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1. Introduction 

Hyperelastic strain energy functions are used to predict the 
nonlinear elastic deformation of soft tissues, nanomaterials, and 
elastomeric materials in large deformations [1]. However, it is 
important to choose an appropriate hyperelastic strain energy 
function and determine material parameters from the available 
mechanical tests.   

In the recent years, many researchers have studied the nonlinear 
elastic deformation of materials using the experimental and 
theoretical methods. For example, Sasso et al studied the 
mechanical response of the rubber-like materials using 
hyperelastic models, concluding that the Ogden model could 
provide a good prediction in the finite element (FE) simulations 
[2]. Casem et al studied the strain rate and the specimen size 
effects on the mechanical behavior of the thermoplastic elastomer 
gel tissue in the uniaxial compression test [3]. The experimental 
results showed the strain rate sensitivity, while the FE 
simulations illustrated good results only in the low strain rates. Li 
et al studied the effects of size and rubber content on the 
mechanical behavior (strength, elastic modulus and failure) of 

concrete using the uniaxial compression test [4]. Li et al 
investigated the nonlinear elastic behavior of natural rubbers 
(NR) using the modified Arruda-Boice hyperelastic model, 
observing a relatively good agreement with the experimental 
results [5]. Shergold et al measured the mechanical response of 
the pig skin and silicon rubber under uniaxial compression in 
wide strain rate ranges [6]. The numerical results showed that the 
Mooney-Rivlin model did not fit the uniaxial compression test 
data very well. Beda and Chevalier generalized the Ogden 
hyperelastic model in terms of two invariants to study the 
mechanical response of rubber-like materials [7]. Further, Beda 
presented a new mathematical strategy to build proper 
hyperelastic models without considering initial stresses and 
accordingly proposed a new function based on the Hart-Smith 
model [8]. Ogden et al investigated the mechanical behavior of 
incompressible rubber materials and found the optimized material 
parameters using the nonlinear least square algorithm [9]. Terada 
et al proposed a new strategy to take into account the mechanical 
response of fiber-reinforced materials based on hyperelastic 
models [10]. Gendy and Saleeb combined the optimization and 
sensitivity analysis to estimate the material parameters of 
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hyperelastic functions on the rubbers and foam-like materials 
more accurately [11]. Drozdov presented a novel hyperelastic 
model based on the thermodynamics of polymer networks, and 
accurate results were achieved in the uniaxial tension, uniaxial 
compression, simple shear, and pure shear loadings [12]. Darijani 
et al developed the Saint-Venant Kirchhoff hyperelastic model 
for isotropic materials, concluding that their model exhibited a 
good agreement with the experimental data [13]. Darijani and 
Naghdabadi proposed new hyperelastic functions based on the 
logarithmic, exponential, power, and polynomial functions, 
verifying that the suggested models could predict the 
experimental data reasonably [14]. Mansouri and Darijani 
proposed the general exponential hyperelastic model based on the 
generalization of the previous research and investigated the 
response of elastomers and the porcine liver tissue [15]. 
Accordingly, Fereidoonnezhad et al proposed a  two-part 
hyperelastic model (isotropic and anisotropic) to predict the 
mechanical behavior of transversely isotropic materials [16]. To 
the best of our knowledge, the effect of pseudo initial stresses in 
the constitutive modeling of general loading has not yet been 
considered. 

