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A B S T R A C T 

 

Artificial Intelligence (AI) techniques are used for solving the intractable engineering problems. In this study, it is aimed to study the 
application of artificial bee colony algorithm to predict the performance of circular diamond saw of hard rocks. For this purpose, fourteen 
types of hard rocks were cut in laboratory using a cutting rig of 5 mm deep cut, feed rate of 40 cm/min and peripheral speed of 3000 rpm. 
Four major mechanical and physical properties of rocks such as uniaxial compressive strength (UCS), Schimazek abrasivity factor (SF-a), 
Mohs hardness (Mh), and Young’s modulus (Ym) were determined in rock mechanic laboratory. Artificial bee colony (ABC) was used to 
classify the performance of circular diamond saw based on mentioned mechanical properties of rocks. Ampere consumption and wear rate of 
diamond saw were investigated to evaluate the result of ABC algorithm. Ampere consumption was determined during the cutting process and 
the average wear rate of diamond saw was calculated from the loss of width, length and height. Comparing the results of ABC and cutting 
performance (ampere consumption and wear rate of diamond saw) indicated the proper ability of metaheuristic algorithm such as ABC to 
evaluate the cutting performance 
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1. Introduction 

Circular diamond saw has been widely used in dimension stone 
factories. Predicting the performance of circular diamond saw can be 
important in estimating the cost and finding the best designs of the 
plants. The performance of circular diamond saw is affected by many 
parameters such as the rock properties, sawing properties including saw 
operating and design characteristics, as well as the operating skills and 
work condition. Among these factors, sawing characteristics and 
operating skills can be controlled in the sawing process but the rock 
properties cannot be controlled in since they are related to the rock’s 
physical and mechanical properties [1]. 

Since 2007, the relationship between rock features and sawability has 
been addressed in many studies. Table 1 provides a review of the most 
important and well-known conducted studies. According to Table 1, 
usually studied parameters consist of Uniaxial Compressive Strength 
(UCS), indirect Brazilian Tensile Strength (BTS), Schimazek abrasivity 
factor (SF-a), Mohs hardness (Mh), Young’s modulus (Ym), Grain Size 
(GS) and Equivalent Quartz Content (EQC). These studies are 
indicative of the importance of these parameters in cutting performance 
of diamond saw machine. 

In recent years, application of meta-heuristic methods in solving 
vague and complex systems has been significantly increased due to their 
ability in adapting optimization concepts to uncertainty problems in the 
modeling systems [32, 33-34]. Among meta-heuristic techniques, the 
Artificial Bee Colony Algorithm (ABC) is one of the most widely used 
evolutionary methods in the area of soft computing. This algorithm was 
first introduced by Karaboga and inspired by the bees’ lifestyle, and their 

attempt to provide food was used for the optimization of different 
problems in the industry, transportation systems and traffic problems 
[35, 36, 37, 38, 39-40]. 

In this study, it is aimed to study the application of artificial bee 
colony algorithm for predicting the performance of circular diamond 
saw in sawing hard rocks based on important physical and mechanical 
properties of rocks. 

2. Sawing mechanism 

Sawing chips form when a work-piece material is destroyed with the 
use of a circular diamond saw in a way that the saw cuts into the work-
piece at a constant traverse rate as it rotates around its center with an 
angular speed. As a result, the surface of the work-piece is scratched and 
cracked with the removal of the materials from the segment surface by 
the diamond particles. There are two cutting mechanisms during these 
processes. First, tangential forces exert some stresses in front of a grain 
involved in the process. Therefore, tensile and compressive stresses 
produce a swarf. This mechanism is referred to as the primary chip 
formation. The swarf is forced out in front of and from beside the 
abrasive grain, which usually possesses a small size. The cutting progress 
should reach a certain minimum thickness of grinding since the rock 
shows an elastic behavior up to its ultimate stress. The compressive 
stress under the diamond deforms the rock cut. A brittle fracture as a 
critical tensile stress is achieved via an elastic revision caused by the load 
removal. This is the secondary chip formation process induced by a 
tensile stress as is illustrated in Fig. 1. Finally, the coolant fluid removes 
the swarf away [41]. 
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Table 1. The main studies performed in the field of sawability using their own study parameters 

