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1. Introduction 

Due to some advantages of composite materials such as high 

value of stiffness and strength to weight ratios, composite 

structures are used in advanced industries such as aerospace and 

mechanical especially automobile engineering structures. Some 

of the other advantages of composite materials are controlling the 

elastic and structural coupling by fiber orientations and different 
lay-ups. Composite materials can be classified according to type, 

geometry and orientation of the reinforcement fibers. 

Considering free vibration and buckling of composite structures 

such as beams [1-4] plates [5-6] and cylindrical shells [7-9] has 

attracted much attention over the past decades. In 2014, free 

vibration analysis of composite laminated cylindrical shells using 
the Haar wavelet method subjected to different boundary 

conditions was studied by Xie et al. [10]. In 2016, Song et al. 

[11] investigated free and forced vibrations of composite closed 

cylindrical shells reinforced by CNTs subjected to thermal 

influences based on Reddy's higher order shear deformation 

theory. In 2016, Ansari and Torabi [12] employed generalized 
differential quadrature (GDQ) method in axial direction and 

periodic differential operators in circumferential direction to 

study buckling and vibration of axially-compressed functionally 

graded carbon nanotube-reinforced composite (FG-CNTRC) 

conical shells according to first order shear deformation theory. 

The results showed that volume fraction and CNTs distribution 
had remarkable influence on the buckling and vibration of FG-

CNTRC conical shells subjected to axial loadings. In 2014, 

Xiang et al. [13] used Haar wavelet discretization method to 

study free vibration of composite laminated conical, cylindrical 

shells and annular plates subjected to different boundary 

conditions based on the first order shear deformation theory. In 
2015, Tornabene et al. [14] proposed generalized differential 

quadrature method for studying free vibration of laminated 

cylinders of oval and elliptic cross-sections.  

A new advanced hybrid composite material is FML which is 

composed by alternately thin metal with adhesive fiber prepreg. 

In the past decades, the FMLs have been used in mechanical and 
aerospace industries due to good characteristics of the metal such 

as ductility, impact and damage tolerances as well as benefits of 

the fiber composite materials such as high strength and stiffness 

to weight ratios, excellent fatigue resistance and acceptable 

corrosion. Studies on the FMLs are not widespread. Several 

researches, which have been conducted on the vibrational 
behavior of different structures, are presented in this literature 

review. In 2016, Bidgoli and Heidari-Rarani [15] analyzed 

buckling of an FML cylindrical shell subjected to axial 

compression by Navier and finite element methods. The effects 

of volume fraction of metal, fiber orientation, and geometry 

parameters on the buckling of FML cylindrical shell were 
discussed. They found that with growing the volume fraction of 

metal, the buckling load increased. In addition, they indicated 

that with raising the length and radius of shell, first the buckling 
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load was grown and then it was declined. In 2017, Mohandes et 

al. [16] have studied free vibration of FML cylindrical shells 

subjected to different boundary conditions using beam modal 

function model. The variation of frequencies of FML circular 

cylindrical shell for different material properties of composite 

fiber, volume fraction of composite, fiber orientation, axial and 
circumferential wave numbers and boundary conditions have 

been studied. In 2017, Ghasemi and Mohandes [17] have 

investigated free vibration of rotating FML cylindrical shells. 

The effects of rotational speeds, axial and circumferential wave 

numbers, length to radius ratio and metal thickness on the 

vibration of rotating FML circular cylindrical shells. As 
predicted, the backward wave frequencies were greater than the 

forward ones due to the coriolis effect. 

In this research, the vibration of FML and composite 

cylindrical shells has been compared to each other for different 

boundary conditions by beam modal function method. The 

composite and FML cylindrical shells are used in pharmaceutical 
industry as a rotating cylindrical shell that the vibration behavior 

of them is so important. The results show that the frequencies of 

carbon/epoxy are greater than glass/epoxy for all of the n in the 

composite cylindrical shell, but this process is not constant for 

FML. Also, as grown the n, the frequencies of FML cylindrical 

shells are converged more speed than the composite one. 

 

2. Fundamental equations 

The equations of motion for thin circular cylindrical shells are 
specified as [16]: 
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(1c) 

where h  is thickness of the cylindrical shell. Forces ijN  and 

moments ijM  are stress resultants which are given on the basis 

of middle surface strains and changes in the curvature and torsion 

of the middle surface by: 
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(2) 

where 0,x , 0,  and 0, x  are the middle surface strains 
and xk , k  and xk  are the changes in the curvature and torsion 

of the middle surface. ijA , ijB  and ijD  are extensional, coupling 

and bending stiffnesses. 

