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Abstract 

  

     Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, 

pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that 

can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm 

(GA) together with the adaptive network-based fuzzy inference system (ANFIS) to predict soil CEC based on 104 

soil samples collected from soil surface under four different land uses. The database was randomly split into training 

and testing datasets in proportion of 70:30. The results showed that both models were accurate in predicting the soil 

CEC; however, comparison of the performance criteria indicated that SVR results (R2=0.84, RMSE=3.21 and 

MAPE=7.62) was more accurate than ANFIS results (R2=0.81, RMSE=3.38 and MAPE=10.31).  The results of 

sensitivity analysis showed that two parameters had the highest effect on both models were soil organic matter and 

clay content.  

 

Keywords: Soil cation exchange capacity; Support vector regression; ANFIS; Genetic algorithm; Soil physiochemical 

properties 

      

 

1. Introduction 

 

     The soil cation exchange capacity (CEC) is 

defined as the number of the adsorbed cation 

charge moles that are desorbed from a unit mass 

of soil under specific conditions of temperature, 

pressure, soil solution composition, and soil 

solution (Sposito, 2008). CEC is commonly 

referred to as the quantity of negative charges in 

soil. The negative charge may be pH dependent 

(soil organic matter) or permanent (some clay 

minerals) (Evans, 1989). CEC is a good 

indicator of soil fertility, crop growth, and 

pollutant transport and determines the buffering 

capacity of a soil to hold the cationic nutrients 

and organic pollutants  (Arias et al., 2005; Tang 

et al., 2009; Visconti et al., 2012) and is 

therefore an important parameter for prediction  
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of crop yield. De la Rosa et al. (1981) found   

that CEC, carbonate content, salinity and 

sodium saturation were conducive to 78% of the 

variation in winter wheat yields. To estimate 

maize and soybean yields, Sharma et al. (2013)  

successfully applied regression models in which 

CEC was one of six explanatory variables. 

Different crop models like EPIC (Williams et 

al., 1989) and CropSyst (Stockle et al., 1994) 

make use of CEC as an important modeling 

parameter. Therefore, precise knowledge of 

CEC data helps determining the accuracy of 

crop yield simulation. In addition, through soil 

CEC, the rate of the absorption of different 

pollutants like diquat and paraquat  (Delle Site, 

2001), and atrazine or phenanthrene (Chung and 

Alexander,  2002) can be determined. Overall, a 

good understanding of soil CEC is important for 

crop, soil and environmental researches. 

     Direct measurement of CEC is expensive and 

time consuming, especially for soils with high 

contents of calcium carbonate in Iran. Thus, it is 
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worth applying indirect methods for accurate 

prediction of CEC. Pedotransfer functions 

(PTFs) can be a method for predicting CEC 

from basic soil properties being more easily 

measured (Krogh et al., 2000; Seybold et al., 

2005).   

     According to previous studies, clay and soil 

organic matter (SOM) contents strongly affect 

the capacity of a soil for buffer changes in pH 

(Syers et al., 1970; Oorts et al., 2003). 

Consequently, these physicochemical properties 

can be useful predictors for estimating the CEC 

of a soil (Horn et al., 2005; Tang et al. 2009). 

However, since PTFs developed by different 

methods have different results, the selection of 

the appropriate PTFs is difficult. Traditional 

PTFs have developed through multiple linear 

regressions (MLRs) or artificial neural networks 

(ANNs). Seybold et al. (2005) developed a 

MLR-based PTF for soil CEC and realized that 

the pH, SOM and clay content had a strong 

correlation with CEC. Moreover, soil structure, 

water content at permanent wilting point, 

hydraulic conductivity and soil horizons can be 

important predictors of CEC in soils (Madeira et 

al., 2003; Seybold et al., 2005; Tang et al. 

2009). However, a disadvantage of regression 

models is that any equation is able to imitate 

only a particular shape of the dependence 

(Wösten et al., 2001).  

     Nowadays, support vector machines (SVMs) 

― new learning algorithms― are becoming 

popular in a wide variety of pedological 

applications. SVM was first developed for 

classification purposes (Boser, 1992) and then 

extended for regression  (Vapnik, 1995; Smola 

and Schölkopf, 1998). SVM is well-founded 

and theory-based in statistical learning (Vapnik, 

1998). SVM implement the principal of 

structural risk minimization instead of 

experiential risk minimization  (Shia et al., 

2012). Therefore, SVM has an excellent 

generalization capability in the situation of 

small sample sizes. Lamorski et al. (2008) 

compared ANN and SVM to develop PTFs in 

order to predict soil water retention parameters 

for Polish soils. Here SVM was superior 

compared to ANN. Liao et al. (2014) compared 

performance of SVM models to multiple 

stepwise regression (MSR) and ANN models. 