Researchers UCS BTS YM MH SF-a GS EQC 
Buyuksagis,2007, [2] ● ●  ● ● ● ● 
Fener et al, 2007, [3] ● ●  ● ●   
Tutmez et al, 2007, [4] ● ●  ● ●   
Atici & Ersoy, 2009, [5] ● ●      
Mikaeil et al, 2011a, [6] ● ●      
Mikaeil et al, 2011b, [7] ● ●  ● ●   
 Mikaeil et al, 2011c 2011, [8] ● ● ● ● ● ● ● 
Guney, 2011, [9]  ●  ●    
Mikaeil et al., 2011d, [10] ●   ● ● ● ● 
Mikaeil et al., 2011e, [11] ● ● ● ● ● ● ● 
Ataei et al., 2012 [12] ●  ● ● ● ● ● 
Yurdakul & Akdas, 2012, [13] ● ●  ●   ● 
Yasith et al, 2012, [14] ● ●  ●    
Bilim, 2012, [15] ●   ●    
Winkler, 2013, [16]      ● ● 
Karakurt et al, 2013, [17] ●       
Mikaeil et al, 2013, [18] ● ● ● ● ● ● ● 
Engin et al,2013, [19] ● ●  ● ●   
Bayram, 2013, [20]    ● ●   
Sengun & Altihdag, 2013, [21] ●   ●    
Aydin et al,2013, [22] ●   ●    
Karakurt,2014a, [23]    ● ●   
Mikaeil et al, 2014, [24] ● ● ● ●    
Karakurt,2014b, [25]     ●   
Aydin et al, 2015, [26] ●       
Tumac, 2015, [27]    ●    
Mikaeil et al, 2015, [28] ●  ● ● ●   
Mikaeil et al, 2016a, [29] ● ● ● ● ●   
Aryanfar & Mikaeil, 2016, [30] ● ● ● ●    
Almasi et al, 2017b, [31] ● ● ● ●  ● ● 

 

 
1- Friction between swarf and matrix 4- Friction between stone and stone 
2- Matrix erosion by swarf and chips 5- Plastic deformation  
3- Primary chipping zone 6- Elastic deformation  

 

Fig. 1. Observed Specific Ampere Draw versus estimated Specific Ampere for 
model 3 (test data). 

3. Laboratory studies 

To perform the laboratory tests, several blocks of rock samples were 
collected from the famous Iranian factories. These samples were selected 
based on their high usage in rock industry. To collect the rock samples, 
it was attempted to obtain sufficiently big specimens of each rock type 
for conducting every tests on the same piece (Fig. 2). To prepare the test 
specimens without any fractures, partings, or alteration zones, each 
block sample underwent an inspection for any probable macroscopic 
defects. The test samples were then prepared from these block samples. 
The main goals in mechanical and physical properties selection are to 
choose the minimum number of properties, avoid using equivalent 
parameters, and select only one parameter from a certain group. 
Therefore, the parameters selected in this paper to evaluate the 
sawability of hard rocks were as follows:  Uniaxial Compressive Strength 
(UCS) Schimazek’s F-abrasiveness (SF-a) factor Mohs Hardness (MH) 
Young’s Modulus (YM) [18]. Based on the procedures suggested by 

ISRM standards [43], the Uniaxial Compressive Strength (UCS), 
Schmiazek Factor of abrasivity (SF-a), Mohs Hardness (MH), and 
Young’s Modulus (YM) were measured. The physical and mechanical 
features of examined rocks are presented in Table 2. 

 
Fig. 2. Some of prepared specimens for mechanical tests. 

Table 2. The physical and mechanical characteristics of studied rocks. 

Sample 
Number 

UCS Mh Ym BTS EQc Gs SF-a 
(Mpa) (n) (GPa) (Mpa) (%) (mm) (N/mm) 

1 157 5.6 37 15.46 52 1.13 9.1 
2 138 6.1 29 8.15 64 1.14 5.95 
3 141 6 41.5 10.15 61 1.25 7.74 
4 173 5.7 46 15.98 35 1.43 7.99 
5 155 5.7 39 13.1 55 2.06 14.84 
6 150 5.7 43 11.28 55 2.16 13.4 
7 185 5.3 49 17 55 1.16 10.84 
8 239 6.4 52 18.86 66.5 0.77 9.65 
9 199 5 49.5 16.14 37 0.91 5.44 
10 145 5.95 36 9.2 64.3 4.1 24.25 
11 173 6.6 49 15 60.06 0.87 7.6 
12 133 5.65 29 8.3 32.2 3.9 10.42 
13 125 5.6 31 7.4 30.3 3.8 8.5 
14 142 6.1 44 8.52 57.65 2.9 14.24 
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4. Classification of studied rocks by Artificial Bee Colony 
(ABC) Algorithm 

