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ABSTRACT

This paper aims to provide an extended evaluation framework  for building detection algorithms using a 
diverse set of High Spatial Resolution (HSR) images. The HSR images utilized in this paper were chosen 
from  different  places  and different  sensors, and  based  on  several  important  challenges  in  an  urban  area 
such as building alignment, density, shape, size, color, height, and imaging angle. The classical evaluation

metrics such  as  detection  rate,  reliability,  false  positive  rate,  and  overall  accuracy  only  demonstrate  the

performance  evaluation  of  an  algorithm  in  relation  to  the  buildings  and  cannot  interpret the mentioned 
challenges. The extended evaluation framework proposed in this paper composed several extended metrics 
for performance evaluation of building detection algorithms in relation to these challenges in addition to 
the classical metrics. The paper intends to declare that the success or failure metrics of a building detection 
algorithm  can  have  more  varieties.  In  fact,  a  building  detection  algorithm  may  be  successful  at  one  or

several metrics, whilst it may be unsuccessful at the other metrics. 
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1. Introduction 

    In the last two decades, the detection of buildings from 

High Spatial Resolution (HSR) images has received much 

attention for many applications in Earth Observation and 

Geomatics Engineering (EOGE) such as map updating, 

urban planning, 3D modeling, disaster management, and 

change detection. Until now, many building detection 

algorithms were proposed in the literatures. The 

performance evaluation of these algorithms is an important 

task of the studies (Khoshelham et al., 2010). Usually, 

several famous and common metrics extracted from the 

error matrix were used for evaluation of the algorithms such 

as Detection Rate (DR), Reliability (R), False Positive Rate 

(FPR), and Overall Accuracy (OA). Their meanings and 

calculation methods can be found in some studies (e.g. 

Khoshelham et al., 2010 ; Ghanea et al., 2014 ; Khosravi et 

al., 2014). Up to now, the HSR images used in the building 

buildingwere diverse in terms ofstudiesdetection

alignment, distance between buildings, building density, 

building shape, building size, building color, and building 

height. In addition to the challenges mentioned above, the 

presence and disturbance of shadows and vegetation areas 

can be observed in the proximities of buildings (see Table 

1). All of these challenges do not exist in the images of the 

previous studie Furthermore,s. the classical evaluation 

and OADR, R, FPR,metrics, i.e. , only theexplain

performance evaluation of algorithms in relation to 

buildings (Khoshelham et al., 2010). Nonetheless, the effect 

of some challenges is neglected in these metrics. For 

example, the classical metrics are not able to indicate the 

evaluation of algorithms in relation to imaging angle or they 

cannot demonstrate how much the vegetation, shadow or 

non-building areas can be removed by algorithms. In fact, 

they cannot point out whether an algorithm is able to 
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eliminate all the vegetation, shadow or non-building areas 

from image or not. The main objective of this paper is to 

introduce a diverse set of HSR images based on all the 

challenges mentioned above (see Table 1) and then, to 

provide several quantitative metrics for performance 

evaluation of building detection algorithms in relation to 

these Challenges. The next sections of the paper are as 

follows. In Section 2,  a diverse set of  HSR  imagery is 

introduced and then several evaluation metrics are provided 

based on them. These metrics and classical metrics establish 

an extended evaluation framework.  In   Section 3,    the 

extended framework is applied in order to compare three 

building detection algorithms. This section indicates that the 

success or failure metrics of a building detection algorithm 

can have a wide range and an algorithm may be more 

successful or unsuccessful than the other algorithms at one 

or several evaluation metrics. Finally, Section 4   contains 

the conclusion of the paper.  

 

2. Methodology: Extending evaluation framework 

2.1 A diverse set of HSR images 

Twelve regions were chosen from different places and 

different sensors (see Figures 1). Regions 1-(a), (e), (f), (g), 

(h), (i), (k), and (l) were the pan-sharpened QuickBird 

images (0.6m resolution) and region 1-(j) was the pan-

sharpened GeoEye-1 image (0.5m resolution at stereo 

mode) of the city of Isfahan. Region 1-(d) was the pan-

sharpened GeoEye-1 image (at nadir mode) of the city of 

Tehran and regions 1-(b) and 1-(c) were the pan-sharpened 

QuickBird images of the city of Ankara. All the images 

were pre-processed by histogram stretching to enhance. 