The middle surface strains based on the Love’s first 

approximation shell theory [16] can be expressed as follows:  
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where R is radius of the shell. The changes in the curvature 

and torsion of the middle surface are [16]: 
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In this study, cross-ply and unidirectional lay-ups are 
considered; therefore  

0261626162616  DDBBAA  
The stiffnesses for composite laminated cylindrical shells can 

be written as: 
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where kh  and 1kh  are the distances of the middle surface of 

the shell to outer and inner surfaces of the thk  layer, respectively. 

In addition, 
k
ijQ  denote the transformed reduced stiffness 

coefficients for the thk  layer. Also, the stiffnesses for FML 

cylindrical shells are defined as following: 
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where mh  and 
m
ijQ  are the thickness and reduced stiffness of 

the metal layer. The governing equations of motion for thin 

cylindrical shell are obtained by introducing equation (2) into 
equation (1) as following: 
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3. Analytical solution procedure 

To obtain mode shapes, harmonic solution can be used. 

According to harmonic solution, in the first step space and time 

should be separated and then separation between axial and 
circumferential directions should be performed. Harmonic 

solution can be expressed as follows: 
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where mode shapes in the longitudinal, torsional and flexural 

directions are denoted by U(x), V(x) and W(x), respectively. In 

addition, the number of circumferential waves in the mode shape 
is shown by n. Also,   is the natural frequency of vibration. The 

three modal displacements are given by [16]: 
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where  , A, B and C are constants which are obtained as 

expressed in the follows. It should be mentioned that admittedly, 
the exact value of   for cylindrical shells is unknown but it 

depends on the boundary conditions. The value of   is related to 

the axial and circumferential modal numbers which can be 

specified by m and n, respectively. The value of   is 

approximated by the beam so that the flexural mode shapes of the 

cylindrical shells in the axial direction are assumed in the 
identical form with the flexural vibration of beam subjected to 

the same boundary condition. Also, the values of A, B and C 

which are modal displacements, are related to the modal 

frequency and system parameters. By introducing equations (8) 

and (9) into equation (7), a 33  displacement coefficient matrix  
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The determinant of coefficient matrix H set to zero to for each 

value of n for a non-trivial solution of the equations of motion. 

When the value of  is provided, the displacement coefficient 
matrix leads to a six-order polynomial in  . 

 

4. Results of free vibration 

In this section, there is comparison between free vibration of 
FML and composite circular cylindrical shells subjected to 

different boundary conditions. The obtained results of beam 

modal function for composite circular cylindrical shells with 

L/R=1, 5 and 10 are compared with the exact results [18] for 

verifying the accuracy of the proposed analytical solution. 

4.1. Validation 

To validate the beam modal function method, the obtained 
non-dimensional frequency parameter 22

2 ER   is 

compared with the exact solution. The shown comparison in 

Table 1 is carried out for cross/ply ]0/90/0[ 
composite 

laminated cylindrical shells with material properties 

)(6.72 GPaE  , )(1.412 GPaG  , 5.221 EE  and 

26.012   with different n and L/R=10 subjected to simply 
supported boundary condition. The comparison indicates that the 

presented method has excellent agreement with the exact 

solution. 

4.2. Comparison between free vibration analysis of FML and 
composite cylindrical shells 

The effects of different parameters such as material properties, 

boundary condition, axial and circumferential modal numbers 
and lay-ups on the frequencies of the FML and composite 

cylindrical shells is studied and compared in this section. The 

lay-ups of FML and composite cylindrical shells are considered 

four ]0/90/0/[ Al  and three-layered ]0/90/0[ 
, 

respectively, and L/R=10, h/R=0.002 as shown in Figure  1. 

