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Abstract 

This study introduces a new technique to fill and reconstruct daily observational of Total Ozone 
records containing void data for some days based on the wavelet theory as a linear time-frequency 
transformation, which has been considered in various fields of science, especially in the earth and 
space physics and observational data processing related to the Earth and space sciences. The initial 
corrupted records consist of six years of daily total Ozone measured by Dobson Photo-
Spectrometer Instrument of Institute of Geophysics, University of Tehran. To verify the filled gaps 
resulted from this technique, the outputs of the proposed method are compared with the Total 
Ozone Mapping Spectrometer (TOMS) for the year 2005 and Ozone Monitoring Instrument (OMI) 
for the years 2006 – 2010 satellite data (hereafter used as TOMS/OMI data). The proposed 
technique consists of three steps: (1) quality control and denoising; (2) data-reconstruction based 
on Daubechies parent function (DB1); and (3) the combination of approximation and 
complementary coefficients using the Inverse Discrete Wavelet Transform (IDWT). Results show 
that this method was able to successfully reconstruct the missing data for gaps lasting no greater 
than 18 days. For gaps beyond this 18-day limit, however, this method was unable to reconstruct 
the voided data. As most instruments, including Dobson and Brewer Spectrometer, are working 
based on the optical interaction of stratospheric Ozone and sunshine, gaps in the Total-Ozone for 
more than 18 days should happen in atmospheric systems with longevity over 18 days in which 
overcast clouds persist longer than the 18-day limit. The proposed method could be applied with 
high efficiency.  
 

Keywords: Total-Ozone, Discrete wavelet transform, Missing data, Interpolation, Signal 
reconstruction. 

 

1. Introduction 
Ozone is the most abundant photochemical 
oxidizing agent in the lower stratosphere. 
During its photochemical production process, 
the radiative heating of ozone results in short 
to medium range variations in dynamical 
properties of the stratosphere. Ozone is also a 
key factor in climatic changes (Werner, 
2008). Quantitative properties of ozone that 
control the atmospheric variations are the 
trend of long-term variations in the amount 
of stratospheric ozone. It has fundamental 
role in dynamical and chemical processes in 
atmosphere, suggesting that it has a major 
contribution on the quality of the results of 
atmospheric modelling processes. In the 
lower stratosphere and upper troposphere, 
density of this gas experiences fluctuation 
due to atmospheric motions and chemical 
processes, proposing that ozone can be used 
as a tracer gas in detecting dynamical 
processes (Grytsai et al., 2005). As the major 

source of ozone (creation and destruction) is 
the Sun, variation of stratospheric ozone 
concentrations primarily depends on decadal, 
yearly and seasonal variations of the Sun's 
position relative to the Earth. In addition to 
these normal variations, irregular changes 
occur in time scales of a few days in response 
to short-time variations of atmospheric 
variables. For example, changes in ozone 
amounts due to synoptic systems (high- and 
low-pressure systems) are short-term (of the 
order of days); therefore, their dynamical 
lifecycle lasts up to ten days (Dobson et al., 
1929). Duration of synoptic systems affects 
the trend of time series of ozone. However, it 
should be noted that in order to examine the 
non-steady and transient feature of ozone 
concentration, different continuous and 
discrete basic functions with finite energy 
must be used. This means that due to the 
variation of ozone density in different places 
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(different wavelength), a single wavelength 
(Fourier transform) could not describe the 
ozone concentration. In this regard, instead of 
Fourier transform method that adopts 
sinusoidal stationary mode, a wavelet 
transform method with its special 
characteristics of ability to demonstrate non 
stationary properties of signals can be used.  
Application of wavelet theory to data 
analysis in different scientific fields has been 
considerably increased. For example, Candes 
and Donoho (2002), Donoho and Johnstone 
(1998), Hall and Penev (2004) and Genovese 
and Wasserman (2005) have established the 
application of the wavelet method to signal 
analysis in various fields. This theory has 
also been introduced and applied in various 
meteorological studies. Among them, the 
time-series analysis of soil changes (Lark and 
Webster, 2001), examination of the 
relationship between rainfall and runoff 
(Labat et al., 2001), simulation of 
photochemical reactions (Heidarinasab et al., 
2004), hurricane boundary layer studies (e.g. 
Zhu et al., 2010), mountain waves (Woods 
and Smith, 2010), Elniño Southern 
Oscillation (ENSO) model validation 
(Stevenson et al., 2010), continuous wavelet 
analysis for meteorological data (Wang and 
Lu, 2010) and drought forecasting (Ozger et 
al., 2012) can be named. 
In atmospheric ozone studies, the results of 
study of Echer (2004) can be mentioned in 
which the Meyer wavelet method was 
employed as a band-pass filter for monthly 
ozone data to study the solar cycle variations 
and ENSO phenomena. Werner (2008) also 
applied the wavelet theory to study the ozone 
variability with latitudes. One of the 
problems that challenged scientists in the 
study of ozone layer is missing data in their 
records. Therefore, the main purpose of the 
present study is to introduce and examine an 
optimized method to reconstruct the missing 
data. The motivation comes from the filling 
gaps in ozone data used by Farahani et al. 
(2012b). They showed that the Spline 
interpolation method provides an acceptable 
degree of agreement between the interpolated 
and observed ozone data (it will be discussed 
later). They demonstrated that the Spline 
method has the biggest error in filling gaps 
that last for more than five days. 
In this study, the six-year (2005–2010) Total-

Ozone daily measured with Dobson 
spectrometer in the Institute of Geophysics, 
University of Tehran, is used as the raw data 
with many gaps in it and the gaps in it are 
filled by the proposed method. For validation 
of the suggested technique, the satellite data 
of World Ozone and Ultraviolet Radiation 
Data Centre (WOUDC) were used. 
 
2. Wavelet Theory: Definitions and 
Properties 
One of the substantial characteristics of the 
wavelet transform is its ability in local 
analysis of the non-stationary signals. Fourier 
transform lacks this feature for non-
stationary signals. These advantages of 
specifying the location (temporal or spatial) 
of the discontinuity in a signal is done by the 
wavelet transform technique accurately. 
Therefore, the wavelet transform is 
considered as a prevailing tool in expressing 
the signals properties. 
Theoretically, wavelet is a set of functions 
used to decompose a continuous signal into 
its frequencies components, where the 
resolution of each frequency is proportional 
to its scale. However, wavelet transform is 
decomposition of a function based on 
wavelet functions. The wavelets, known as 
daughter wavelets, are the transferred and 
scaled samples of a function (mother 
wavelet) with a finite length and a highly 
damped oscillation. Some examples of 
mother wavelet are Meyer, Morlet, Mexican 
Hat and Haar. The wavelet transform 
transfers a time series to frequency domain 
(using basis functions) and then represents 
the time series in different time and scales. 
The continuous transform of wavelet is 
defined as (Gencay et al. 2002): 

,( , ) ( ) ( ) d ,u sw u s x t t t



                          (1) 

where x(t) is the basis function and the 
mother wavelet ψ୳,ୱ is defined as: 

,

1
( ) ( ) .u s

t u
t

ss
 


                                   (2) 

Here, ψ୳,ୱ is a function of two continuous 
variables of u and	s. Variable  s is the 
wavelet size parameter, while u indicates the 
location of the wavelet. By changing these 
variables, the wavelet transform is able to 
decompose a time series in different time 
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