There were many different urban objects such as roads, 

yards, shadows, vegetation, green spaces, bare land, and the 

most important feature, i.e. buildings in these images. They 

can be thus considered as a diverse set of HSR images in 

terms of "building alignment and distance, density, shape, 

color and reflectance, the presence of shadow and 

vegetation, variation of buildings height, and imaging 

angle". Based on the most prominent property of each 

region, twelve regions are categorized as follows: 

- Regions (a) and (b) have the buildings with regular 

alignment, where the former has blocks of buildings, while 

the latter has single buildings. By contrast, region (c) has 

the buildings with irregular alignment. 

 

 

Table 1. The challenges used in previous building detection studies 
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Benediktsson et al., 2003          

Jin & Davis, 2005          

Hui et al., 2006          

Zhang et al., 2006          

Huang et al., 2008          

Hester et al., 2008          

Khoshelham et al., 

2010 

         

Bouziani et al., 2010          

Dalla Mura et al., 2010          

Taubenbuck et al., 

2010 

         

Myint et al., 2011          

Huang & Zhang, 2011          

Huang & Zhang, 2012          

Aytekin et al., 2012          

Meng et al., 2012          

Salehi et al., 2012          

Huang & Zhang,  2013          

Sebari & He, 2013          

Ghanea et al., 2014          

Khosravi et al., 2014          
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(a)                                   (b)                                  (c)                   (d) 

     
(e)                                   (f)                                  (g)                   (h) 

    
                    

     

       

  

(i)                                   (j)                                  (k) (l)
Figure 1. A diverse set of HSR images applied in this paper, (a) Regular blocks, (b) Regular single, (c) Irregular, (d) Positional dense, (e)

Ragged edge, (f) Straight edge, (g) Troublesome shadows, (h) Troublesome vegetation, (i) Variation of height, (j) Oblique image, (k) Similar

reflectance & blocks, (l) Similar reflectance and single  

 

- The building density of region (d) is relatively high. 

- Some buildings of region (e) have the ragged edges, 

whereas all the buildings of region (f) have straight edges. 

- The troublesome urban objects, i.e. shadow and 

vegetation areas can be observed in proximities of buildings 

in regions (g) and (h), respectively. 

- The buildings of region (i) have diverse height. 

The image of region (j) is an oblique image unlike the 

other regions. 

- Finally, there is similar reflectance (or low contrast) 

between the building and non-building areas in regions (k) 

and (l), where the former has blocks of buildings and the 

latter has single buildings. 

 

2.2 Classical evaluation metrics 

The classical evaluation metrics such as DR, R, FPR, 

and OA are defined as follows where the reference data is 

the buildings image extracted from a digital map 

(Khoshelham et al., 2010): 

 

 

FNTP

TP
DR


                                                               (1) 

FPTP

TP
R


                                      (2) 

FPTN

FP
FPR


                                                 (3) 

FNFPTNTP

TNTP
OA




                      (4) 

 

TP and TN are the numbers of pixels correctly detected as 

building and non-building, respectively. FP is the number 

of non-building pixels detected as building and FN is the 

number of building pixels detected as non-building 

(Khosravi et al., 2014). FPR represents the commission 

error of buildings produced by algorithm. A higher DR 

value indicates the high efficiency of an algorithm in the 

detection of building. A higher R and a lower FPR implies 

the reliability of the produced results (Khoshelham et al., 

2010). 

