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1. Introduction 

Natural convection has many applications in nature and 

industry. The massive fluid movements in the atmosphere [1] and 

oceans [2, 3], Polymerase chain reaction chip [4-6], cooling of 

microelectronic components, micro-structured devices, and 

Micro-Electro-Mechanical-System devices [7-13] are some 

common examples. Natural convection in many cases is 

explained in terms of the Rayleigh-Benard problem [14-16]. 

Rayleigh-Benard convection is a transport phenomenon which 

consists of a fluid subject to an external gravity field placed 

between two horizontal plates, heated from below and cooled 

from above. 

There is no exact solution for the set of conservation equations 

describing a Rayleigh-Benard convection problem. Several 

numerical and experimental investigations have been made the 

onset of convection and the transition to pattern formation in 

Rayleigh-Benard with periodic temperature boundary condition 

[17-22]. The aforementioned numerical studies which investigate 

Rayleigh-Benard problem apply the conventional Computational 

Fluid Dynamics (CFD) to model the primary and secondary 

instability. Conventional CFD is based on continuum approach 

and direct discretization of momentum and energy conservation 

equations. These methods have a macroscopic view in dealing 

with fluid heat transfer and dynamics problems. Alternatively, 

the kinetic methods for CFD, such as the lattice Boltzmann 

method, take a microscopic approach and are derived from the 

Boltzmann equation [23-29]. In the solvers which are developed 

by lattice Boltzmann method, there is no need to use the pressure 

correction equation. Meantime, the lattice Boltzmann equation is 

a first-order equation on the space. These capabilities, as 

compared to the Navier Stokes equation, will increase the speed 

of solution and reduce the cost of the calculations. 

Modeling of fluids under influence of body forces e.g. 

buoyancy driven flow [30-32] as well as magneto-hydrodynamic 

fluid flow [33, 34], multi-phase or multi-component fluid flows 

[35-38] and flow of non-ideal gases obeying a van der Waals 

type of equation of state [39-41] is a topic of interest in lattice 

Boltzmann research area. To simulate the buoyancy driven flows, 

a suitable scheme to model the buoyancy force, as well as the 

boundary conditions in the presence of the body forces, are 

needed to be introduced. 

Shan [42] used the lattice Boltzmann model for investigating 

Rayleigh-Benard convection with one distribution function for 

the fluid flow simulation and another distribution function for 

modeling the thermal transport. Comparison between the results 

of Shan [42] and those of Clever and Busse [43] show that the 

Nusselt number values are in good agreement only for flows with 

Ra < 20000. He et al. [44] calculated the temperature by an 

internal energy distribution function, rather than a passive-scalar 

approach. Likewise, Shan [42], the results of He et al. [44] were 

in good agreement with Clever and Busse’s [45] benchmark 

calculations for Ra < 20,000. Kao and Yang [46] used the lattice 

Boltzmann method to investigate about secondary instability in a 

Rayleigh–Benard problem where the Prandtl number is higher 

than 0.7. They reported that the mean value of the Nusselt 

number under the fluctuations due to the secondary instability 
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only depend on the Rayleigh number and is independent of 

Prandtl number. In addition, they have claimed that the mean 

value of the Nusselt number is equal to the value of the Nusset 

number when the oscillations are not observed in a specific 

Rayleigh number. Recently, Wang et al. [47] extensively 

investigated about the amount of Nusselt number under non-

oscillating conditions. They showed that the value of the Nusselt 

number depends simultaneously on the Rayleigh and Prantel 

numbers. These results are not consistent with the results of Kao 

and Yang [46]. In order to clarify this inconsistency, the present 

study aims to investigate the value of the Nusselt number under 

oscillating conditions.   

