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Abstract 

Coordination of market decisions with other aspects of operations management such 
as production and inventory decisions has long been a meticulous research issue in 
supply chain management. Generally, changes to the original lot-sizing policy 
stimulated by market prices may impose remarkable deviation revenue throughout 
the supply and demand chain system. This paper examines how to set the channel 
prices and the lot-sizing quantities so that the potential maximal return on 
investment is gained under a differential pricing scenario involving a number of 
possibilistic constraints to deal with market-segmented price setting, marketing and 
lot-sizing decisions, concurrently. The model aims to maximize return on inventory 
investment (ROII). To solve the model, a fuzzy solution approach based on the 
novel credibility measure is developed. An efficient and tuned search procedure 
using particle swarm optimization is tailored to reach the solutions of the resultant 
non-linear crisp model. An illustrative example is also studied to demonstrate the 
practicability of the proposed mathematical model and its solution approach. 
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Introduction 

Channel pricing is one of the most important aspects of marketing 
decisions and Revenue Management (RM). In the traditional retail 
channel, retailers sell products to customers directly, under a single 
price setting. This had been a common pricing until the commencement 
of revenue management. In recent years, with the rapid development of 
the revenue management approaches such as differential pricing and 
dynamic pricing, retailers are increasingly accustomed to selling 
products via different channels. This paper develops a new price 
differentiation model aiming to maximize the Return On Investment 
(ROI) under uncertainty. ROI is a widely utilized performance measure 
in business investment evaluations (Li et al., 2008). 

Segmenting market has been one of the serious conditions for an 
efficient application of pricing and RM by which marketers try to set 
different prices in each sub-market. In order to achieve greater 
profitability, price differentiation is an effective way for retailers 
(Phillips, 2005). There exists a number of real-life examples applying 
price differentiation policy from service and retail industries (e.g., 
hotels and airlines). Many retailers differentiate their potential market 
by leading customers to different segments, such as e-tailing versus 
traditional retailing, where firms set higher prices in their retail 
channel while offering lower prices for online purchasers. Market 
segmentation naturally increases revenues and hence profits; however, 
the price difference between the market segments stirs a part of 
customers to immigrate to other sell channels. 

Literature Review 

The literature shows that integrated lot-sizing and price setting models 
(Kim & Lee, 1998; Lee, 1993; Esmaeili, 2009; Abad, 1988, Wang et 
al., 2015), and price differentiation (Sen & Zhang, 1999; Zhang & 
Bell, 2007; Zhang et al., 2010) have been studied separately. 
Furthermore, profit maximization is usually employed as the objective 
function when designing and analyzing inventory models. The most 
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powerful and useful marketing measure is the return on investment 
that relates the total investment made to the total generated return 
(Lenscold, 2003). Wang et al. (2012) integrate demand, purchasing, 
production, and transportation to enhance coordination between 
financial and physical activities in a supply chain. The use of return on 
investment (ROI) maximization is also popular in inventory systems’ 
optimization (see Schroeder & Krishnan, 1976;  Rosenberg, 1991). 
Otake et al. (1999), and Otake and Min (2001) propose an ROI 
maximization model with lot size and setup cost reduction investment 
and quality improvement policies, respectively. Recently, Li et al. 
(2008) develop a joint inventory and capital investment model with 
setup and quality considerations under ROI maximization. 

In the context of multi-objective optimization, some papers studied 
the ROI maximization with profit in order to determine ordering 
policy. They employed ROI and profit as performance criteria in 
designing and analyzing inventory systems. Wee et al. (2009) propose 
a joint replenishment model under joint profit and ROI maximization. 
Ghasemy Yaghin and Fatemi Ghomi (2012) considered profit and 
ROI maximization in inventory-marketing problems. They also 
presented the joint pricing and lot-sizing model in order to improve 
service aspects of retail industries. Ghasemy Yaghin et al. (2013) 
extended a bi-objective inventory-marketing planning model to 
determine ordering and pricing policies with multiple demand classes. 

The related literature lacks a JPLM problem with ROI maximization 
in a market-segmented environment under uncertainty. Most of the 
previous works address deterministic cases of the JPLM problem under 
return on inventory investment (ROII) objectives. To the best of our 
knowledge, there is no research work involving the uncertainty 
approaches in the area of ROII. Estimating parameters using the 
statistical models normally suffers from different issues (Sadjadi et al., 
2010). Consequently, we have to estimate the parameters of market 
environment and demand functions subjectively based on both the 
current incomplete data and the decision makers’ experiences. Zhou et al. 
(2008) and Zhoa et al. (2012) focus on pricing decisions with fuzzy 
customer demands. In this way, the theory of fuzzy sets can be applied to 
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formulate production-marketing decisions (Sadjadi et al., 2010).  
To the best of our knowledge, few studies have considered 