 

2.3 Extended evaluation metrics 

This section aims to provide several quantitative metrics 

for the evaluation of building detection algorithms based on 

the applied images: 
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2.3.1 Building alignment 

When the building alignment is diverse such as regions 

(a), (b) and (c), how much building areas can be detected by 

algorithm. Therefore, Building Detection Rate (BDR) index 

can be a proper metric for performance evaluation of 

algorithm in relation to building alignment. It is defined by 

(Khoshelham et al., 2010) as DR index Eq. (1) where 

buildings image extracted from a digital map is considered 

as the reference data. Thus, RBI , RSI and IRI , i.e. evaluation 

metrics, which consider building alignment, are defined as 

follows: 

DRBDRIII IRRSRB                    (5) 

2.3.2 Building density 

At a dense urban area such as region (d), the amount of 

building areas can be detected by algorithm. Thus for the 

performance evaluation of algorithm in relation to building 

density, again BDR index is a good metric, where the 

reference data is the buildings image extracted from a 

digital map. PDI , the evaluation index which considers the 

building density is defined as follows: 

 

BDRIPD                                                (6) 

Generally speaking, the DR metric can talk about the 

sensitivity of an algorithm in relation to building alignment 

and density, in addition to the rate of building regions 

detected by that algorithm.  

 

2.3.3 Building edges 

At region (e) or (f), the amount of ragged or straight 

edges can be detected by algorithm. In these cases, the 

Ragged Edges Detection Rate (REDR) and the Straight 

Edges Detection Rate (SEDR) are defined as follows: 

 

TRE

DRE
REDR                                                                 (7) 

TSE

DSE
SEDR                                       (8) 

DRE and DSE are the numbers of detected ragged and 

straight edges pixels, respectively. TRE and TSE are the 

total ragged and straight edges pixels at regions (e) and (f), 

respectively. Manually ragged edges image of region (e) 

and manually straight edges image of region (f) are 

considered as the reference data. Thus, two metrics, REI and 

SEI , which consider the building edges can be defined as: 

 

REDRIRE                                                                (9)   

SEDRISE                                     (10) 

 

 

 

The performance of an algorithm is directly dependent on 

REDR and SEDR values. 

 

2.3.4 Troublesome objects 

Where shadow or vegetation areas are the proximities of 

buildings such as region (g) or (h), the amount of the 

shadow or vegetation areas are removed by algorithm. In 

these cases, the number of shadow and vegetation pixels 

that have been wrongly detected as buildings are computed 

in regions (g) and (h), respectively. Thus, the False Shadow 

Detection Rate (FSDR) and the False Vegetation Detection 

Rate (FVDR) are defined as follows: 

 

TS

FDS
FSDR                                                               (11) 

TV

FDV
FVDR                                     (12) 

FDS and FDV are the false number of the detected shadow 

and vegetation pixels as buildings and TS and TV are the 

total shadow and vegetation pixels at regions (g) and (h), 

respectively. Manually shadow image of region (g) and 

manually vegetation image of region (h) are considered as 

the reference data. Two metrics, i.e. FSI and FVI , which 

indicate the ability of an algorithm in eliminating shadow 

and vegetation areas can be defined as follows: 

 

FSDRIFS 1                                                              (13) 

FVDRIFV 1                                    (14) 

In fact, the efficiency and reliability of an algorithm have 

reverse dependency with the FSDR and FVDR values. 

 

2.3.5 Building height 

At an urban area with a variety of buildings heights such 

as region (i), the more building areas an algorithm is able to 

detect, the more efficient the algorithm is. Thus, BDR index 

seems to be a proper metric for performance evaluation of 

algorithm in relation to building height. VHI , the evaluation 

index, which considers building height, is defined as 

follows: 

 

BDRIVH                                          (15) 

2.3.6 Imaging angle 

The objective of a 2D building detection algorithm is to 

detect only roofs, but in an oblique image such as image of 

region (j), the side view of all or most buildings can be 

observed in addition to building roofs. In this case, how 

much the side view areas can be removed by algorithm. 

Thus, the number of side view pixels that have been 

wrongly detected as buildings, i.e. False Side View 

Detection Rate (FSVDR) should be computed as follows: 
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TSV

FDSV
FSVDR                            (16) 

where, FDSV is the false number of detected side view 

pixels as buildings and TSV is the total side view pixels at 

region (j). In addition, manually side view image of region 

(j) is considered as reference data. OII , which indicates the 

ability of algorithm in eliminating the side view areas, is 

defined as follows: 

 

FSVDRIOI 1                                         (17) 

here, the efficiency and reliability of an algorithm have 

reverse dependency with the FSVDR value. A lower 

FSVDR implies the high efficiency and reliability of an 

algorithm in the detection of buildings, whilst its high value 

indicates the inability of that algorithm in eliminating all 

side view areas. 