The performance of ABC algorithm was inspired by the honey bee 
colony procedure. The honey bee colony is generally composed of three 
sections, including food sources, employed and unemployed bees. In 
addition, unemployed bees are divided into two sections of onlooker 
bees and scout bees. In their behavior and lifestyle, honey bees use a 
complex communicative system. The relationship among bees is made 
through a dance language. The dance language includes a set of 
continuous motions done by bees. This dance, called waggle dance, 
contains information on the quality of source, location and position of 
bees. First, a set of food sources is randomly selected. Employed bees 
move toward the sources and compute their amount of honey. Then, 
these bees return to the hive and share their information with onlooker 
bees. In the second step, after the information exchange, each employed 
bee moves toward a source observed before and may select a new source 
near the previous one based on the information in its mind. 
Furthermore, scout bees search the surrounding environment for 
finding new food sources. If the food source is run out or bees leave there 
and move toward a new source, first the fitness of the new source 
(solution) is investigated based on the information of previous sources 
(solutions). If this fitness is more than the previous steps, the new source 
(solution) is maintained in the memory of the bee, otherwise the 
computation of the fitness of new food sources is another criterion for 
assessing the last and best source. This process continues until all the 
requirements are met (finding the most optimal solution). These steps 
are computed through Eq. 1. 

( )x x x
ij ij ij ij kj

   
 (1) 

{1, 2, 3, ....., } ,k BN i k   

{1, 2, 3, ....., }j D  

Where 𝑣𝑖𝑗  is the position of the initial bee, and 𝑥𝑖𝑗 and 𝑥𝑘𝑗 are 
positions of the initial and other bees (neighbor bees), respectively. The 
less the value of 𝑥𝑖𝑗 − 𝑥𝑘𝑗is, the less the deviation from 𝑥𝑖𝑗 will be. Values 
k and j are randomly selected and BN is the number of employed bees 
which is equal to SN, food source number. In addition, variable k is 
different from variable i. 𝜙𝑖𝑗 is a random number between interval [-1 & 
1] and this variable controls the production of food sources around 𝑥𝑖𝑗 . 
In fact, in equation (1), it is attempted that in the next movements, the 
obtained initial position moves toward or against the value of index. 𝜙𝑖𝑗 . 
The difference between this algorithm and other meta-heuristic ones 
such as PSO is that in this algorithm, considering the selection of 
random numbers from index. 𝜙𝑖𝑗 , it is attempted to use diversity as 
much as possible and it prevents bees from being placed at optimum 
points [6, 44]. As mentioned, after the end of searching operations, 
onlookers investigate and evaluate the information obtained from 
employed bees and then considering the data analysis about the food 
sources, they select one of the food sources with a proper probability 
[34]. Eq. 2 computes this probability. 
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Where Pi indicates a proper probability for the food source. SN is the 
number of food sources (the number of existing solutions). fiti is the 
fitness function of food sources which corresponds to the ith bee. If a 
food source is run out and or lacks a proper quality, employed bees leave 
it and turn into scout bees. It means that if in the fitness model, a point 
is not improved after several iterations, the local optimal point must be 
left and a new random point will be selected. Selection of a proper 
method and approach for solving complex systems depends on the 
condition and amount of complexity in the system. A wrong selection of 
modeling system not only finds a wrong solution for the problem, but 
also leads to more complexity and creates a reverse approach in solving 
the problem. Thus, in this research, considering that there is an 
uncertainty in the nature and characteristics of rocks on one hand, and 

an uncertainty in results obtained from experiments on the other hand, 
the Artificial Bee Colony Algorithm (ABC) is used for evaluation and 
investigation of results. 

4.1. Modeling 

In order to investigate and evaluate the experimental results obtained 
from this research, one of the most important applications of the 
Artificial Bee Colony Algorithm (ABC) is optimization which is used in 
data classification. In this procedure, based on eq. 3, Loyd’s Algorithm 
(k-means) is used and fitted as the objective function in ABC algorithm 
in order to classify data [45]. 

. min ( , )
11

n
Obj Function d x m

i jj ki
 
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 (3) 

Where mi is the center of cluster and k is the number of clusters. xi is 
the data set and value of i is i=[1,2,3,…,n]. Furthermore, d is the Euclidean 
distance of the center of cluster to each member.  
In fact, the aim of this section is to develop an integrated approach using 
the ABC and Loyd’s Algorithms (k-means). They belong to an 
appropriate optimized classification, and therefore, the two 
classification methods are combined. 