integrating ROII optimization in a joint pricing and lot-sizing problem 
in a fuzzy environment. They employed ROI and profit as performance 
criteria in designing and analyzing inventory systems (i.e., multiple 
objective environment). Wee et al. (2009) propose a joint replenishment 
model under joint profit and ROI maximization. Ghasemy Yaghin and 
Fatemi Ghomi (2012) consider profit and ROI maximization in 
inventory-marketing problems. They also present the joint pricing and 
lot-sizing model in order to improve service aspects of retail industries. 
Ghasemy Yaghin et al. (2013) extend a bi-objective inventory-
marketing planning model to determine ordering and pricing policies 
with multiple demand classes under uncertainty. Features of the 
publications surveyed in this section are summarized in Table 1. 

Table 1. Review of Some Existing Models. 

Reference 

T
im

e dependent 
dem

and 

R
eplenishm

ent rate

U
ncertain 

environm
ent 

P
ricing 

M
arketing aspects

M
ultiple dem

and 
classes 

R
O

II 

C
redibility 
m

easure 

C
hance 

constrained 
program

m
ing

Abad (1988)  Infinite  √ √     
Kim and Lee (1998)  Infinite  √      

Otake and Min (2001)  Infinite     √   
Zhang and Bell (2007)  Infinite  √  √    

Torabi and Hassini 
(2008) √ - √       

Esmaeili (2009)  Infinite  √ √     
Wee et al. (2009) √ Infinite √    √   

Ghasemy Yaghin and 
Fatemi Ghomi (2012) √ Finite √ √ √  √   

Bera et al. (2012) √ Infinite √       
Ghasemy Yaghin et al. 

(2013) √ Finite √ √ √ √ √   

Wang et al. (2015)  Finite  √      
Ghasemy Yaghin et al. 

(2015) √ Finite √ √ √ √  √  

Feng et al. (2017) √ Infinite  √      
Ghasemy Yaghin 

(2018)  -  √ √ √    

This paper √ Finite √ √ √ √ √ √ √ 

 
This paper studies a fuzzy chance constraint model under 
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possibilistic constraints to determine a joint lot-sizing and marketing 
plan for a manufacturer who faces demand from two or more market 
segments. The presentation of a possibility measure to our model is 
useful to express the decision maker’s attitude and satisfaction under 
uncertainty. The concerned model accounts for inherent uncertainty in 
different parameters such as demand functions, marketing and 
inventory related parameters. 

On the other hand, as a continuance of Ghasemy Yaghin et al.’s 
paper (2013), using a fuzzy chance constraint programming approach, 
we apply a possibility measure optimization model and propose a 
solution algorithm in order to defuzzify the uncertain model. 
Therefore, the summary of significant contributions of the paper can 
be presented as follows. First, it introduces a practical fuzzy chance 
constraint model for jointly making some major inventory, marketing 
and price differentiation related decisions with ROII maximization for 
a manufacturer including satisfaction degree of the Decision Maker 
(DM). Second, a credibility measure-based fuzzy procedure is 
incorporated into the developed model to handle the inherent 
ambiguity in marketing and inventory decisions. In fact, a two-stage 
policy is taken into account. In the first phase, a credibility measure is 
applied to tackle uncertain parameters in the objective function. Then, 
in the second phase, possibility constraints with a confidence level of 
DM are handled to convert them into crisp ones. Altogether, the 
abovementioned properties differentiate this paper from those existing 
in the related literature. 

The rest of the paper is organized as follows. Problem description 
and formulation are presented in the next section. In Section 4, 
through developing efficient defuzzification strategies, the original 
fuzzy model is transformed to an equivalent defuzzified model. 
Section 5 elaborated the meta-heuristic algorithm to solve the 
resulting crisp nonlinear model within a reasonable computation time. 
Numerical results are presented in Section 6. Finally, concluding 
remarks and future research directions are given in the last section. 
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Model Description 
The manufacturer fabricates a non-perishable item, while inventory 
shortages are not allowed. The planning horizon is assumed to be 
infinite by which a demand rate is defined for the product. The finite 
replenishment rate is greater than the demand rate. The supply chain 
system aims to maximize ROII as the main optimization criterion. 
Each market demand is assumed to be general, such as the models 
proposed by Kim and Lee (1998), Lee (1993), and Abad (1988). In 
each market segment, the demand response curve is an improved 
version of the general demand function proposed by Esmaeili (2009), 
and can be affected by price, marketing expenditure and time. Sub-
markets are not independent and there is a demand cannibalization 
among segments. Price in market ݅ is greater than that of 1i  (

1,2,.., 1i n  ). For example, demand function in the first sub-market 

is as following (Ghasemy Yaghin et al., 2013): 