Results showed that the accuracy of CEC 

predicted by SVM were higher compared to 

prediction by MSR and ANN. In addition, SVM 

has performed successfully in engineering 

(Dibike et al., 2001) and hydrological 

forecasting (Liong and Sivapragasam, 2002). In 

conclusion, SVM seems to be a promising tool 

for the development of PTFs for CEC 

prediction.  

     Another tool used to develop a PTF for 

predicting soil parameters can be an adaptive 

network-based fuzzy inference system (ANFIS). 

ANFIS is a fuzzy rule-based system that uses 

ANNs theory to determine the parameters of the 

fuzzy membership functions. In ANFIS, both 

learning capabilities of a neural network and 

reasoning capabilities of fuzzy logic can be 

combined to enhance predictions compared to a 

single methodology. ANFIS is potentially able 

to model nonlinear functions. It learns features 

of the dataset and adjusts the system 

characteristics according to a given error 

criterion (Jang, 1993).   

     For predicting soil CEC in Iran some studies 

have used ANFIS and the other techniques. For 

example Kashi et al. (2014)  using intelligence-

base models include artificial neural networks 

(multilayer perceptron, MLP and Radial basis 

function, RBF), ANFIS, and multiple regression 

(MR) techniques estimated soil CEC from more 

readily available soil data. They found that the 

MLP model was better than ANFIS, MR, and 

RBF models. Emamgolizadeh et al. (2015)  

were employed genetic expression 

programming (GEP) and multivariate adaptive 

regression Splines (MARS) to estimate CEC 

from more readily measurable soil physical and 

chemical variables (e.g., OM, clay, and pH) by 

developing functional relations. The GEP- and 

MARS-based functional relations were tested at 

two field sites in Iran. Results showed that GEP 

and MARS can provide reliable estimates of 

CEC. Also, they found that the MARS model 

generated slightly better results than the GEP 

model. The performance of GEP and MARS 

models was compared with two existing 

approaches, namely artificial neural network 

(ANN) and multiple linear regression (MLR). 

The comparison indicated that MARS and GEP 

outperformed the MLP model, but they did not 

perform as good as ANN. Ghorbani et al. 

(2015) using MLP  and RBF of ANN, MR and 

ANFIS models estimated soil CEC.  They found 

that ANFIS model exhibited greater 

performance than RBF, MLP, MR, in predicting 

soil CEC.   Zolfaghari et al. (2016)  Using the 

nonparametric k-nearest neighbor approach 

predicted soil CEC.  They compared the results 

of K-NN with ANN. They found accuracy of 

the models had not a significant difference.  

     In addition to soil CEC several researches in 

soil science have used ANFIS (Shekofteh et al., 

2013; Besalatpour et al., 2013).  Kalkhajeh et 

al. (2012)  compared ANFIS, multiple linear 
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regression and ANN for prediction of CEC and 

found that the radial basis function neural net 

was more accurate than the other models but the 

accuracy of ANFIS and multiple layer 

perceptron neural net were better than multiple 

linear regression.  To our knowledge, little 

research is available for using SVM and ANFIS 

for predicting soil CEC. The objectives of this 

study were therefore to derive ANFIS and 

SVM-based PTFs for predicting CEC of 

different land uses and to compare the 

predictive capabilities of the SVM model with 

ANFIS model.   

 

2. Materials and Methods 

 

2.1. Soil sampling and analysis 

 

     This study was conducted in some part of 

Rabor region (from 29 27′ N to 38 54′ N and 

56 45′ E to 57 16′ E). The study area (400 ha) 

is located in the south-west part of Kerman 

province, Iran (Figure 1). Rabor is a typical 

semi-arid land farming area with a cold 

temperate climate. The annual mean 

temperature is 15 C with an average annual 

precipitation of 250 mm. 

     A total of 104 natural soil samples from four 

land uses were collected from the soil surface 

(0-15 cm). Land uses included garden with 20 

year-old walnut trees, pasture, agriculture and 

forest of mountain almond.  