 

 

2.3.7 Similar reflectance 

Where there is a similar reflectance between building 

and non-building areas such as regions (k) and (l), the 

amount of non-building areas are removed by algorithm. In 

these cases, the False Non-Building Detection Rate 

(FNBDR), i.e. the number of non-building pixels that have 

been wrongly detected as buildings, should be computed as 

follows: 

 

TNB

FDNB
FNBDR                            (18) 

FDNB is the false number of detected non-building pixels 

and TNB is the total non-building pixels at regions (k) and 

(l). Reference data is the manually non-building image of 

these regions. Thus, SRBI  (blocks) and SRSI  (single), which 

indicate the ability of algorithm in eliminating the non-

building areas, can be defined as follows: 

 

FNBDRII SRSSRB  1                                   (19) 

Similar previous index, the efficiency and reliability of an 

algorithm have reverse dependency with the FNBDR value. 

Consequently, at an urban area with similar reflectance 

between building and non-building areas, a lower FNBDR 

implies the high efficiency and reliability of the algorithm 

in the detection of buildings and its high value indicates the 

inability of that algorithm in eliminating all adjacent non-

building areas. All the extended metrics mentioned above 

besides the classical metrics establish an extended 

evaluation framework. The metrics of this framework and 

their descriptions are shown in Table 2. 

 

3. Experiment and discussion 

3.1 An overview of three building detection algorithms 

For experiment, we selected three recent studies as 

representatives of all algorithms which had the attractive 

and complex structures and approximately covered all the 

processing tricks for building detection using only HSR 

images. The first two algorithms are based on the work of 

)Ghanea et al., 2014 ; Aytekin et al., 2012), where the 

former is the combination of clustering, and segmentation 

methods (CS), and the latter is the combination of spectral 

metrics, clustering, and the morphological methods (ICM). 

The final algorithm is an Object-Based image Classification 

(OBC). 

 

3.1.1 Algorithm CS (Clustering and Segmentation) 

      The algorithm CS presented by (Ghanea et al., 2014) 

included these steps (Figure 2): in the first step, a k-means 

clustering (K=2) was applied to the original image to 

convert it to a binary image, consisted of the semi-building 

layer and the non-building layer. Then a closing 

morphological operator was used to cover the small non-

building areas surrounded by the semi-building layer. 

Afterwards, a Fuzzy C-Means (FCM) clustering was 

applied to the semi-building layer to split it into several 

clusters. Each cluster was decomposed into independent 

areas using a connected component labelling process. After 

the FCM clustering, the small pseudo-building areas were 

eliminated using an area thresholding. The area of the 

smallest building was considered as the threshold value. 

Then, a region-growing segmentation was applied to 

eliminate the large pseudo-building areas.  The variance and 

the area of the segments were used as the similarity 

criterion for segmenting. The threshold value for area was 

the area of the largest building. In addition, the variance of 

all points belonging to each segment at the previous step 

was considered as the variance threshold for that segment. 

The holes of the building areas were closed using a filling 

morphological operator and finally, only the building areas 

were remained in the image.  

 

3.1.2 Algorithm ICM (Indices, Clustering and Morphological) 

The algorithm CMI was presented by (Aytekin et al., 

2012) and had these steps (Figure 3): in step 1, the images 

of the Normalized Difference Vegetation Index (NDVI) and 

the shadow index (the ratio of chromaticity to intensity in 

YIQ color space) were generated. Then, a suitable threshold 

was determined based on the Otsu’s method for each image 

to eliminate the vegetation and shadow areas, respectively. 

After masking out the vegetation and shadow areas, the 

basic image was segmented using a mean-shift method.  
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     Thus, man-made areas (include mainly the building 

rooftops and roads) were extracted after the classification of 

the vegetation and shadow areas. Afterwards, a modified 

version of the thinning algorithm (Aytekin et al., 2012) was 

applied to each segment and then the main roads were 

separated from other segments using Otsu's thresholding. 