In the first step of modeling, the pseudo code of ABC algorithm and 
its objective function are written. Then, the algorithm’s control 
parameters such as the maximum number of iterations, the population 
size (colony size) and the minimum acceptable error are considered as 
300, 50 and 𝜀𝐿 = 0 ∙ 00001, respectively. These control parameters of 
algorithm are important to a suitable optimization which are selected by 
experts’ suggestions and previous studies [46]. Hence, in this study, 
these control parameters were selected after several experts’ 
consultation meetings. In addition, obtained results from laboratory 
tests on 14 rock samples and four major rocks properties were 
introduced for evaluation of classes classified as input data in the 
algorithm. Based on the experienced technicians’ suggestions, in the 
next step, the classification of 2, 3 and 4 classes are analyzed and 
investigated using the software. According to the obtained results, the 
most proper classification is obtained for the fourth class. The obtained 
results from the ternary classification are shown in Tables 3 and 4 for 
the minimum acceptable error and the amount of optimization of each 
data in the class, respectively. 

Table 3. Precision level and calculation termination in 300th iteration. 

Result ( ) ( 1)n n

L U U
   

( )n

U  

( 1)n

U



 
Step (n) 

Continue 0.0541 > 0.00001 107.1023 107.0482 185 
Continue 0 < 0.00001 107.0482 107.0482 186 

Stop 0 < 0.00001 107.0482 107.0482 300 

 
Based on the results of Table 3, the algorithm reached the most 

acceptable possible error in the 185th iteration and this value remained 
constant by the end of iterations. In fact, the convergence obtained in 
the 185th iteration remains constant until the 300th iteration, indicating 
the ability of this algorithm in the fast convergence and its stability. 
Furthermore, the process of convergence is shown in Fig. 3. 

Table 4. Optimization and classification of rock’s samples by ABC algorithm. 

Classification Optimum Partition Rock Samples 
A1 

First 
Class 

82.757 25.879 25.326 9.029 A1 
A3 103.015 6.548 46.105 18.191 A2 
A5 97.952 14.944 39.327 10.708 A3 
A6 65.659 43.99 7.42 24.367 A4 
A10 84.639 25.391 26.719 5.428 A5 
A14 88.984 22.786 30.271 2.594 A6 
A4 

Second 
Class 

53.524 56.287 5.439 36.201 A7 
A7 1.834 109.116 59.494 89.895 A8 
A9 39.57 69.777 20 50.556 A9 
A11 96.069 21.048 39.31 12.599 A10 
A2 

Third 
Class 

65.469 45.233 7.385 25.315 A11 
A12 107.883 1.889 50.468 20.674 A12 
A13 115.311 7.43 57.337 27.137 A13 

A8 Furth 
Class 

96.896 18.335 38.1 8.732 A14 
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Fig. 3. The minimum cost per iteration by ABC algorithm. 

 
Based on the results obtained from Table 3, 14 rocks were classified 

by ABC algorithm in 4 classes as 6 samples in the first class, 4 samples 
in the second class, three sample in the third one and 1 sample in the 
fourth class. We carried out an optimized classification of 38 different 
dimension (decorative) stones in 4 separate clusters, according to four 
important parameters such uniaxial compressive strength (UCS), 
Schimazek abrasivity factor (SF-a), Mohs hardness (Mh), and Young’s 
modulus (Ym). Also applying the meta-heuristic algorithm made it 
possible to evaluate the cutting performance of diamond saw with 
various operating parameters. More discussions can be obtained in the 
area of validation of results obtained from this data classification 
process. 

5. Discussion 

In this section, the result of ABC were verified by ampere 
consumption and wear rate of circular diamond saw. Therefore, the 
following four main steps were performed.  

Step 1. Preparing the fully-instrumented laboratory cutting rig 
Step 2. Monitoring and calculating the ampere consumption during 

the sawing tests  
Step 3. Calculating the average wear rate of diamond saw from loss of 

width, length and height  
Step 4. Comparing ABC results and cutting performance (ampere 

consumption and wear rate of circular diamond saw). 
To perform the cutting tests, a fully-instrumented laboratory sawing 

rig was prepared (Fig. 4). It consisted of 3 major sub-systems, i.e., a 
sawing unit, instrumentation, and a personal computer. A small side-
sawing machine with a maximum spindle motor power of 4 kW was 
employed to conduct the sawing tests. Cutting parameters included feed 
rate, cut depth, and controlling the peripheral speed in the monitoring 
system. 