       1 1 2 1 1 1 2 , ,D P P M D P B M P P  
  

where   stands for fuzzy demand cannibalization rate, the part of 

higher-willingness to pay customers who find a way to purchase at the 
lower price,  1 1 2, ,D P P M is demand rate of the first market which is 

affected by price and marketing expenditure (units/period), 1P  and 2P  
present selling prices in the first and second markets, M is marketing 
expenditure per unit ($/unit) and B(M) is the function of marketing 
expenditure. It is noteworthy that manufacturers usually have 
insufficient and imprecise knowledge about the cannibalization rate; 
where they can be estimated based on both the available historical data 
and experience of manufacturers or decision makers. Also, there are 
many cases (especially in the marketing environment) where we face a 
newly produced product and there is no historical data about the 
demand cannibalization rate for the decision maker. Obviously, they 
cannot even apply statistical methods to estimate the parameters. 
Therefore, we take the fuzzy demand function into account in order to 
formulate customer demand. In reality, the aforementioned function is a 
generalization of the Zhang and Bell's (2007) function and which was 
considered by Ghasemy Yaghin et al. (2013). 

Various stochastic modeling techniques have been successfully 
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applied in inventory and ordering problems with randomness (Eynan 
& Kropp, 2007). However, probability functions obtained from 
historical data are not always reliable or available. As emphasized by 
Mula et al. (2010), the fuzzy modeling provides a useful tool to 
support the inventory and marketing research when the dynamics of 
the inventory environment limit the specification of the model 
objectives, constraints and parameters. Moreover, important input 
parameters (e.g., consumer demands and costs) are naturally imprecise 
because of incompleteness and/or unavailability of historical data over 
the product’s life cycle. Fuzzy modeling is related to flexible or fuzzy 
constraints modeled by fuzzy sets. To do so, we have to estimate the 
problem parameters subjectively based on current insufficient data and 
the decision maker’s experience.   

Furthermore, triangular fuzzy numbers are considered to formulate 
each fuzzy parameter. As Driankov et al. (1996) mention, the 
triangular shape of the membership function has been a predominant 
function and is most common in the literature due to its functional 
description and economic parametric. This means that with the help of 
triangular possibility distribution, the output value will have a degree 
of membership 1 in place of intervals as it would be the case with 
some other types of possibility distributions (Driankov et al., 1996). In 
addition, the triangular possibility distribution is the most common 
distribution for modeling the imprecise nature of the ambiguous 
parameters, because of its computational efficiency and simplicity in 
data acquisition (Zimmermann, 1978; Torabi & Hassini, 2008). The 
symmetric triangular fuzzy parameter is shown in Figure 1. The fuzzy 

number is determined by a spread cw and a center 2c .   

 
Figure 1. Triangular possibility distribution of a fuzzy parameter 
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Satisfaction degree of DM has been provided by a confidence level. 
It is clear that we should involve a high confidence level to come with 
the guarantee of the model constraints. However, because of the 
nature of the uncertain inputs and the restriction of the outputs, to find 
an operation policy with a 100% guarantee for complying with the 
constraints is impossible. Moreover, satisfaction degree is an 
appropriate safety margin which is set by the decision maker.  

Mathematical Formulation with Chance Constraints 

The manufacturer’s problem is the differential pricing, determination 
of marketing expenditure, and purchasing quantities in a ROII 
maximization. As they have been addressed by Ghasemy Yaghin et al. 

(2013), within the inventory cycle time  0, T , the fuzzy average 

profit, ܣ෪ܲ , including sales revenue, marketing cost, production cost, 
ordering cost and holding cost would be derived: 

 1, ,.., , nAP T P P M 
 

2
0

1

1

2

n

i i
i

b
PD aT T c R

T




       
  
 


   

 

             

2

1 2

n

i
i

b
MD aT T F



 
    

 



  (1) 

 
2 2 3 2

1

1 2
2

2 2 3

n

h i
i

R
c D aT bT aT bT  



              
      

where iP  is the price of the i -th sub-market, (indexed from 1 to n ), 

a  and b are fuzzy parameters of time function, iD stands for final 

demand rate which is affected by price and marketing expenditure in the 

i -th market, that is  1 1, , , i i i iD P P P M  . We use iD  for the i -th market 

instead of  1 1, , , i i i iD P P P M  . The fuzzy production cost per unit 

($/unit) is shown by 0c .  The production rate per period (units/period) 

and production time in cycle time T  are denoted by R  and . F  and hc  

are fuzzy setup cost ($/setup) and fuzzy holding cost per unit ($/unit), 
respectively. 

~ 
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The fuzzy average inventory investment, AI , is given by  

 1, ,.., , nAI T P P M 
 

2 2 3 2

1

1 2
2

2 2 3

n
p

i
i

c R
D aT bT aT bT

T
  



          
   


 (2) 

Where pc  is the fuzzy purchasing price per unit ($/unit). Then the 

fuzzy return on inventory investment, ROII , is 

     1 1 1, ,.., , , ,.., , / , ,.., , n n nROII T P P M AP T P P M AI T P P M
 

As it is calculated by Tersine (1994),   is  2

1

2 / 2
n

i
i

D aT bT R


   . 