Kao and Yang [46] is used the simplest forms of body force 

simulation scheme and the bounce back method. To increase the 

accuracy of the lattice Boltzmann method in the presence of the 

buoyancy force term, more concentrations should be made on the 

boundary conditions. As mentioned in [48], the force and 

velocity equations are modified in order to model the effect of 

body forces. The boundary conditions also need to be adjusted 

accordingly. The most common set of boundary conditions used 

in the lattice Boltzmann method is the bounce-back model. In 

this type of boundary conditions, the particles bounce-back to the 

fluid nodes in opposite directions from which they strike the wall 

nodes. The set of boundary conditions may be categorized in 

terms of the order of magnitude of the error generated [49]. Many 

attempts have been made to introduce higher order schemes for 

boundary conditions [49-54]. The bounce-back approach satisfies 

the mass conservation on the wall and assures the zero velocity 

on the boundary. However, a problem appears once the body 

forces are present. Li and Tafti [55] showed that applying the 

common bounce-back boundary condition leads to an erroneous 

velocity jump at the wall in the presence of local forces due to 

static and dynamic forces. To eliminate the unwanted velocity 

component, they proposed a consistent mass conserving velocity-

boundary condition for the D2Q9 lattice configuration in the 

presence of surface forces. Recently, Allen and Reis [56] used a 

general approach for executing lattice Boltzmann boundary 

conditions in terms of the moments of the distribution functions. 

This methodology, called ‘moment method’, was taken from 

Bennett [57] in which the wall is assumed to be located precisely 

at grid points. It means that this method stays completely local 

and does not need any extra finite difference schemes neither an 

interpolation nor extrapolation of magnitudes to or from adjacent 

nodes. In the present study, the Bennett methodology is 

employed to assess the Lie and Taftli [55] as well as the Allen 

and Reis [56] boundary conditions.  

In next section, the governing equation based on lattice 

Boltzmann method has been described. Two physical models, 

Poiseuille and Rayleigh-Benard convection flow, have been 

investigated in results and discussion chapter. 

2. Governing Equation and Modeling 

The lattice Boltzmann method and corresponding thermal 

lattice Boltzmann method have been described below.  

 

 

2.1. Lattice Boltzmann method 

The lattice Boltzmann equation is directly derived from the 

Boltzmann equation by discretization in both time and phase 

space [24].The general form of the lattice Boltzmann equation in 

the ith direction with body forces included is: 

i i i if ( +   ,t+1)-f  ( ,t)= +Fir c r   (1) 

where r , t  and iF  are the location vector, time and body 

forces respectively. The term if  is the particle distribution 

function traveling with velocity ic . The collision operator i  

represents the rate of change of if due to collision of particles. 

The particle distribution after propagation is relaxed towards the 

equilibrium distribution
eq

if ( , )r t .The formulation of the 

Bhatnagar-Gross-Krook method (BGK) [58] for collision 

operator has been used in this study as: 

eq

i i i

1
(f ( , ) f ( , ))r t r t


     (2) 

The relaxation parameter  has been calculated from the 

kinematic viscosity   of the simulated fluid according to the 

following equation. 

1
3

2
    (3) 

The equilibrium density 
eq

if ( , )r t   is calculated as: 

 

eq

i

2

2 4 2

f ( , ) ( , )

.. .
(1 )

2 2

i

eqeq eq eq
ii

s s s

r t w r t

c uc u u u

c c c

 

  
 (4) 

where sc  is the speed of sound, and iw  is the corresponding 

equilibrium density for 0equ  . Taking the moment of the 

distribution function, the density and microscopic velocity may 

be obtained as follows. 

i

i

( , ) f ( , )r t r t   (5) 

i

i

1
( , ) f ( , )

( , )
iu r t r t c

r t
    (6) 

The body force in the lattice Boltzmann model is calculated as 

below. 

 mF G    (7) 

where m and G  are the average fluid density and gravity 

acceleration respectively. Using the Boussinesq approximation, 

the body force (buoyancy) term in Rayleigh-Benard convection 

will be 

( )mF T T G    (8) 

where mT  and   are the average fluid temperature and 

volumetric thermal expansion coefficients respectively. 

2.2. Body Force Scheme 
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Guo et al. [48] assessed comprehensively the various methods 

introduced above by Chapmann-Enskog analysis. They recovered 

the Navier-Stokes equation from lattice Boltzmann method and 

introduced the extra terms associated with the error. They found 

that such extra terms can have a noticeable effect on lattice 

Boltzmann results in cases where the force term varies by time 

and in space. Therefore, they used the following generalized 

force term in a second order Hermit polynomials formulation that 

was first suggested by Ladd and Verberge [59] and Martys and 

Douglas [60] to exactly retrieve the macroscopic equation of 

Navier-Stokes.  