     A total of 104 natural soil samples from soil 

surface (0-15 cm) of four land uses were 

collected. Land uses included gardens with 20 

year-old walnut trees, pasture, agriculture and 

forest of mountain almond. A grid sampling 

strategy was designed using ILWIS 3.4 software 

(ITC, University of Twente, the Netherlands) 

for a proper selection of soil sampling locations 

to consider spatial variations of the parameters 

influencing the soil CEC in the study area. At 

each sampling point, disturbed and undisturbed 

samples were taken. For disturbed soil samples 

large plant materials (i.e., roots and shoots) and 

pebbles in each sample were separated by hand 

and discarded. The positions of the sampling 

points were identified in the field using GPS 

(model 76 CSx, Garmin Co., Taiwan). The 

disturbed soil samples were air-dried and 

ground to pass a 2 mm sieve. Soil organic 

matter (SOM) content was determined by the 

Walkley–Black method with dichromate 

extraction and titrimetric quantization (Nelson 

and Sommers, 1982). Percentages of clay 

(>0.002 mm), silt (0.002–0.05 mm), and sand 

(0.05–2 mm) particles were measured by means 

of the sieving and sedimentation method (Gee et 

al., 1986). Soil particle density (PD) using 

Blake and Hartge (1986) method , and calcium 

carbonate equivalent (CCE) was determined by 

the back-titration method (Nelson and 

Sommers, 1982). Soil pH was measured in 

saturated paste using a digital pH-meter (Model 

691, M0065trohm AG Herisau, Switzerland) 

(Rhoades et al., 1996), electrical conductivity 

(ECe) was determined in the extract using an 

electrical conductivity meter (Model Ohm-

644,Metrohm AG Herisau, Switzerland) 

(Rhoades et al., 1996), and CEC using sodium 

acetate (pH= 8.2) (Thomas, 1982). Undisturbed 

soil samples were taken at each location using 

100 cm3 core samples and were used to 

determine the soil bulk density (BD) based on 

the core method (Klute, 1986). Porosity was 

calculated by the relation of bulk density and 

particle density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Location of the study area along with sampling points in different land uses 
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2.2. Support vector machines and genetic 

algorithm 

 

     SVM, first proposed by Boser et al. (1992), 

is a training algorithm for classification and 

regression problems. In the case of regression 

(support vector regression, SVR), initially, a 

mapping from input space onto a high-

dimensional feature space is performed. Then, a 

linear regression is performed through a 

hyperplane in the feature space by 𝜀-insensitive 

loss. Via a kernel function, SVR provides a 

mechanism that fits the hyperplane surface to 

the training data. To make a point, setting of 

kernel parameters is vital because this can add 

to the accuracy of the SVR prediction. For more 

information we refer to the theory of support 

vector regression in  (Vapnik, 2013). In our 

work, we used radial basis function (RBF) as 

kernel function. Contents of SOM, sand, silt, 

clay, calcium carbonate and the pH value were 

chosen as the inputs to the RBF-based SVR 

with CEC as the output. The data set included 

the sampled 104 points and was randomly 

divided into two datasets, a training dataset and 

a testing dataset at a ratio of 70:30. The former 

(73 soil samples) was used for developing the 

SVR and the latter (31 soil samples) for testing 

the performance of the developed SVR.  

     SVR computations were performed by the 

MATLAB programming language. The SVR 

parameters known as the penalty parameter, C, 

the width parameter, 𝛾, for the RBF kernel, and 

the variable 𝜀 are all required for SVR training 

(Wohlberg et al., 2006). We obtained the 

parameters by genetic algorithms (GA). As a 

general adaptive optimization search based on a 

direct analogy to Darwinian natural selection 

and genetics in biological systems, GA can 

efficiently cope with large search spaces.  

     In this study, real-valued GAs (RGAs) were 

used. Definition of the objective function is the 

first step to apply GA and the value of objective 

function for each individual is usually used as a 

measure of the individual’s fitness. In this study, 

in order to avoid the variable scale, the relative 

mean absolute percentage error (RMAPE) was 

considered as the main objective. The objective 

function and fitness function are defined as 

follows: 

Objective function= 
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Fitness function=100- RMAPE   (2) 

Where Y(pi) and Y(oi) are observed and 

predicted values of CEC respectively and n 

(104) is the number of data. 