As Ghasemy Yaghin et al. (2013) state the fuzzy average return on 
inventory investment is as follows: 

,෫ሺܶܫܫܱܴ ଵܲ, … , ௡ܲ,ܯሻ ൌ ൝෍ ଵܲܦଵ ൈ ቆ ෤ܽܶ െ
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 2

2 1

2
       

2

n

i
i

D aT bT
bT

R



  





 
  

ROII, as an extensively used economic performance measure 
coping with product inventories, involves joint profit and investment 
indices. Profit function is the difference of the sales revenue and the 
costs. For further clarification, total revenue is the selling prices per 
unit multiplied by the sales quantity, and the profit is obtained by 
subtracting the total cost (i.e., marketing cost, production cost, 
ordering cost and holding cost) from the revenue. The average 
investment is the average inventory investment. Mathematically, the 
average inventory investment is obtained by multiplying purchasing 
price per unit by average inventory.  

As a result, we formulate our fuzzy decision problem as a chance 
constrained programming model which is: 

  1, ,.., , nROII T PM Pax M    

 

   

2

1 2

n
max

i
i

b
Pos MD aT T M 



  
        






 
Subject to 

  

 1 1 2( , , 0) 0Pos D P P M    
  

 1 1, , , 0)( 0i i i iD P P Pos MP      2,.., 1i n   (4) 

 1( , , 0) 0n n nPos D P P M    
  

0, 0T M     

0iP  	 i   

The objective function is to maximize the ratio of the average profit 
over the average investment. In the objective function, some of the 

coefficients including a , b , F , , pc , hc  and 0c  are imprecise. The 
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abbreviation Pos represents possibility measure in order to consider 
the chance constraints in the proposed model and it is clarified in 
Section 4.2. The first constraint means that the marketing cost must be 
lower than the maximum available budget assigned to marketing 

activity, maxM . Akin to chance constrained programming with 
stochastic input parameters, in the fuzzy situation, this constraint will 
be satisfied by minimum chance (i.e., confidence level)   that is set 

by the decision maker. Or a point is feasible if and only if the 

possibility measure of the set  .  is at least   . The second, third and 

fourth constraints enforce the non-negativity of demand functions. 
Finally, the non-negativity of decision variables is shown by 

0, 0T M    and 0,iP i  .  

The Proposed Credibility-Based Fuzzy Optimization Model 

Recalling the previously resultant objective function and constraints, 
we are tackling a fuzzy non-linear programming model with 
possibilistic constraints (FNLPPC) in which some critical input 
parameters such as market demands, cannibalization rate in market 
segmentation and inventory costs are represented as fuzzy parameters 
in the form of possibility distributions. Accordingly, a possibilistic 
programming approach is applied to convert the original FNLPPC 
model into an equivalent crisp non-linear fractional programming 
model (NLFP) while taking into account the marketing uncertainties.  

To solve this model, we develop a new two-phased fuzzy approach. 
In the first phase, the objective function is transformed into an 
equivalent auxiliary crisp one by applying an efficient credibility-
based defuzzification process. Then, in the second stage, we apply a 
hybridization of the Inuiguchi and Ramik (2000) and Maity (2011) 
methods. The efficiency of the proposed method is also examined 
using a similar technique as that of Maity (2011). 

The Equivalent Auxiliary Crisp Objective 

 Several approaches have been presented in the literature to tackle 
the possibilistic models including the ill-known coefficients in 
both objective function and constraints (e.g., Liu & Liu, 2002; 
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Torabi & Hassini, 2008). Here, we propose an efficient 
possibilistic method to transform the proposed possibilistic 
programming model into an equivalent auxiliary crisp model. 
Notably, we apply our proposed method due to its several 
advantages as follows: 

 The method is computationally efficient to solve the fuzzy 

problems because it does not increase the number of objective 

functions and inequality constraints.  

 The method is based on the novel fuzzy mathematical concepts 

such as expected value of fuzzy numbers and credibility measure. 