 

 

i 2

2

4

.
F

( ) : .

2

i
i

s

F F

i i s

i i

s

c F
w A B

c

u F Fu c c c I
w C c

c

 
   

 

  
 
  

 (9) 

The study of Guo et al. [48], considered as Scheme of Guo, 

assumed the below velocity equations and found A, B and C 

equal to 0, 1 1 (2 ) and 1 1 (2 ) , respectively. 

( , )
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(10) 

2.3. Thermal Lattice Boltzmann method 

To simulate the energy equation the general form of the 

thermal lattice Boltzmann equation has been used. The 

equilibrium distribution function is considered as below. 

i 2

1
g ( , ) .eq

i i

s

r t w T c u
c


 

  
 

 (11) 

where T  is the temperature. The relaxation time ( ) is 

related to the diffusion coefficient with equation 12. 

02

1 1

2sc
    (12) 

where 0  is the thermal diffusivity. The Temperature is 

calculated by equation 13. 

i

i

g ( , )T r t  (13) 

2.4. Lattice Boltzmann method BC 

For the Dirichlet boundary condition in thermal lattice 

Boltzmann method, it is assumed that the flux is balanced in any 

direction (
eq eq

i i j jg g g g   ). The subscript i shows the 

direction of particles after being reflected back to the domain. 

Subscript j shows the corresponding mirror direction of particles. 

For nodes on the wall, the balanced flux can be written as 
eq

i ig ( ) gi j ww w T   in which Tw is the wall temperature.  

The introduced hydrodynamic boundary condition in this 

study is based on the Bennett extension.  The moment-based 

model of Bennett [57] is a generalization of the method of Noble 

et al. [53] which formulates the boundary conditions in terms of 

the moments of the distribution functions, rather than on the 

distribution functions directly. In the moment-based approach, 

the nine independent moments can be defined as below. 

0( , , , , , ,

, , )

X Y XX YY XY

XYY XXY XXYY

m       

  
 (14) 

where m  may be expressed in the computational scale as 

fm M   and M is a transform matrix defined as follows. 

By this approach, the boundary condition method can be 

categorized. In the current study, the schemes of Li and Tafti [55] 

(BC-1) and Allen and Reis [56] (BC-2) are evaluated using the 

moment-based model of Bennett method. In both of BC-1 and 

BC-2 schemes, it is assumed that the solid boundaries are 

impermeable, rigid and stationary, and subjected to the no–slip 

condition. For calculating the three unknowns in each horizontal 

wall in terms of the moment constraints and the known 

distributions, it is required to consider three equations. The 

unknown values of f2, f5, and f6 pointing outwards with respect 

to the southern wall are to be calculated by using the after 

streaming values of f0, f1, f3, f4, f7, f8. 

 

Figure 1. Distribution function for D2Q9 configuration on the upper wall 
 

In order to implement the conservative momentum equations 

in computational domain, it is required to take the hydrodynamic 

moments. It consists of two components of momentum 

( ,X Y  ) and the remaining independent component of the 

momentum flux ( XXY ). In scheme BC-1, to simulate the zero 

velocity on the wall, a bounce-back type of boundary condition 

on the non-equilibrium part of the distribution function is 

implemented. Figure 1 is presented to explain the boundary 

condition used in the current study. The south wall is coinciding 

with the x-axis and is shown by the dotted line in Figure 1. In 

scheme BC-2, the no-slip and no-flow boundary conditions result 

in 0x yu u  . It necessitates the tangential derivative of the 
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velocity alongside the wall to disappear at a solid boundary, 

0xu x   . Accordingly, the equations are set as below to 

obtain the unknown variables in BC-1and BC-2 schemes. 