Further, the considered material properties of aluminium, 
carbon/epoxy and glass/epoxy are shown in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1a. FML cylindrical shell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b. Composite cylindrical shell 
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Table 1. Comparison of the non-dimensional frequencies for a composite cylindrical shell with simply supported boundary 

condition (m=1) 
n  Present Exact solution [18] 

1 0.083908  0.083908 

2 0.030009 0.030009 

3 0.015193 0.015193 

4 0.012176 0.012176 

5 0.015231 0.015231 

6 0.021179 0.021179 

 

Table 2. Material properties of aluminium, carbon/epoxy and glass/epoxy 
Materials properties 

)(GPaEx  )(GPaEy  )(GPaEs  x  )( 3mKg  

Aluminum alloy 

2024-T3 

72.4 72.4 28 0.33 2700 

Carbon/epoxy 181 10.3 7.17 0.28 1600 

Glass/epoxy 38.6 8.27 4.14 0.26 1800 

 

As depicted in Figure 2, the non-dimensional frequencies of 

FML and composite cylindrical shells subjected to different n 

and material properties with simply supported boundary 

condition are obtained. It can be seen that the frequencies of 

carbon/epoxy are greater than glass/epoxy for all of the n, 
because carbon/epoxy is more stiff than glass/epoxy. This 

process is not constant for FML because of metal existence. 

Although the frequencies of CARALL are more than GLARE for 

n<5, this process is converted. It means that the frequencies of 

GLARE are greater than CARALL for n>5. 

 
Figure 2. Comparison between non-dimensional frequencies of FML and 

composite cylindrical shells with respect to n for different material 

properties 

 

The non-dimensional frequencies of FML and composite 

cylindrical shells with respect to n for different m are compared 

in Figure 3. As shown in the figure, both FML and composite 

cylindrical shells are converged with growing n. Although both 

structures are converged with growing n, CARALL is converged 
faster than carbon/epoxy. Moreover, the frequencies of CARALL 

are often greater than carbon/epoxy because with adding the 

metal layer to the composite cylindrical shell, the stiffness of 

cylindrical shell increases. Also, the frequencies of both 

structures for m=2 are more than m=1. 

 
Figure 3. Comparison between non-dimensional frequencies of FML and 

composite cylindrical shells with respect to n for different m 

 

The non-dimensional frequencies of FML and composite 

cylindrical shells for different lay-ups are indicated in Figure 4. It 
can be seen that the frequencies of CARALL are greater than 

carbon/epoxy for both lay-ups. In addition, the frequencies of 

unidirectional are more than the cross-ply for both FML and 

composite in the less n because of more stiffness of 

unidirectional lay-up, but with increasing the n, this procedure is 

converted. Further, the frequencies of CARALL for both lay-ups 
are near to each other, but the frequencies of carbon/epoxy for 

unidirectional and cross-ply lay-ups become away from each 

other with raising the n.  

A comparison between the boundary conditions of CARALL 

and carbon/epoxy are considered in the Figure 5. As predicted, 

the frequencies of clamped boundary condition are more than the 
simply supported boundary condition for both FML and 

composite structures since the clamped boundary condition fixe 

the boundaries of the cylinder in all of the directions. 

Furthermore, the frequencies of FML are greater than the 

composite one for all of the n because the FML is stiffer than the 

composites due to the existence of metal layer. Also, the 
frequencies of both boundary conditions are converged with 

increasing n for both FML and composite cylindrical shells. The 
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effect of length to radius ratio on the frequencies of FML and 

composite cylindrical shells for different m are demonstrated in 

Figure 6. As shown in the figure, with growing the L/R, the 

frequencies of both structures are decreased. With increasing the 

L/R, the frequencies of CARALL and carbon/epoxy are 

converged for both m=1 and m=2. 

 

Figure 4. Comparison between non-dimensional frequencies of 
FML and composite cylindrical shells with respect to n for 

different lay-ups 

 

 

Figure 5. Comparison between non-dimensional frequencies of FML and 

composite cylindrical shells with respect to n for different boundary 

conditions 

 

 

Figure 6. Comparison between non-dimensional frequencies of FML and 

composite cylindrical shells with respect to L/R for different m 

 

5. Conclusion 

In this manuscript, free vibrations of FML and composite 
cylindrical shells subjected to different boundary conditions 

using beam modal function method have been compared to each 
other. Love's first approximation theory has been applied to 

obtain the equations of motion for these cylindrical shells. 
Carbon/epoxy and glass/epoxy have been studied for the 

composite section and aluminium has been considered for the 
metal section. The results demonstrated constant process for 

composite cylinder and inconstant process for FML one. The 
frequencies of carbon/epoxy are more than glass/epoxy for all of 

the n, but the frequencies of CARALL are more and less than 
GLARE for n<5 and n>5, respectively. Also, admittedly both 

FML and composite structures are converged with growing n, but 
CARALL is converged faster than carbon/epoxy. Moreover, the 

frequencies of both boundary conditions are converged with 
increasing n for both FML and composite cylindrical shells. 
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