     In a GA, a population of points (solutions) is 

first generated randomly. For every 

chromosome in the population, the fitness is 

computed. Here, a fitness-proportionate method 

also called roulette wheel selection  

(Michalewicz, 1994) is utilized to select 

individuals for reproduction based on their 

fitness values. After parent selection, the genetic 

operation of crossover is performed on each 

mated pair with a certain probability, referred to 

as crossover probability. The common crossover 

operations can be uniform, single-point, two-

points, and arithmetic crossover (Michalewicz, 

1994). For a RGA, arithmetic crossover is 

simple and effective. Here we selected and 

designed an arithmetic crossover for the 

crossover operation. In the next step, a mutation 

operation was applied. A Gaussian mutation 

was selected and designed to the mutation 

operation. After the produce of next generation 

(offspring), stopping criteria was checked and 

the algorithm was repeated until a specified 

termination criterion such as a limit in the 

maximum number of generation or no obvious 

change of fitness or preset fitness was satisfied. 

We tried different values for GA parameters in 

order to find the best parameters. 

 

2.3. ANFIS 

 

     ANFIS is a multilayer feed-forward network 

in which each node performs a particular 

function on incoming signals as well as a set of 

parameters related to this node (Jang, 1993). 

Like ANN, ANFIS is able to learn the rules 

from previously seen data and thus map the 

unseen inputs to their outputs. This type of 

network can be simplified to a structure having 

two inputs of x and y and one output of f only as 

shown in Figure 2. From the Figure it can be 

seen that the architecture of ANFIS contains 

five layers, fuzzify, product, normalized, 

defuzzify and a total output layer. By assuming 

two membership functions for each of the input 

data x and y the general form of a first-order 

TSK (Takagi and Sugeno, 1985; Sugeno and 

Kang, 1988) type of fuzzy if–then rule can be 

described as 

Rule  i: IFx is Ai and y is Bi THEN 

 

iiii ryqxpf 
, 

ni ,...,2,1
   (3)
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Where n is the number of rules and Pi, qi and ri 

are the parameters determined during the 

training process. 

     In ANFIS, the inputs and output and the data 

for training and testing were the same as SVR. 

The data set was randomly divided into two 

smaller sets: a training data set (73 data points) 

and a testing data set (31 data points). The aim 

of the training process was to minimize the error 

between the actual target and ANFIS output. 

This allows ANFIS to learn features observed 

from the training data and then implement them 

in the system rules. In the performance phase, 

the test data was introduced into the learned 

system for evaluation. A test error having an 

adequately small value indicated that the system 

showed a good generalized capability. The 

model was implemented in MATLAB (2014) 

software. The selection of rules in ANFIS is 

automatic and based on the data as we did it. In 

ANFIS, membership functions should be soft 

and of derivative type. We tried different soft 

membership functions and finally Gaussian 

membership functions was selected as 

membership function.  

 

 
Fig. 2. ANFIS architecture (Jange, 1993) 

 

2.4. Evaluation criteria 

 

     The predictive capabilities of the proposed 

models were evaluated by the root mean square 

error (RMSE), coefficient of determination (R2), 

and mean absolute percentage error (MAPE) 

between measured and predicted values. The 

MAPE, RMSE and R2 are denoted as below: 
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     Where Y(pi) and Y(oi) are the measured and 

predicted soil CEC values respectively, Yp  and 

Yo  are the means of measured and predicted soil 

CEC values, and n is the total number of 

observations. 

 

3. Results and Discussion 

 

3.1. Statistical analysis of data 

 

     Table 1 gives a summary of descriptive 

statistical characteristics of physiochemical 

properties of the soil used in the development 

and validation of the SVR and ANFIS models. 

Values of soil CEC varied between 8.3 and 36 

cmolc kg-1 with an average value of 19 cmolc  

kg-1. The content of SOM varied between 0.08 

and 6.5% with an average value of 2.0%. Clay 

content varied between 5.5 and 23.5 % with an 

average of 12.4. In general, USDA soil texture 

class of the studied area was classified as sandy 

loam. The content of calcium carbonate varied 

between1 and 47% with an average of 12%. 