In this study, a circular diamond saw of a 250-mm diameter, and a 
steel core of 50-mm thickness were utilized. Eighteen pieces of 
impregnated diamond segments with a size of 35 mm×2.5 mm×6.0 mm 
were brazed to the periphery of a circular steel core, which had a 
standard narrow radial slot. Two different saws were applied to 14 rock 
types in this study. The diamond had a grit size of about 50/60 US mesh 
at concentration 35. Ampere consumption and wear rate of diamond 
saw were selected as criteria to evaluate the result of ABC algorithm. 
Ampere consumption was determined during the cutting process using 
a digital ampere meter. The average wear rate of diamond saw was 
calculated from loss of width, length and height using a digital 
micrometer (Fig. 5). The ABC result and cutting performance 
parameters such as wear rate of circular diamond saw and ampere 
consumption are given in Table 5. 

 

 
Fig. 4. A fully-instrumented laboratory cutting rig. 

 

 
Fig. 5. A digital micrometer to determine the wear rate. 

 

Table 5. The ABC result and cutting performance parameters. 

Classification 
Cutting performance   Rock  

Samples I (A) Wr (mm3)  

First Class 

15.5 4.50E-07  A1 
15.4 8.00E-07  A3 
15.7 5.00E-06  A5 
15.6 2.50E-06  A6 
15.7 3.00E-06  A10 
15.6 1.60E-06  A14 

Second Class 

16.1 1.56E-06  A4 
16.2 1.50E-06  A7 
16.6 1.00E-06  A9 
15.8 2.20E-06  A11 

Third Class 
15.2 5.00E-07  A2 
15.4 6.00E-07  A12 
15.5 4.00E-07  A13 

Fourth Class 17 7.20E-06  A8 

 
Confirmation of the applied metaheuristic algorithm were conducted 

by comparing the ABC results with those of cutting performance 
parameters (wear rate and ampere consumption). According to Table 4, 
the studied rocks were classified into four classes. Samples 1, 3, 5, 6, 10 
and 14 were classified in the first class. All of these samples except 
sample 3, had a medium value of ampere consumption ranging from 15.5 
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to 15.7 A. However, the wear rates of diamond saw for sample 1 and 3 
did not match this class. Similarly, samples 4, 7, 9 and 11 were classified 
in the second class with medium both wear rate (with a range of 1E-6 to 
3E-6 mm3) and ampere consumption (with a range of 15.8 to 16.6 A). The 
third class has a good performance of cutting with the lowest wear rate 
and ampere consumption. Sample 8 with a high value of wear rate and 
ampere consumption has been classified in fourth class. This sample had 
a very poor cutting performance. Based on experts comments, the  
classification accuracy in proposed method is about 92.85% (only 1 fault 
in 14 samples). In order to compare the results with other methods, 
based on our best knowledge, no research paper was found on this topic 
but a similar work, [1] has reported a maximum accuracy of about 84.6% 
in its classification. This means that metaheuristic method is better than 
mathematical and theoretical classification in this topic. 

6. Conclusion 

In this study, the application of metaheuristic algorithm was studied 
to evaluate the performance of circular diamond saw in hard rocks 
sawing process. A total of fourteen types of hard rocks were analyzed at 
a constant operation condition in laboratory. Artificial bee colony 
(ABC) was used to classify the performance of circular diamond saw 
based on four major mechanical properties of rocks such as uniaxial 
compressive strength (UCS), Schmiazek abrasivity factor (SF-a), Mohs 
hardness (Mh), and Young’s modulus (Ym). Studied rocks were 
classified into four classes. Validation of applied metaheuristic 
algorithm was conducted by comparing the class of each rock with wear 
rate and ampere consumption. The results of comparison between ABC 
results and ampere consumption and wear rate of diamond saw showed 
that the ABC algorithm is properly capable to evaluate the cutting 
performance only by testing the mechanical properties. For future 
studies, it is recommended to use other optimization techniques 
including a combination of Artificial Neural Network and Imperialist 
Competitive Algorithm (ANN-ICA), Differential Evolution (DE), 
Genetic Algorithm (GA) for more effectively sensitivity analysis. It leads 
to the fact that we can overcome complex problems by using these new 
approaches as the appropriate solution. 
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