In addition, there are some ill-defined parameters in the objective 

function. For a given fuzzy number A, credibility measure of A is 

considered as defined by Liu and Liu (2002): 

      1
1                      2

2
c RCr A Pos A Pos A A   

                        (5) 

Let  1 2 3, ,c c c c  be a triangular fuzzy number, k a crisp number 

and R a real number set.  cPos A  represents the complement of the 

possibility measure. Then, according to Liu and Iwamura (1998), and 

Mandal et al. (2011), possibility and credibility measures (i.e., Pos 

and Cr) are as follows: 
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c c

k c

 

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 

 (6) 
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where, DM's degree of optimism is considered by  0,1   so that 

a larger value of   indicates a higher degree of optimism. For a 

normalized fuzzy set, the expected value of the fuzzy variable c  is 
calculated by: 

     
0

0

E c Cr c r dr Cr c r dr




      

 
(9) 

Following Mandal et al. (2011) the following lemma is proven: 
Lemma. The expected value of fuzzy number c  is as follows: 

    1 2 3

1
1 ,       0 1

2
E c c c c          (10) 

Therefore, to solve the equivalent possibilistic model, we apply the 
credibility measure and consider triangular fuzzy numbers, the 

expected value of fuzzy number c ,  E c , as   1 2 2

1
1

2
c c c      . 

As a result, applying this method for the equivalent possibilistic 
model, we would compute an auxiliary defuzzified average inventory 
investment as follows: 
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       2
1 1 2 3 1 2 3

1

1 1
, ,.., , 1 1

2 4

n

n i i
i

ROII T P P M PD a a a T b b b T   



                   



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1

1 1
                  1 1 1      

4 2
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

                  


 

        2
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1

1 1 1
1 1 1
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n
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i
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

              
 


 

  
      2 2

1 2 3 1 2 3
1

1 2 3

1
( 1 1 )

1 2
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n

i
i

h h h

D a a a T b b b T
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R

   
  
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


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n
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i
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

        

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      2

1 2 3 1 2 3
1

1 2 3

1
1 1

1 2
1

2

n

i
i

D a a a T b b b T
a a a T

R

   
  

         
    



 

  
      2

1 2 3 1 2 3
2 1

1 2 3

1
1

2

1
1 2

1
2

n

i
i

D a a a T b b b T
b b b T
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
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  
      2

1 2 3 1 2 3
2 1

1 2 3

1
1 1

1 2
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2 2
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i
i

D a a a T b b b T
b b b T

R

   
  

             





   

(11) 

Treating Possibilistic Constraints 

In the presence of some possibilistic constraints in the model, we use 
the generalized version of Inuiguchi and Ramik (2000) to defuzzify 

the possibilistic constraints. Under a possibility distribution 
1A  of a 

possibilistic variable 1a , possibility measures of the event that a  is in 

a fuzzy set 2A  are defined as follows (Maity, 2011): 

        1 21 2* ,  , , , *A APos a a sup min x y x y R x y     (12) 

where ∗ is any of the relations ,  ,     . The dual relationship of 

possibility and necessity requires that: 

   1 2 1 2* 1 *Nec a a Pos a a      (13) 

We embed the generalized idea of Inuiguchi and Ramik (2000) for 
the fuzzy Model (11) with possibilistic constraints. The constraints of 
(11) have been converted as follows: 

2

1

1 ( )
2

n
max

i
i

b
Nec MD aT T M 



 
     

 



  (14) 

   22
2

1 1

1      
2

n n

i i a b
i i

b
MD a T T MD w w

 

       
 

   

  1 2 3

1
1

2
max max maxM M M       (15) 

For non-negativity of the demand functions, the remaining 
constraints are as follows: 

 1 1 2, , 0D P P M 
  

 1 1, , , 0i i i iD P P P M   2,.., 1i n   

 1, , 0n n nD P P M 
 (16) 

Eventually, the resultant defuzzified non-linear fractional model is 
obtained as follows: 



944   (IJMS) Vol. 10, No. 4, Autumn 2017 

 

In short, the following steps present the proposed solution 
methodology to solve the original FNLPPC model. 

Step 1: Define suitable triangular possibility distributions for the 
imprecise input data and formulate the original FNLPPC model for the 
JPLM problem. 

Step 2: Transform the original fuzzy return on inventory 
investment into the equivalent crisp objective by credibility measures 
for imprecise parameters. 

Step 3: Given the minimum chance level for constraints, convert 
the fuzzy constraints into the corresponding crisp ones, and formulate 
the auxiliary crisp NLFP model. 

Max   1, ,.., , nROII T P P M    

Subject to   

   22
2

1 1

1
2

n n

i i a b
i i

b
MD a T T MD w w

 

       
 

 
 

  1 2 3

1
1

2
max max maxM M M      

 (17) 

     1 1 3 1 2 0D P B M P P      

       3 1 3 1i i i i i iD P B M P P P P     
 

2,.., 1i n    

     3 1 0n n n nD P B M P P      

0, 0T M     

0iP  	 i   

Solution Methodology: A Meta-Heuristics Algorithm 

The formulation given in Equation (17) is a highly constrained non-
linear fractional programming model. This characteristic causes the 
model to be hard enough to be solved by an exact method. Generally, 
there are no direct optimization algorithms to come with the guarantee 
of global solution if an optimization problem includes non-convex 
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terms (Porn et al., 1999). Therefore, a search-based heuristic 
algorithm is required to solve the model. Eberhart and Kennedy 
(1995) introduced Particle Swarm Optimization (PSO) as a kind of 
population based stochastic optimization techniques and evolutionary 
algorithms, like the genetic algorithm.  