One of the main purposes of the hyperelastic models 
development is to simulate and optimize the biological 
phenomena. To this goal, many reaserchers have investigated the 
mechanical behavior of  tissues such as brain, bone, and muscles, 
as well as their performance in body, by using FE analysis [17-
19]. Nonetheless, due to the significance of the coronary artery 
disease (CAD), many studies have been focused on the 
mechanical response of the arteries by considering the material 
and geometry of the coronary and stent [20-22]. For example, 
Prendergast et al considered the uniaxial and biaxial tension tests 
on the human and porcine artery using a polynomial hyperelastic 
model for the stenting process [23]. Karimi et al investigated the 
linear mechanical properties of the abdominal vein and artery 
[24]. The results demonstrated that both Ogden and Mooney-
Rivlin models fitted the vein experimental data, and the Ogden 
model captured the artery experimental data. Holzapfel et al 
performed the uniaxial tension test on several layers of non-
atherosclerosis arteries and estimated the material parameters of a 
polynomial anisotropic-hyperelastic model [25]. However, the 
predicted results did not fit appropriately the experimental 
curves. Imani et al considered the five-term Mooney-Rivlin 
model to simulate the artery deformation due to the Multi-Link 
and Palmaz-Schatz stents expansion, obtaining the stress 
distribution and the outer diameter changes of the human artery 
[26]. Eshghi et al assumed the polynomial hyperelastic model for 
the human artery and evaluated the stress distribution, the 
bending of the stent, and the outer diameter changes during the 
stent deployment [27].   

Based on the above literature review, the significance of 
hyperelastic modeling can be conceived in different engineering 
applications. Recently, an exponential based hyperelastic model 
as a function of stretches has been proposed by Mansouri and 
Darijani [15]. In the current research, this model was modified to 
consider the initial zero stress in the undeformed (unstressed) 
configuration for the simulations of general loading. To explain 
the significance of modification in the engineering applications, 
the uniaxial tension of the natural rubber, the uniaxial 
compression of the thermoplastic elastomer, and atherosclerosis 
artery deformation during stenting were investigated using the 
VUMAT user subroutine. Based on these descriptions, in the 
next sections, first the hyperelastic model is introduced. Then, the 
zero stress modification of the hyperelastic strain energy and 
constitutive modeling are described. Finally, the results of 
simulations are compared with those obtained by other 
researchers.  

2. Hyperelastic material constants determination 

Mooney-Rivlin and Ogden hyperelastic strain energy functions 

are the most famous constitutive models widely used in 

researches [28, 29]. However, these hyperelastic models 

generally cannot properly accommodate different deformations. 

Therefore, Mansouri and Darijani proposed a general 

hyperelastic strain energy in the exponential framework as [15]: 
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where 
kA , 

kB , 
km , 

kn , 
k , and 

k  are the material constants 

found by fitting to the experimental data, and 
i  refers to the 

principal stretches. They showed that the proposed model could 

predict the stress response of different materials like rubbers and 

biomaterials in basic deformation modes. The principal second 

Piola-Kirchhoff stress components (
iS ) can be calculated from 

the hyperelastic strain energy as [29]:   
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To determine the material parameters, the relative error ( RE ) 

between the theoretical and experimental data can be defined as: 
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(3)  

where theoS  and expS  represent the theoretical and experimental 

stresses as a function of the principal stretches respectively. The 

symbol 
2L

 in Eq. 3 shows the 
2L  norm. By minimizing the 

relative error ( RE ), the material parameters can be defined. It is 

worth mentioning that the experimental stresses are in 

Lagrangian (nominal) or Cauchy (real) stress measures, and an  

appropriate transformation to the second Piola-Kirchhoff stress 

should be considered by the well-known transformations of 

continuum mechanic’s rules [29, 30].  

3. Initial stress Modification and Constitutive modeling  

Finite element modeling of the mechanical response of materials 

needs to find an appropriate constitutive model. The hyperelastic 

models used in commercial finite element software cannot 

generally consider the mechanical behavior of all materials. 