BC-1 : 0X   2Y yF    2XXY yF    

BC-2 : 0X   2Y yF    3XXY    

 

1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1

M

 
 

  
 
   
 
 
 
 

  
  
 

  
 
 

 (15) 

By considering the southern boundary and using the above 

system of equations, we can calculate the unknown distribution 

function at the south wall. In BC-2, Equations above are 

employed to determine f2, f5, and f6 as follows.  

 

 

2 4

5 7 1 3

6 8 1 3

f f 2 3

f f f f 2 4

f f f f 2 4

y

y

y

u

F

F

 

   

   

 (16) 

Li and Tafti [55] defined 0f  after the collision step according 

to the mass conservation on each lattice node on the wall. During 

a full lattice Boltzmann method time step, 0f , 4f , 7f , and 8f  

leave the domain at the instant t+0, while the fluid particles 0f , 

2f , 5f , and 6f  enter the domain at the instant (t+1)-0. The mass 

conservation at this lattice node requires: 

   

   

( 1) 0 0

0 0

0 ( 1) 0

4 7 8 2 5 6

f f

f f f f f f

t t

t t

  

  

 

    
  

By using the equations above, 2f , 5f , 6f  and ρ are obtained 

as below for BC-2. 

 

  

2 1 3 4 7 8

5 1 8

5 3 7

0 1 3 4 7 8

f f f f 2 f f 3 2

f f f 6

f f f 6

2 f f f 2 f f f (2 )

y

y

F

F









       

   

   

       

 

(17) 

The advantage of the present approach in expressing boundary 

conditions is that the various components of the force term have 

been taken into consideration and thus more continuity in values 

of the distribution function holds on the wall. 

 

3. Description of the Method 

Two physical models, Poiseuille and Rayleigh-Benard 

convection flow, have been investigated. A Poiseuille flow 

driven by a forcing mechanism is an excellent example versus 

which the presented models for boundary conditions may be 

evaluated. That is because the analytical solution for such flow is 

known. The velocity profile obtained from the Navier-Stokes 

equations for incompressible Poiseuille flow is as follows. 

 

2

0

2
1y

y
u u

Ly

  
       

 (18) 

 

where  2

0 4du F Ly  , dF  is the driving force and 

Ly  is the channel width. The grid resolutions from 8Ly   to 

512Ly   have been tried. The Reynolds number 

0 /Re u Ly   has been kept constant. Since the kinematic 

viscosity depends only on τ, the product 0u Ly needs to remain 

constant. It means that if the channel width is doubled, 0u needs 

to be halved, and thus the forcing F is decreased eightfold. Zero 

velocity on the top and bottom boundaries is implemented 

according to boundary condition explained in the previous 

section. Inlet and outlet boundary conditions along the flow 

direction are set to be periodic. 

Second model is a Rayleigh-Benard convection. A Rayleigh-

Benard convection problem may be explained as follows. 

Consider a volume of fluid between two parallel plates which is 

initially at rest. The below the surface is heated. By the raise of 

the temperature difference between upper and bottom surfaces, 

the gravitational force in the vertical direction grows. Once a 

certain level of the temperature gradient is reached, any small 

perturbation tends to turn the stationary conduction status to a 

convection situation. The schematic diagram of the flow between 

two parallel plates and the macroscopic boundary conditions are 

shown in Figure 2. Thermodynamic equilibrium is maintained at 

the constant temperature T0. T0 is the average of the heated and 

cooled wall temperatures. 
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Figure 2. Configuration of natural convection between two plates 
 

The D2Q9 is used to calculate the temperature distribution and 

velocity profiles. A small disturbance on the density population, 

similar to what used in some previous studies [46, 61, 62], was 

considered in the form of a cosine wave with an amplitude of 

1×10-3. The Nusselt number and the Rayleigh number are defined 

as below. 