There are some different research works applying particle swarm 
optimization to deal with mathematical programming models such as 
parameter estimation in regression models (De-los-Cobos-Silva et al., 
2013), health care literature (Lopez et al., 2012), redundant mobile 
robots (Huang et al., 2015), and supply chains (Ghasemy Yaghin et 
al., 2013). We briefly introduce PSO from (Dye & Hsieh, 2010; 
Eberhart & Kennedy, 1995; Poli et al., 2007) and modify it for our 
non-linear model. Interested readers can refer to Eberhart and 
Kennedy (1995) and Poli et al. (2007) for PSO details. 

In this paper, the PSO algorithm is used to solve the complicated 
non-linear programming models. The general form of non-linear 
optimization problem at hand is as follows: 

  , , Max ROII T MP
 

 

Subject to:  

 , , 0, 1,..,jh T M j m P  (18) 

L U P P P   

L UM M M    

L UT T T    

where P  is the vector of price decision variables, 

 , , 0, 1,..,jh T M j m P  are m  inequality constraints and 

 , , , 1,..,jh T M j mP  are continuous functions on nR . In addition, 

, ,L L LM TP and , ,U U UM TP  are the lower and upper bounds of the 

decision variables. 

Initialization 

In PSO, at first a set of random particles (population) is initialized in 
the search space represented by a d-dimensional vector. Birds are 
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particles and the position of each particle gives a potential solution to 
the problem. A particle moves with velocity. The i-th individual 

 0 0,
i

x y  of the initial population and the i-th velocity of particles are 

randomly chosen as follows: 

   0 0 1, Φ
i L U Lx y x x x   (19) 

   0 0 2, Φx y L U Lv v x x x   (20) 

where 1Φ , 2Φ  are uniform random variables over the interval (0, 

1). Note that we let  , , X T M P . 

Handling the Objective Function and Constraints 

The fitness function, Equation (21), evaluates the performance of each 
solution. Penalty terms are used to modify the constrained 
optimization model to unconstrained ones. Hence, the equivalent 
models can be generally obtained as follows: 

          2 2

1

, ,  , , 0, , , 0,
m

U
penl j

j

T M ROII T M max h T M max 


   P P P P P
 

(21) 

        2 2 2

0, 0, 0,L U Lmax max M M max M M     P P   

     2 2

0, 0,U Lmax T T max T T      

 

where penl  is a positive large number, known as a penalty 

number. It is apparent that no penalty will occur if a constraint is 
satisfied. In other words, if a constraint is not satisfied the penalty 
term is realized. Eqatation (21) is applied to evaluate the fitness of 
particles in a population. Therefore, the problem becomes 

 , , Max T M P
 

(22) 

In fact, the technique transforms a constrained problem into a 
sequence of unconstrained problems. The constraints are placed into 
the objective function via a penalty parameter such that any violation 
of the constraints is penalized. 
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Updating Position and Velocity 

Every particle in the swarm is described by position and velocity. 
The velocity of each particle determines the change of its position and 
flying direction. To find the optimal solution, each particle regulates 
its flying according to its own flying experience (cognition part) and 
its companions’ flying experience (social part). The first one is the 
previous best position of each particle and is called pbest. The second 
one is the previous best position attained by any particle in the swarm 
and is called gbest. 

 In other words, a particle moves towards its best previous position 
and towards the best particle. The following Equation represents the 
velocity update of each particle during every iteration. 

1
1 1 2 2 (  ) (t t t t t t

i i i i i iV w V cw r pbest X cw r gbest X         
 

(23) 

and 
1 1t t t

i i iX X V    
where 

(24) 

t
iV  Velocity of the i-th particle at the t-th iteration 

t
iX  Current position of the i-th particle at the t-th iteration 

t
ipbest

 

Previous best position of the i-th particle so far at the t-
th iteration (pbest) 

t
igbest

 

Previous best position attained by any particle in swarm 
at the t-th iteration (gbest) 

1 , cw cw

 
Positive constant weight factors 

1 2 , r r  
Random numbers between 0 and 1which are uniformly 

distributed 
w  Inertia weight 

Acceleration coefficients are 1cw  and 2cw that determine the 

distance of the movement of each particle in a single iteration. These 
coefficients are based on the influence of cognition experience and 

social part. Usually, 1cw  and 2cw  are selected in the range of 



948   (IJMS) Vol. 10, No. 4, Autumn 2017 

 

 1.5, 2.5 .  