Next, the small artifacts were filtered using the principle 

component analysis and a morphological operator such as 

(Gonzales et al., 2004). Finally, only the building areas 

were remained in the image. 

 

3.1.3 Algorithm OBC (Object-Based Classification)  

The most important step in algorithm OBC was 

segmentation. It used a multiresolution segmentation 

belonging to eCognition Developer software (eCognition 

User Guide, 2012). The multiresolution segmentation 

needed three main parameters to be tuned: scale, shape, and 

compactness (Baatz & Schape, 2000). After producing the 

segments, the classes such as roads, vegetation, shadows, 

bare land, and buildings were defined and the training 

samples were then collected for each class. Then, the mean 

values for NDVI, green and brightness, area, length to 

width ratio, rectangular fit, and shape index were selected 

as object attributes. Finally, the algorithm determined the 

label of each segment using the nearest neighbor classifier 

based on fuzzy logic and then, buildings were separated 

from the classified image (Figure 4). 

 

3.2 Evaluation results 

The comparative evaluation results of the three 

algorithms using the extended framework are shown in 

Table 3 and also Figure 5. The results are presented in two 

distinct sections: by the classical metrics and by the 

extended metrics. 

3.2.1 Comparative evaluation by classical metrics 

From Table 2, the DRI rate of algorithm OBC is around 

87% which is 10% and 20% higher than the ones of 

algorithms CS (77%) and ICM  (67%), respectively. In 

addition, the IR rate of algorithm OBC (81%) is 26% and 

14% higher as compared to the algorithms CS (55%) and 

ICM (67%), respectively. Moreover, the commission error 

of algorithm OBC is around 26% which is 7% lower than 

the ones of algorithms CS and ICM. In addition, the overall 

accuracy of algorithm OBC is 20%, which is 12% higher as 

compared to the two other algorithms. These results can be 

seen in the right of the vertical dotted line of Figure 5. 

Therefore, it can be concluded that algorithms OBC is more 

efficient and dependable than the algorithms CS and ICM. 

This issue may be due to the use of segments (instead of 

single pixels) and also non-spectral features at the object-

based process. In comparison between the two non-object-

based algorithms, it can be seen that the DRI rate of 

algorithm CS is 76% which is around 9% higher than 

algorithm ICM with the DRI value of 67%. Conversely, the 

RI value of algorithm ICM (67%) is around 12% higher 

than the ones of algorithm CS (55%). In addition, the 

commission error of algorithm ICM (20%) is 19% lower 

than the ones of algorithm CS (39%). Thus, these results 

represent that although algorithm CS is more efficient than 

algorithm ICM in the detection of building, nevertheless 

algorithm ICM is more dependable than algorithm CS. 

 

3.2.2 Comparative evaluation by developed metrics 

Although, algorithm OBC was more successful than the 

other two algorithms at all classical metrics, however it may 

Table 2. The developed evaluation framework for building detection algorithms 

 Index Description 

E
x

te
n

d
ed

 

M
et

ri
cs

 

IRB = BDR Regular Blocks Index 

IRS = BDR Regular Single Index 

IIR = BDR Irregular Index 

IPD = BDR Positional Dense Index 

IRE = REDR Ragged Edge Index 

ISE = SEDR Straight Edge Index 

IFS = 1 – FSDR False Shadows Index 

IFV = 1 – FVDR False Vegetation Index 

IVH = BDR Variation of Height Index 

IOI = 1 – FSVDR Oblique Image Index 

ISRB = 1 – FNBDR Similar Reflectance Blocks Index 

ISRS = 1 – FNBDR Similar Reflectance Single Index 

C
la

ss
ic

a
l 

M
et

ri
cs

 

IDR = DR Detection Rate Index 

IR = R Reliability Index 

IN-CR = 1 – FPR Non-Commission Error Index 

IOA = OA Overall Accuracy Index 
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themetrics. Indevelopedat somebe unsuccessful

following, the byevaluationresults of comparative  

developed metrics are provided in detail: 