Totally, under a semiarid climate, the examined 

soil is calcareous. Soil pH varied between 6.74 

and 7.99 with an average value of 7.7. Among 

all measured variables, soil pH had the lowest 

coefficient of variation due to the buffering 

capacity related to the high content of calcium 

carbonate. 
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      Table 1. Traditional statistics of physicochemical properties of soils under studied area 

 SOM (%) Clay (%) Sand (%) Silt (%) Lime (%) pH CEC (cmolckg-1) 

Maximum 6.50 23.50 85.00 43.50 47.28 7.99 35.79 

Minimum 0.08 5.50 39.00 9.50 0.99 6.74 8.32 
Mean 1.97 12.43 56.23 31.33 12.25 7.76 18.54 

Median 1.29 12.00 56.50 31.50 10.71 7.78 16.50 

Variance 2.92 14.84 53.96 24.31 58.73 0.04 43.74 
Standard Deviation 1.71 3.85 7.34 4.91 7.66 0.19 6.61 

CV (%) 86.00 30.00 13.00 15.00 62.00 2.00 35.00 

      SOM: Soil Organic Matter, CEC: Cation Exchange Capacity, CV: Coefficient of Variation 

 

3.2. SVR 

 

     When training SVR, the optimum parameters 

𝜀, C, and 𝛾 were found by a genetic algorithm 

approach. GA properties for optimizing RBF-

SVR parameters are shown in Table 2. The best 

SVR parameters were obtained with restrictions 

of 0.001 ≤ 𝜀 ≤ 100, 0 ≤ C ≤ 100, and 0.0001 ≤ 𝛾 

≤ 1000. SVR model was then derived from 

these parameter restrictions in order to predict 

CEC from the different land uses. The R2 

(Figure 3), RMSE and MAPE between SVR 

data and the measured data for training data 

were 0.99, 0.0066 cmolc kg-1 and 0.8 

respectively. Based on these results, 

combination of SVR with GA can lead to an 

accurate understanding of the connections 

between the input and output data. There is 

proof that genetic algorithms are effective and 

robust tools for solving optimization problems 

(Davis, 1991). The performance criteria values 

for testing data are shown in Table 3. The R2 

(Figure 4), RMSE and MAPE for testing data 

were 0.84, 3.2 cmolc kg-1 and 7.62 respectively. 

These values are indicative of the capability of 

SVR model for prediction of soil CEC in the 

studied area. 

     SVR is efficient for solving small sample 

size problem since it tends to avoid local 

minima that ANFIS usually suffers from. 

Lamorski et al. (2008) also found that the SVR 

provided the same or better accuracy compared 

with ANN in the prediction of soil water 

characteristics. Due to large heterogeneity in the 

CEC of natural soils, prediction of large-scale 

CEC is difficult. Hence, for large-scale crop 

modeling, SVR can provide an accurate 

estimation of CEC. Compared to other studies, 

our results show that the SVR for prediction of 

soil CEC are comparable to or even superior to 

other studies, Sahrawat (1983) for soils in the 

Philippines, Bell and van Keulen (1995) for 

soils in Mexico, Seybold et al. (2005) for soils 

in North America, Ersahin et al. (2006) for soils 

in Turkey,  Kalkhajeh et al. (2012) for soils in 

Iran, and Liao et al. (2014)  for soils in China.  

In our study, the efficiency of GA method for 

searching optimal SVR parameters is proved. 

Previous studies have used other methods to 

obtain the optimal SVR parameters. Twarakavi 

et al. (2009) used a grid-based SVM search 

approach. To them, this approach contributed to 

a significant improvement of prediction of soil 

hydraulic parameters compared with ANN-

based ROSETTA.  

 

3.3. ANFIS 

 

     The R2 between ANFIS and measured data 

for training data was 0.99 (Figure 5). The 

RMSE and MAPE between ANFIS predicted 

data and measurement for training data were 

0.025 cmolc kg-1. and 1.34 respectively. The 

results show that ANFIS can capture the 

relationship between the input parameters and 

soil CEC with a high accuracy. The 

performance criteria values for the test data are 

presented in Table 3. The R2 (Figure 6), RMSE 

and MAPE values for testing data were 0.81, 

3.38 cmolc kg-1 and 10.31 respectively. The 

values of performance criteria show that ANFIS 

model is a useful tool for predicting soil CEC. 

Kashi et al. (2014) and Ghorbani et al. (2015) 

also reported accuracy of ANFIS in predicting 

soil CEC is high. 