 
3

0

1 ,
y x

y avr avr

u T g Ly T
Nu Ra

T L



  


  



 

(19) 

As reported by Peng et al. [63], the characteristic velocity for 

natural convection, (V g TLy  ), must be attentively 

specified to make sure that the lattice Boltzmann equation can 

still remain within the incompressible regime. The flow 

incompressibility is maintained when the Mach number ( sV c ) 

is less than 0.1. Unfortunately, there is no explicit criterion to 

calculate the characteristic velocity for different natural 

convection problems. Kao and Yang [46] have explained a 

method which examines the influence of the characteristic 

velocity on the critical Rayleigh number at various Prandtl 

numbers. They also confirmed that the characteristic velocity 

strongly depends on the Prandtl number. Their method is capable 

of estimating the range of characteristic velocity for the 

preservation of incompressibility assumption.  

4. Result and Discussion 

To evaluate various boundary condition schemes in the 

present models, Poiseuille Flow has been simulated first. The 

Rayleigh-Benard convection problem is examined next. The 

primary and secondary instability of the natural convection have 

been evaluated under various conditions. 

4.1. Poiseuille Flow Case Study 

The difference between the velocity predicted by this study 

and that of the analytical solution, err, is defined by Equation 

(20).  

 
2

i i n

i

err UN UE N   (20) 

where Nn is the number of points, and iUE  and iUN  

correspond to the analytical and numerical normalized velocity 

for the ith node, respectively. Normalization is made by means of 

the velocity in the center of the channel. The error defined in 

Equation (20) is expected to decrease with the increase of 

channel width regardless of the numerical scheme used. As 

shown in Figure 3, the calculations reveal that the slope of error 

variations with channel width for both of the boundary condition 

schemes is about -2. As such, these schemes may be referred to 

as the second order methods. In terms of the magnitude of error, 

it is worthwhile to mention that the results of this study provide 

smaller values of error compared to data of Chen et al. [49] by 

orders of magnitudes. Note that Chen et al. [49] has applied an 

extrapolation scheme to model the boundary condition.  

The results illustrated in Figure 3 show that the BC-1 

boundary conditions lead to a more stable solution in comparison 

with BC-2. In the latter, some intangible fluctuations in the 

magnitude of error are observed. The average error may grow, 

though extremely slowly, with the increase of the number of 

iterations. At very high numbers of iterations, it may lead to a 

divergence in the solution. Hence, the BC-1 set of boundary 

conditions has been chosen for simulation of Rayleigh-Benard 

convection.  

Regarding the body force modeling, it is found that the 

solutions implementing the Shan and Chen body force modeling 

[64] and Guo et al. scheme [48] lead to the identical results. In 

this study, the Scheme of Guo et al. [48] has been selected. Chen 

et al. [49] used Luo scheme [65] as simplest type of model to 

simulate the body force. 

 

Figure 3 Comparison between the relative error calculated by the BC-

1 and BC-2 schemes 
 

4.2. Rayleigh-Benard Convection 

The presented thermal lattice Boltzmann method was 

validated by considering the case of Rayleigh-Benard convection 

with constant properties. Using the linear stability theory, the 

exact values of critical wave number and aspect ratio AR = 

Lx/Ly, for constant property Rayleigh–Benard convection are 

obtained to be 3.117 and 2.016 respectively [66]. The aspect ratio 

is equal to 2 in the present study. To investigate the grid 

independency, several different grid sizes, 81x41, 161x81, 
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321x161 and 641x321 have been examined. The estimated 

critical Rayleigh numbers at different grid sizes are shown in 

Table 1. It can be deduced that the increase of the grid size 

beyond 81x41 does not have a significant effect on the accuracy 

of the results. The same grid size has been employed in previous 

studies [44, 46, 67] for 2D channel flow discretized by the square 

lattice using D2Q9 model. From the results shown in Table 1, it 

also can be seen that the value of critical Rayleigh number is 

independent of the Prandtl number.  

Table 1 Critical Rayleigh number versus different grid sizes 

 81x41 161x81 321x161 641x321 

Pr=0.7 

(V=0.2915) 

1705±1 1706±1 1706±1 1706±1 

Pr=5.8 

(V=0.1870) 

1707±1 1708±1 1708±1 1708±1 

 

A secondary instability, manifested by a time-dependent flow 

with a single-frequency periodic condition, may occur once the 

Rayleigh number grows high. The occurrence of such secondary 

instability is greatly dependent on the Prandtl number. To obtain 

the actual frequency, the simulation must be started from the 

static conductive state, i.e. beginning with Ra<1707.  In the 

current study, a dimensionless frequency ratio, f 
, is defined as 

the ratio of the oscillatory time scale ( pt ) to the diffusive time 

scale (
2

avrLy  ) as below.  