Therefore, it is usually needed to implement new constitutive 

equations via the user material subroutines. In the ABAQUS 

software, constitutive modeling can be performed using VUMAT 

or UMAT user subroutines. In this research, the VUMAT user 

subroutine was used, because the contact problem of stenting 

could be simulated more efficiently via the ABAQUS/Explicit 

solver. In simple loading cases (like uniaxial tension), the 

undetermined incompressibility parameter can be defined via the 

zero stress conditions in specific directions (for example 

transverse directions in uniaxial tension). Nevertheless, in general 

loading cases the incompressibility constraint should be imposed 

via Lagrange multiplayers or penalty methods. As the Lagrange 

multiplayers method needs the linearization of hyperelastic 

models and increase the computational time, this method is 

seldom used. The incompressibility condition can be imposed on 

Eq. 1 by penalty method as a function of the determinant of the 

deformation gradient ( J ) [31]: 
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(4)  

In this equation, K  is a small number employed to impose the 

incompressibility condition. By using Eqs. 2 and 4, the stress 

components in the principal stress space can be derived as: 
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(5)  

According to the hyperelasticity conditions [14], the stress tensor 

should be zero at the undeformed configuration (initial 

configuration). Therefore, by substituting the undeformed 

configuration ( 1 2 3 1     ) in Eq. 5, the initial stress value 

(ISV) can be expressed as: 
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It should be noted that in the case of the large value of material 

parameters, ISV could influence the computed stresses 

considerably. Now, to eliminate the spurious initial stress, Eq. 4 

could be modified by subtracting ISV as a function of ( 1)J   , 

as follows: 
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 Indeed, in Eq. 7, the last term is imposed on the strain energy 

function as a constraint to deliver zero stress on the initial 

configuration[29]. By assuming Eqs. 2 and 7, the stress 

components can be obtained as (assuming one term in the 

summation of Eqs. 4 or 7): 
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In the VUMAT user subroutine, the right stretch tensor in each 

increment has been provided in the current configuration. So, the 

eigenvectors and eigenvalues of the right stretch tensor were 

obtained by VSPRIND utility routines. By using Eq. 8, the 

principal second Piola-Kirchhoff stress components were 

computed according to the principal values of the right stretch 

tensor. Finally, to calculate the second Piola-Kirchhoff stress in 

the current configuration, the following transformation was used 

[32]: 

1 1 1 2 2 2 3 3 3S S N N S N N S N N     
 

(9)  

where 1N , 2N , and 3N  are the right stretch tensor eigenvectors. 

It is worth mentioning that in  the VUMAT user subroutine, the 

corotational Cauchy stress ( ̂ ) should be updated in each 

increment as [32, 33]: 

 

1
ˆ TUSU

J
   

(10)  

where U  is the stretch tensor and S  represents the second 

Piola-Kirchhoff stress tensor. 

 

4. Results and Discussion 

In this section, first, the material parameters derived from 

experimental data are presented. Then, the results of the 

simulation of the uniaxial tension of the natural rubber, the 

uniaxial compression of the thermoplastic elastomer, and the 

stenting of atherosclerosis artery are discussed. 

 

4.1. Material parameters evaluation 

Generally, the strain energy functions should be calibrated by the 
experimental data. In this paper, the experimental data (uniaxial 
and equi-biaxial tension tests) of atherosclerosis coronary artery 
were adopted from Prendergast et al  [23], and the natural rubber 
uniaxial tension test data were provided from Li et al [5]. To 
investigate the compressive behavior, the uniaxial compression 
data of thermoplastic elastomer (TPE) at the strain rate of 0.01/s 
was extracted from Casem et al [3]. By using the nonlinear least 
square method and selecting the initial value for fitting 
parameters between zero and one, the experimental data were 
fitted to the exponential based hyperelastic strain energy function 
(Eq. 1) and the best material parameters were determined. Table 
1 represents the material parameters and Fig .1 shows the 
experimental and fitted curves. It should be noted that the equi-
biaxial and pure shear experimental data were not available for 
the natural rubber and thermoplastic elastomer. However, the 
shear and equi-biaxial stresses were plotted to check the material 
stability in these loading conditions. 

