

solutions with large number of terms are not convenient 

for use by designers and engineers [28]. In other to 

reduce the computation cost and time in the analysis of 

nonlinear problems Legendre collocation method was 

put forward and it has been adopted to solve different 

nonlinear equations.  The ease of use, simplicity and fast 

rate of convergence have in recent times made these 

methods gain popularity in nonlinear analysis of systems 

and they have been applied to nonlinear problems in heat 

transfer analysis of fins [31-35]. The wavelet collocation 

method is mathematically very simple, easy and fast.  It 

is an efficient and powerful in solving wide class of 

linear and nonlinear differential equations. In recent 

times, the method has gained the popularity and 

reputation of being a very effective tool for many 

practical applications. From the computational 

simulation point of view, it has been established that the 

numerical approximate solution provided by the method 

is much closer to the exact solutions in many practical 

applications of the method. Therefore, this paper focuses 

on the application of Legendre wavelet collocation 

method to the prediction of temperature distribution in 

longitudinal rectangular fin with temperature-dependent 

thermal conductivity and internal heat generation. The 

numerical approximations by the method are used to 

carry out parametric studies of the effects of the model 

parameters on the temperature distribution in the fin. The 

results of obtained by LWCM are in excellent 

agreements with exact analytical solutions (for the linear 

model) and the direct numerical solutions (for the 

nonlinear model). 

 

2. Problem 

Consider a straight fin of length l that is exposed on both 

faces to a convective environment at temperature, 
T and 

with heat transfer co-efficient, h and internal heat 

generation, qin shown in Fig.1.  

 
Fig. 1 Schematic diagram of a longitudinal rectangular 

fin 

 

For the steady state heat transfer in fin with uniform 

temperature of the medium surrounding the fin and that 

of the base. Assuming there is no contact resistance 

where the base of the fin joins the prime surface, the fin 

thickness is small compared with its height and length, 

for the temperature-dependent thermal conductivity and 

internal heat generation, the governing equation for the 

heat transfer in the fin is given by 
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The following dimensionless parameters are used to 

non-dimensionalize Eq. (1)  
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The dimensionless governing differential eq. (3) and the 

boundary conditions were arrived at 
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On substituting eq. (5) into eq. (3), we have 
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3. Method of Analysis: Legendre Wavelet 

Collocation Method 

 

Wavelets: Continuous wavelet are defined by the 

following formula [31-35] 
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Where a and b are dilation and translation parameters, 

respectively. The Legendre wavelets defined on the 

interval (0, 1) is given by  
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Where m=0,1,…,M-1 and n=1,2,...2k-1. Pm(x) is the 

Legendre polynomial of order m 

 

   

     

0 1

1 1

1, ,

2 1

1 1

1,2,3......, 1.

 

 


 

 

 

m m m

P X P X X

m m
P X XP X P X

m m

m M

             (9) 

 

A function f(x) defined in domain [0, 1] can be 

expressed as 
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where 
,n mc  =<  f X ,  ,n m X > in which <…> 

denotes the inner product 

Taking some terms in infinite series, we can write Eq. 

(10) as  
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Where C and  X  are M x1 matrices given by 
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(i) Property of the product of two Legendre 

wavelets 

 

If E is a given wavelets vector, then we have the 

property 
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(ii) Operational matrix of integration: The 

integration of wavelets  X  which is 

defined in Eq. (8) can be obtained as 
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3.1 Legendre Wavelet Collation Method 

Let    
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Integrating Eq. (15) with respect to x from 0 to x, we 

have 
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On expanding Eq. (19), we have 
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The system of Eq. (20) is solved using Newton-

Raphson method 

4. Results and Discussion 

The prediction of the temperature distribution and the 

effects of nonlinear thermal conductivity term, β is 

shown in Fig. 2. The figure displayed that the 

nonlinear thermal conductivity term has significant 

effect on the thermal performance of the fin. Also, it is 

shown that the thermal performance of the fin 

decreases as the nonlinear term increase. This is for the 

positive value of the nonlinear term. However, for the 

negative values of the nonlinear term, the thermal 

performance of the fin increases as the nonlinear term 

increases. 