2
avr pt

f
Ly

 
  (21) 

There is no oscillation for Pr=0.7 until Ra=100,000. Under 

this condition, four different grid sizes with different Rayleigh 

numbers are examined. The calculated Nusselt numbers for 

Ra=50,000 and Ra=100,000 are shown in Table 2, the grid size 

of 41x81 is not adequate to obtain the required accuracy. 

 

Table 2 Nusselt number calculated by Scheme of Guo and semi-

empirical correlation for various Rayleigh numbers with various grids and 

Pr=0.7 

 Nusselt Number 

Ra=50,000 Ra=100,000 

81x41 4.087 4.897 

161x81 4.130 4.951 

321x161 4.152 4.978 

641x321 4.163 4.995 

Semi empirical correlation: 

1.56×(Ra/Rac)0.296 
4.239 5.205 

 

For Pr=5.8, the results verify the previous findings of Kao and 

Yang [46] that the flow oscillation starts at Ra≈48,000. As can be 

observed in Table 3, maximum, minimum and average Nusselt 

numbers increase with the increment of the number of grids. 

Meanwhile, by increasing the number of grids, the oscillatory 

time scale has been decreased. The effect of this reduction in the 

amount of dimensionless frequency ratio is negligible. Most of 

past studies have been used 81x41 grids [44, 46, 67]. It does not 

mean, however, that such grid size assures the criterion for grid 

independence of the solution. For instance, Kao and Yang [46] 

noted that they selected the grid size of 81x41 simply to make 

their results comparable with the other studies. The data shown in 

Table 3 states that using 81x41 grids does not lead to adequate 

accuracy.  Based on Table 2 and Table 3, the simulations in the 

current study for higher Rayleigh number is performed by 

641x321 grids. Streamlines and isotherms for the Ra=105 and 

Pr=5.8 are shown in Figure 4and Figure 5. As can be seen, by 

marching in time, the vortex center moves in the domain. This 

movement effect on the isotherm lines and it leads to variation of 

the nusselt number during the time. When the vortex approaching 

the wall, the isotherm lines start to close to each other and they 

make the higher heat transfer coefficient. 

5. Conclusion 

In this study, using the lattice Boltzmann method, the effects 

of Prandtl number in the Instability of Rayleigh-Benard 

convection problem have been investigated. Primary instability is 

completely independent of Prandtl number and occurs in 

Ra=1707.  As regards, the onset of the secondary instability 

depend on the Prandtl number and it happens in Ra=4800 for 

Pr=5.8. Results show that the oscillatory behavior causes the 

center of the vortex to move in an elliptic manner in the flow 

field. It is observed that the dimensionless frequency ratio for 

Ra= 105 with Pr=5.8 is around 0.0065. 

Table 3 Oscillatory time scale, dimensionless frequency ratio and 

Nusselt number calculated by Scheme of Guo for Ra=100,000 and Pr=5.8 

 pt t  f 
 

Nu number 

max min Ave. 

81x41 1107 0.0067 5.4205 3.4708 4.3929 

161x81 1100 0.0067 5.4669 3.5435 4.4576 

321x161 1091 0.0066 5.4882 3.5715 4.4810 

641x321 1078 0.0065 5.4942 3.5878 4.4966 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4 Streamlines at Ra=100,000 with 641x321 grid sizes calculated by 

Scheme of Guo (Pr=5.8) in quarter-period steps, i.e. at  t= 0 (a), t= tp/4 (b), 

t=tp/2 (c) and t=3tp/4 (d) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5 Temperature contours at Ra=100,000 with 641x321 grid sizes 

calculated by Scheme of Guo (Pr=5.8) in quarter-period steps, i.e. at  t= 0 (a), 

t= tp/4 (b), t=tp/2 (c) and t=3tp/4 (d) 
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