- Building alignment and distance ( RBI , RSI and IRI ): 

From Table 2 and Figure 5, algorithm ICM is the most 

unsuccessful at three metrics RBI , RSI and IRI . Conversely, 

algorithm OBC is the most successful at two metrics IRB 

(90%) and IRI  (93%); and algorithm CS is the most 

successful at RSI  (85%) which is 7% higher than the ones 

of algorithm OBC. These cases indicate "where there are 

blocks of buildings, algorithm OBC is more successful than 

the other two algorithms, and algorithm CS is more 

buildingssinglethere aresuccessful, when thewhile

algorithmofperformance ICM inlowestis the two 

conditions". 

- Building positional density ( PDI ): In the dense urban 

area, algorithms OBC could be more successful than the 

other two algorithms with the PDI rate of 90% versus 80% 

and 58%. In addition, algorithm CS was more efficient than 

algorithm ICM in the detection of buildings from a dense 

area. 

- Building Edge ( REI and SEI ): From Table 2, the REI

and SEI rates of algorithm OBC are the most (around 100% 

and 92%), whereas the REI of algorithm CS is the lowest 

(60%) and the SEI rate of algorithm ICM is the lowest 

(81%). 

- Troublesome Objects ( FSI and FVI ): Notable results of 

Table 2 are related to FSI and FVI metrics. As it can be 

seen, the FSI and FVI rates of algorithm ICM have been 

100% which are better than the other two algorithms. In 

addition, algorithm CS is more successful than algorithm 

OBC at these two metrics. These two cases indicate that 

"algorithm ICM is more successful and dependable than the 

other algorithms (especially object-based method) in 

shadow and vegetation areaseliminating all from the 

regions (g) and (h), respectively. Conversely, algorithm 

OBC is the most unable algorithm in eliminating all shadow 

and vegetation areas".  

- Building Height ( VHI ): Similar to the two previous 

metrics, the VHI rate of algorithm ICM is 85% which is 

better as compared to the other algorithms even object-

based method, whereas, the one of algorithm CS is the 

lowest with the rate of 75%. Thus, "in an urban area with 

variation of building height, algorithm ICM is the most 

successful and algorithm CS is the most unsuccessful in the 

detection of buildings". 

- Imaging Angle ( OII ): The OII rate of algorithm OBC 

is 69% which is much better as compared to the other two 

algorithms (around 48–51% higher). This case indicates 

"algorithm OBC is much more successful and dependable 

than the other two algorithms in eliminating the side view 

areas of region (j), while algorithm CS has the lowest 

efficiency".  

- Similar Reflectance ( SRBI and SRSI ): The SRBI rates of 

algorithms ICM (82%) and CS (74%) are more than the 

ones of algorithm OBC (72%). Conversely, the SRSI rate of 

algorithms OBC (93%) is much more as compared to the 

algorithms ICM (74%) and CS (54%).  

 

 

 

 
(a)                                      (b)                                  (c) 

 
                        

   

   

 

(d) (e)                                  (f)
Figure 2. The procedure of algorithm CS, (a) Binary image produced by k-means clustering with k = 2, (b) Post-processing using a closing

morphological operator, (c) Semi-building layer clustering by FCM, (d) Eliminating the small pseudo-building areas, (e) Region-growing

method, (f) The final result of building detection  
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(a)                                   (b)                                      (c) 

 
(d)                                   (e)                                      (f) 

Figure 3. The procedure of algorithm ICM, (a) Masking vegetation, (b) Masking shadows, (c) Man-made image, (d) Masking roads, (e) 

Filtering the artifacts, (f) The final result of building detection 

 

 
(a)                                       (b)                                       (c) 

Figure 4. The procedure of algorithm OBC, (a) Multiresolution segmentation, (b) Classified image, (c) The final result of building detection 

 

Table 3. Comparative evaluation results of algorithms using the developed framework 

 Index Algorithm CS Algorithm ICM Algorithm OBC 

E
x

te
n

d
ed

 

M
et

ri
cs

 