The influence of the previous flight direction on the current 
position is controlled by the inertia weight. It causes convergence 
performance of the proposed algorithm. In order to reduce the impact 
of the inertia weight, the following expression is used similar to 
Ghasemy Yaghin et al.’s (2012) paper: 

 1 1t t tw w N
  

 

(25) 

where ܰ is the maximum number of iterations and ݐ is the current 
iteration. 

The velocity of particles is limited to lie within   ,  max maxV V  . 

This leads to particles just searching the defined space. In PSO, maxV  is 

usually set at 4. So, we have  4, 4V    . The search algorithm of the 

particle swarm optimization is set as follows: 

Step 0. Let population size 10000N  , particles 50pn  , 
1510penl  , 1 21.5, 2.5cw cw  ,  4maxV   and k=1 

Step 1. Create a population of particles 
Step 2. Evaluate the fitness of all particles based on objective 

function (21), that is  , , T M P  

Step 3. Find and keep pbest 
Step 4. Find and keep gbest 
Step 5. Update the velocity of each particle according to (23) 
Step 6. Update the position of each particle according to (24) 
Step 7. Terminate if the standard deviation   (i.e., 

    5
1 , , , , 10k kT M T M  
  P P  ) is satisfied, otherwise k=k+1 

and go to Step 2 

Numerical Study 

An illustrative example is provided to show the applicability of the 
approach. A focal company desires to determine lot size, prices and 
marketing expenditure in two market segments. Table 2 presents the 
input parameters. 
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Table 2. Input Parameters 

Inventory 

costs 
 0 20, 25,30c 

 
17,20,hc 

 

80, 85, pc 

 

0 470,500,530k 
 

Demand 
parameter

s 
 75,80,85 ,a 

 
10,14,1b 

 
0.73   

 0.5,1 ,1.5 
 

Other 
parameter

s 

max 560000, 680000, 80000M 

 
 88500R   

Besides, we assume  1 1 135000 15D P P  , 

 2 2 2500000 40D P P   and  B M M  . DM sets the minimum 

chance 0.8  . Of particular interest, we have examined the efficiency 

of the proposed method using a similar technique to that used by 
Maity (2011). According to Liu and Iwamura (1998) and Maity 
(2011), the constraints are reduced to the following constraints. 

 

21
1 11

23 2
2 1 3 21

(
2

( )
( )

2

nmax
ii

n max max
ii

b
M M D a T T

b b
M D a a T T M M






    
  


    




 

 

     1 1 1 1 2 0D P B M P P     

       1 1 1 1 0i i i i i iD P B M P P P P        2,.., 1i n   

     1 1 0n n n nD P B M P P     (26) 

 
At last, the auxiliary defuzzified NLFP model is given as follows: 

Max  1, ,.., , nROII T P P M    

S
ubject to 

   

 

21
1 11

23 2
2 1 3 21

(
2

( )
( )

2

nmax
ii

n max max
ii

b
M M D a T T

b b
M D a a T T M M






    
  


    




  (27) 



950   (IJMS) Vol. 10, No. 4, Autumn 2017 

 

     1 1 1 1 2 0D P B M P P      

       1 1 1 1 0i i i i i iD P B M P P P P        
2,.., 1i n 

 
 

     1 1 0n n n nD P B M P P      

0, 0T M     

0iP  	 i   

The fuzzy programming model is taken into consideration to solve 
the equivalent crisp models. The following results are yielded by 
applying the proposed algorithm: 

Table 3. Optimal Solutions for the Numerical Example 

 The proposed method Maity method 

M   0.7 0. 4 

1P   1883.8 2007.7 

2P   1264.0 1051.6 

T   2 1.4 

ROII   5.5320 4.6500 

To compare the two fuzzy methods (i.e., the proposed method and 
Maity method), they are compared in different  -levels. As it can be 

seen from Table 4, the proposed method gives more appropriate 
solutions than the Maity method, especially the objective function 
values. Particularly, in high  - level (i.e., 0.9– 0.95), the solutions 

found by the Maity method have objective function values less than 
our proposed method. In the low  -level (i.e., 0.6–0.7), the difference 

between the values is not significantly meaningful. Additionally, our 
proposed method could find balanced solutions between prices of 
channels, that is to say that the difference between prices is small and 
the Maity method needs to pay more attention to more sensitive 
submarkets because of the high considerable differences between 
market prices. 
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Table 4. The Summary of Test Results According to Different  - Level 

 level   The proposed method Maity method 

 1P   2P   ROII   1P   2P   ROII   

0.6 1857.6 1263.4 5.7516 1861.2 1124.2 5.5474 

0.7 1868.6 1263.7 5.6378 1815.3 1080.9 5.2690 

0.8 1883.8 1264.0 5.5320 2007.7 1051.6 4.6500 

0.9 1909.3 1264.6 5.4334 1974.6 1013.9 4.5915 

0.95 1900.0 1264.4 5.3859 1851.3 946.3 4.1981 

Table 5 summarizes the impact of increasing cannibalization rate 
on expected return on inventory investment and confirms the point 
that market segmentation and differential pricing must be used in 
place to limit cannibalization from high priced to low priced market 
segments by a manufacturer wishing to improve ROII. Therefore, it is 
deducible that the proposed approach is sensitive to   value. The 

results from Table 5 are completely consistent with basic findings of 
cannibalization in the lot-sizing literature (see Zhang and Bell 2007).  