 

 

 
Fig.2 Dimensionless temperature distribution in the 

fin when M=2, Q=0.2, γ=0.5    
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Fig.3 Dimensionless temperature distribution in the 

fin when M=2, Q=0.2, γ=0.5 

 
Fig.4 Dimensionless temperature distribution in the 

fin when β=0.2, Q=0.2, γ=0.4    

 

Fig.5 Dimensionless temperature distribution in the 

fin parameters when β=0.2, M=2, γ=0.2    

 

 
Fig..6 Dimensionless temperature distribution in the 

fin parameters when M=2, β=0.3, Q=0..3 

 

Figs. 3 show the effects of thermo-

geometric/conduction-convection parameter on the 

temperature distribution in the fin. The figure depicts 

that as the conduction-convection parameter increases, 

the rate of heat transfer through the fin increases as the 

temperature in the fin drops faster as depicted in the 

figures. The profile has steepest temperature gradient 

at lower value of the conduction-convection term, but 

its much higher value gotten from the lower value of 

thermal conductivity than the other values of in the 

profiles produces a lower heat-transfer rate. Therefore, 

the thermal performance or efficiency of the fin is 

favoured at low values of convective parameter since 

the aim is to minimize the temperature decrease along 

the fin length, where the best possible scenario is when 

temperature of the fin is the same s the base temperatur 

everywhere. It must be pointed out that a small value 

of M correspond to a relatively short and thick fins of 

poor thermal conductivity  and high value of M implies 

a long fin or fin with low value of thermal 

conductivity. Since, the thermal performance or 

efficiency of the fin is favoured at low values of 

convective fin parameter, very long fins are to be 

avoided in practice [28].  It should be noted that a 

small value of M corresponds to a relatively short and 

thick fin of poor thermal conductivity and a high value 

of M implies a long fin or fin with low value of thermal 

conductivity. Since, the thermal performance or 

efficiency of the fin is favoured at low values of 

thermo-geometric fin parameter, very long fins are to 

be avoided in practice. A compromise is reached for 

one-dimensional analysis of fins 0 < Bi <0.1. When 

the Biot number is greater than 0.1, two dimensional 

analysis of the fin is recommended as one-dimensional 

analysis predicts unreliable results for such limit [28]. 
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5 while Fig. 6 shows the effects of internal heat 

generation on the fin thermal performance at different 

parameter, M. From the figures, as the internal heat 

generation parameter increases the temperature 

gradient of the fins decreases. This is because, as the 

rate of internal heat generation within fin increase, the 

thermal performance of the fin decreases.  

Table 1shows the comparison of results. The good 

agreement between the results of the other methods 

and the results of the present study verifies the 

accuracy of the Legendre wavelet collocation method. 

5. Conclusion 

In this work, the temperature distributions in a 

longitudinal straight fin have been predicted using 

Legendre wavelet collocation method. The numerical 

approximations by the method are used to carry out 

parametric studies of the effects of the model 

parameters on the temperature distribution in the fin. 

The results show that the thermal performance of the 

fin is favoured at low values of thermogeometric 

parameter and internal heat generation decreases the 

performance of the fin. The results can serve as 

verification of the solutions of other methods of 

analysis of the component. 

 

Table 1: Comparison of results 

X                  NM                    ADM                 GMWR               

LWCM 

[6]                      [28]          (The present study) 

0.0            0.648054             0.648054            0.648054         0.648054 

0.1            0. 651297           0.651297             0.651297         0.651297 

0.2             0.661059            0.661059            0.661059         0.661057 

0.3             0. 677436           0.677436            0.677436         0.677436 

0.4             0.700594            0.700594            0.700594         0.700594 

0.5             0.730763            0.730763            0.730763         0.730763 

0.6             0.768246            0.768246            0.768246         0.768246 

0.7             0.813418            0.813418           0.813418          0.813418 

0.8             0.866731            0.866731           0.866730          0.866731 

0.9             0. 928718           0.928718           0.928718          0.928718 

1.0             1.000000            1.000000           1.000000          1.000000 
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