IRB 81.53 66.56 89.55 

IRS 84.73 74.14 77.74 

IIR 86.87 67.44 87.11 

IPD 79.84 57.50 89.71 

IRE 60.04 93.03 99.72 

ISE 91.39 80.80 91.53 

IFS 98.23 100.00 97.16 

IFV 93.63 100.00 84.97 

IVH 74.54 84.82 77.47 

IOI 18.15 20.79 69.42 

ISRB 74.38 81.94 71.88 

ISRS 54.27 74.21 93.02 

C
la

ss
ic

a
l 

M
et

ri
cs

 IDR 76.84 66.54 86.93 

IR 55.13 66.85 80.97 

IN-CR 61.25 79.55 87.34 

IOA 67.22 74.57 87.19 
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Figure 5. Comparative evaluation using the developed framework between three algorithms 

 
It can be concluded that "algorithms ICM and CS are the 

most successful in eliminating the non-building areas where 

there is similar reflectance between the building blocks and 

non-building areas; while algorithm OBC is the most 

successful in eliminating the non-building areas, where 

there is a similar reflectance between single building and 

non-building areas." 

 

4. Conclusion 

    This research study which presented an extended 

evaluation framework indicated that the success or failure 

metrics of a building detection algorithm can have a wide 

range. In the proposed framework, the quantitative metrics 

such as the evaluation metrics in relation to the detection of 

buildings from a dense urban area, from a region with 

regular or irregular alignment, from a region with variation 

of building height, moreover in relation to the eliminating 

shadow, vegetation, side view and non-building areas were 

presented. The conclusion of the comparison between the 

three building detection algorithms using the proposed 

framework was as follows: Algorithm ICM was more 

successful than the other two algorithms in eliminating all 

the troublesome shadow, vegetation and non-building areas 

(in an urban area with building blocks) and the detection of 

building areas in a region with variation of height, (i.e. at 4 

metrics FSI , FVI , VHI and SRBI ). Moreover, at 6 other 

metrics ( REI , OII , SRSI , RI , CRNI  and OAI ), it was more 

successful than algorithm CS. Finally, it was the most 

unsuccessful at 6 remaining metrics ( RBI , RSI , IRI , PDI , SEI

and DRI ). The algorithm OBC was the most successful at 

11 metrics ( RBI , IRI , PDI , REI , SEI , OII , SRBI , DRI , RI ,

CRNI  and OAI ), it was especially more successful in 

eliminating the side view and non-building areas (in an 

urban area with single buildings). However, at 3 metrics 

 ( FSI , FVI and SRBI ), it was the most unsuccessful. In other 

words, algorithm OBC was unable to eliminate the 

troublesome shadow, vegetation areas and non-building 

areas (at an urban area with building blocks). Finally, it can 

be concluded that a building detection algorithm may be 

successful at one or several metrics, while it may fail at the 

other metrics. 

 

References 

Aytekın, Ö., Erener, A., Ulusoy, İ., & Düzgün, Ş. (2012). 

Unsupervised building detection in complex urban 

environments from multispectral satellite imagery. 

International Journal of Remote Sensing, 33(7), 2152-

2177.  

Baatz, M. (2000). Multiresolution segmentation: an 

optimization approach for high quality multi-scale 

image segmentation. Angewandte geographische 

informationsverarbeitung, 12-23.  

Benediktsson, J. A., Pesaresi, M., & Amason, K. (2003). 

Classification and feature extraction for remote sensing 

images from urban areas based on morphological 

transformations. IEEE Transactions on Geoscience and 

Remote Sensing, 41(9), 1940-1949.  

Bouziani, M., Goita, K., & He, D. C. (2010). Rule-based 

classification of a very high resolution image in an 

urban environment using multispectral segmentation 

guided by cartographic data. IEEE Transactions on 

Geoscience and Remote Sensing, 48(8), 3198-3211.  

Dalla Mura, M., Benediktsson, J. A., Waske, B., & 

Bruzzone, L. (2010). Morphological attribute profiles 

for the analysis of very high resolution images. IEEE 



Khosravi & Momeni, 2017  

03 

Transactions on Geoscience and Remote Sensing, 

48(10), 3747-3762.  

eCognition Developer 8.7.2 User Guide. 2012 

Ghanea, M., Moallem, P., & Momeni, M. (2014). 