 

Table 5. Results of Sensitivity Analysis on   Value 

 
  (0.5,1,1.5) (2.5,5,7.5) (7.5,10,12.5) (17.5,20,22.5) (27.5,30,32.5) (37.5,40,42.5) (47.5,50,52.5) 

1P   1883.8 1770.9 1697.3 1602.1 1555.8 1508.5 1493.3 

2P   1264.0 1302.9 1320.9 1337.3 1350.0 1343.8 1350.0 

ROII  5.5320 5.3005 5.0839 4.8353 4.7025 4.6173 4.5622 

 

Parameter Tuning 

Setting of parameter values plays an important role in the efficiency of 
the meta-heuristic algorithms. Particle swarm optimization has four 
parameters to be tuned which are population size, particles and 
positive constant weight factors ( 1 2, cw cw ). The Response Surface 

Methodology (RSM) method is implemented to tune the parameters of 
the algorithm. In this regard, the codes ‘‘-1’’, ‘‘0’’, and ‘‘+1’’ are 
applied for the low, medium (center), and high levels of the 
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independent variables, respectively. Table 6 shows the parameter 
levels of the PSO algorithm. 

Table 6 .Levels of Factors in RSM Application 

Parameters Range Low Medium High 

N 1000-10000 1000 5500 10000 

pn  50- 250 50 150 250 

1 cw  1- 3 1 2 3 

2cw  1- 2.5 1 1.75 2.5 

RSM is a collection of mathematical and statistical techniques 
useful for the modeling and analysis of problems in which a response 
of interest (return on inventory investment) is influenced by several 
variables (PSO parameters), and the objective is to optimize this 
response (Montgomery, 2001). The parameters with different levels 
are calibrated using Response Surface Methodology (RSM) with 
Design Expert software.  

Table 7 summarizes the obtained response and the optimum values of 
the parameters of the algorithms using RSM. These values are the best 
fitness value for each obtained problem with respect to proposed points. 

Table 7. Best Fitness Values 

Parameters Optimum value 

N 10000 

pn  50 

1 cw  1.5 

2cw  2.5 

 

Concluding Remarks 

To cope with the issue of uncertainty in integrated lot-sizing and price 
setting models, a fuzzy non-linear fractional model with possibilistic 
constraints was proposed in this paper. The considered integrated lot-
sizing and price setting models include both marketing and inventory 
decisions as well as return on inventory investment (ROII) maximizing 
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concurrently to avoid the sub-optimalities resulting from the individual 
policies. To solve the proposed fuzzy non-linear programming with the 
possibilistic constraints (FNLPPC) model, a fuzzy solution approach is 
proposed by combining the Inuiguchi and Ramik (2000) and Maity 
(2011) methods. To the best of our knowledge, this work is one of the 
original research studies applying possibilistic programming approach for 
the fuzzy pricing and lot-sizing problem based on considering market 
segmentations under uncertainty through optimizing return on inventory 
investment and the literature considering this approach in JPLM is still 
scarce. This paper contributes to the joint pricing and lot-sizing literature 
by revealing ROII maximization as an objective function called ROII 
pricing and fuzzy formulation approaches in the lot-sizing and price 
differentiation problems. 

Regarding the importance of uncertainty and variability in price 
discrimination and market environment, many possible future 
directions can be defined in this area. We believe that further 
examinations are needed to investigate qualitative implications to 
generalize other demand functions, even if this may potentially require 
more complex technical skills. Moreover, solving the resulting non-
linear model by a new efficient algorithm should be useful in 
obtaining good solutions. Thus, one of the appealing future research 
works of this paper is extending exact  efficient heuristics algorithm. 
One can analyze the proposed approach in order to solve the multiple 
objective optimization model such as Ghasemy Yaghin et al. (2013) 
and develop a fuzzy multiple objective chance constraint model in 
order to determine differential pricing and ordering policies for the 
manufacturer. Developing the supply chain network under 
consideration in this paper in order to coordinate inventory decisions 
between supply chain entities would be an interesting area in real 
world problems. Our study has taken myopic customers into account, 
and an interesting avenue would be to involve strategic customers by 
the theory of game’s mathematical formulation. Last but not least, 
additional fuzzy measurements of variability such as variance or 
entropy of fuzzy sets need to be considered in the pricing-inventory 
model and enhance the proposed methodology.   
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