 
                                            Table 2. Values of GA parameters for obtaining SVR model parameters 

Parameter Value 

Crossover probability 0.7 
Mutation probability 0.1 

Number of generations 100.0 

Number of variables 3.0 
Number of iterations 100.0 
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Fig. 3. The R2 between measured and predicted cation exchange capacity (CEC) in the training dataset that were generated by SVR 
model 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

Fig. 4. The R2 between measured and predicted cation exchange capacity (CEC) in the testing dataset that were generated by SVR 
model 

 

 
           Table 3. Values of performance criteria for SVR and ANFIS models 

Model   Evaluation criterion  

  RMSE (cmolc kg-1) MAPE R2 

SVR Training data 0.0066 0.80 0.99 

 Testing data set 3.2000 7.62 0.84 
ANFIS Training data 0.0250 1.34 0.99 

 Testing data 3.3800 10.31 0.81 
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Fig. 5. The R2 between measured and predicted cation exchange capacity (CEC) in the training dataset that were generated by 

ANFIS model 
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Fig. 6. The R2 between measured and predicted cation exchange capacity (CEC) in the testing dataset that were generated by ANFIS 

model 

 

3.4. Sensitivity analysis of models 

 

     Results of the sensitivities of R2 are shown in 

Figure 7; for the SVR model, the sensitivities of 

R2 corresponding to removals of OM, clay, silt, 

sand, pH and calcium carbonate are 9.41%, 

8,36%, 5.41%, 5.01%, 4.9%, and 6.35%, 

respectively while for ANFIS model the 

sensitivities are 11.18%, 8.9%, 6%, 7.2%, 3.5%, 

and 7.3%, in the same order of appearance. The 

figure shows that clay and OM had the most 

effects on soil CEC respectively. As stated 

before, soil CEC represents negative charge 

amounts and the negative charge of soil was 

originated from clay and OM. Soil pH had the 

lowest effect on soil CEC in both models, as 

summary of descriptive statistical characteristics 

of physiochemical properties showed that the 

soil pH had the lowest coefficient of variation 

among all parameters thus it is reasonable that 

both models were less sensitive to the soil pH. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. The sensitivities of R2 derived by SVR and ANFIS models to removals of soil physicochemical properties 

 

3.5. Comparison between SVR and ANFIS 

 

     Comparison of the obtained results from the 

proposed SVR and ANFIS models indicates that 

when predicting soil CEC the SVR technique is 

more feasible than the ANFIS model. On the 

other hand, the proposed SVR model in the 

current study was more effective in predicting 

the soil CEC than the ANFIS model when the 

performance criteria were compared. The R2 

and RMSE values for the SVR model were 0.84 

and 3.2 cmolc kg-1 respectively compared with 

0.81 and 3.38 cmolc kg-1 for the ANFIS model. 

The SVR had better performance than ANFIS in 

predicting soil CEC in the land uses in the area. 

The small calibration dataset in ANFIS model 

may be an important reason for a slightly less 

good performance of this method. The good 

performance of SVR and ANFIS indicates that a 

nonlinear relationship exists between CEC and 
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soil physicochemical properties in this area. 

SVR is efficient for solving the problem with a 

small number of samples and tended to avoid 

local minima that ANFIS usually suffers from  

them (Liao et al., 2014). Lamorski et al. (2008) 

also found that the SVR provided the same or 

better accuracy compared with ANN in the 

prediction of soil water retention characteristics.  

     The main advantages of using SVRs are their 

flexibility and ability to model non-linear 

relationships. Furthermore, the SVR training 

process always seeks a global optimized 

solution and avoids over-fitting that eventually 

leads to better generalization performance than 

in ANFIS models. SVR is able to select the key 

vectors in the training process as its support 

vectors and remove the nonsupport vectors 

automatically from the model. This makes the 

model cope well with noisy conditions. The 

main disadvantage of the SVR and ANFIS 

techniques is that they have no physical basis 

and belongs to a class of data-driven black-box 

approaches. 

 

4. Conclusions 

 

     This study was conducted to develop SVR 

and ANFIS-based PTFs for prediction of soil 

CEC in Rabor region of Kerman province, Iran. 

Although performance of both models was 

good, SVR was better than ANFIS. This 

suggests that SVR and ANFIS are robust tool 

for development of PTFs for CEC prediction. 

Sensitivity analysis showed that two parameters 

had the highest effect on both models were soil 

organic matter and clay content. These results 

obtained from a semiarid region in Iran so they 

could be applied to other parts of the world with 

similar challenges. In addition, due to soil, CEC 

is not a sit specific parameter; these methods 

could also be used in other parts of the world. It 

suggests these models compare to other 

techniques such as decision tree and artificial 

neural network. 
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