Automatic building extraction in dense urban areas 

through GeoEye multispectral imagery. International 

journal of remote sensing, 35(13), 5094-5119.  

Gonzalez R.C, Woods R.E, Eddins S.L. Digital Image 

Processing Using MATLAB, 2nd ed. Prentice-Hall, Inc, 

2004. 

Hester, D. B., Cakir, H. I., Nelson, S. A., & Khorram, S. 

(2008). Per-pixel classification of high spatial resolution 

satellite imagery for urban land-cover mapping. 

Photogrammetric Engineering & Remote Sensing, 

74(4), 463-471.  

Lu, Y. H., Trinder, J. C., & Kubik, K. (2006). Automatic 

building detection using the Dempster-Shafer algorithm. 

Photogrammetric Engineering & Remote Sensing, 

72(4), 395-403.  

Huang, X., & Zhang, L. (2011). A multidirectional and 

multiscale morphological index for automatic building 

extraction from multispectral GeoEye-1 imagery. 

Photogrammetric Engineering & Remote Sensing, 

77(7), 721-732.  

Huang, X., & Zhang, L. (2013). An SVM ensemble 

approach combining spectral, structural, and semantic 

features for the classification of high-resolution 

remotely sensed imagery. IEEE transactions on 

geoscience and remote sensing, 51(1), 257-272.  

Huang, X., Zhang, L., & Li, P. (2008). Classification of 

very high spatial resolution imagery based on the fusion 

of edge and multispectral information. Photogrammetric 

Engineering & Remote Sensing, 74(12), 1585-1596. 

Hunag X, Zhang L. Morphological building/shadow 

index for building extraction from high–resolution 

imagery over urban areas, IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote 

Sensing, vol. 5, no. 1, pp. 161–172, February 2012. 

Jin, X., & Davis, C. H. (2005). Automated building 

extraction from high-resolution satellite imagery in 

urban areas using structural, contextual, and spectral 

information. EURASIP Journal on Advances in Signal 

Processing, 2005(14), 745309.  

Khoshelham, K., Nardinocchi, C., Frontoni, E., Mancini, 

A., & Zingaretti, P. (2010). Performance evaluation of 

automated approaches to building detection in multi-

source aerial data. ISPRS Journal of Photogrammetry 

and Remote Sensing, 65(1), 123-133.  

Khosravi, I., Momeni, M., & Rahnemoonfar, M. (2014). 

Performance evaluation of object-based and pixel-based 

building detection algorithms from very high spatial 

resolution imagery. Photogrammetric Engineering & 

Remote Sensing, 80(6), 519-528.  

Meng, X., Currit, N., Wang, L., & Yang, X. (2012). Detect 

residential buildings from lidar and aerial photographs 

through object-oriented land-use classification. 

Photogrammetric Engineering & Remote Sensing, 

78(1), 35-44.  

Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., 

& Weng, Q. (2011). Per-pixel vs. object-based 

classification of urban land cover extraction using high 

spatial resolution imagery. Remote sensing of 

environment, 115(5), 1145-1161.  

Salehi, B., Zhang, Y., Zhong, M., & Dey, V. (2012). 

Object-based classification of urban areas using VHR 

imagery and height points ancillary data. Remote 

Sensing, 4(8), 2256-2276.  

Sebari, I., & He, D. C. (2013). Automatic fuzzy object-

based analysis of VHSR images for urban objects 

extraction. ISPRS Journal of Photogrammetry and 

Remote Sensing, 79, 171-184.  

Taubenböck, H., Esch, T., Wurm, M., Roth, A., & Dech, S. 

(2010). Object-based feature extraction using high 

spatial resolution satellite data of urban areas. Journal of 

Spatial Science, 55(1), 117-132.  

Zhang, L., Huang, X., Huang, B., & Li, P. (2006). A pixel 

shape index coupled with spectral information for 

classification of high spatial resolution remotely sensed 

imagery. IEEE Transactions on Geoscience and Remote 

Sensing, 44(10), 2950-2961. 

 