 

Table 1. Material parameters of hyperelastic model for the natural rubber, artery, and thermoplastic elastomer. 
 A1 (MPa) B1 (MPa) m1 n1 α1 β1 RE (%) 

Natural 
rubber 

1.996 0.000245 1.348 0.492 0.624 
2.083 0.35 

Artery -0.359 16.068 857.23 3860.3 0.235 0.0797 7.8 

Artery 40.89 0.0383 0.0012 0.0022 0.9768 0.277 2.78 
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(a) 

 
(b) 

 

 
 

(c) 

Figure 1. Comparison of the experimental [3, 5, 23] and theoretical results 

of: (a) artery, (b) natural rubber, and (c) thermoplastic elastomer (TPE). 

As can be seen from figure 1, the exponential based strain energy 

function predicted a stable material behavior for basic loading 

states and a good correlation with the experimental data could be 

observed. In addition, it has been noticed by Ogden et al that a 

hyperelastic model should fit uniaxial, equi-biaxial, and pure 

shear loadings if experimental data are available in these loading 

conditions [9]. When there is no experimental data for some 

loading cases, a model should at least represents a stable behavior 

(material stability). Both the good fitting and stable material 

behavior can be seen in figure 1 for various materials. By finding 

the material constants and ensuring the stable material behavior 

for different loading modes, in the next subsections simulation of 

different case studies was investigated using the modified and 

unmodified exponential based hyperelastic strain energy 

function. 

 
4.2. Simple tension of the natural rubber 

The mechanical behavior of the natural rubber under uniaxial 

tension was evaluated using the experimental data obtained from 

Li et al [5]. The same sample as that employed by Li et al was 

used for simulation, but to reduce the computational time and 

increase the finite element numerical stability, one eighth of the 

specimen with the dimensions of 75×12×1 mm3 was prepared. 

According to figure 2, the front edge of the specimen was 

stretched 39 mm in the z-axis direction. Moreover, symmetrical 

boundary conditions were assigned to some surfaces as it could 

be observed from figure 2. The brick elements with reduced 

integration and enhanced hourglass control were used for 

simulation. 

 

 
Figure 2. Geometry and boundary conditions of natural rubber specimen. 

According to figure 1, it is clear that the exponential based 

hyperelastic strain energy could describe the mechanical behavior 

appropriately. So, the tension test was simulated using the 

modified and unmodified formulations. The stress distribution 

contours are presented in figure 3. 

By comparing Figs. 3a and 3b, a different stress distribution 

could be observed. To obtain the simulated stress-strain curves, 

the nodal reaction forces of the stretched edge in figure 2 were 

summed and divided to the initial surface area (12×1 mm2) to 

obtain the average nominal stress (Lagrangian stress) during the 

simulation. Moreover, to evaluate the engineering strain, the 

elongation of the long edge was divided to the initial length (75 

mm). The stress-strain curves of the modified formulation, the 

unmodified formulation, and the experimental one can be seen in 

figure 4. 

According to figure 4, it is clear that in the same simulation 

conditions, by eliminating the ISV term (Eq. 8), the experimental 

data could be predicted more accurately. Also, the run time 

required for the unmodified formulation was about 10 times of 

that needed the modified formulation; this was due to the smaller 

stable time increment required for the unmodified formulation. 

That is to say, the numerical stability of the modified formulation 

was greater than that of the unmodified one, because the 

existence of the initial pseudo stress increased the stiffness of the 

material spuriously and therefor, the stable time increment was 

reduced. 
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(a) 

 
(b) 

Figure 3. Von- Misses stress (Pa) distribution of natural rubber: (a) modified 

and (b) unmodified model 

 

Figure 4. Comparison of the FE results and experimental data of natural 

rubber [5]. 

4.3. Compression of thermoplastic elastomer 

Uniaxial compression of the thermoplastic elastomer was 

investigated using both modified and unmodified formulations. 

One eighth of the specimen with the diameter of 6.35 mm and the 

height of 3.175 mm was prepared and the symmetrical boundary 

conditions were assigned to the sides and bottom surfaces, as can 

be seen in figure 5. A rigid punch was considered to apply the 

compressive load. The friction coefficient was considered as 0.1 

between punch and the deformable specimen. The same element 

type as the tension test was used for simulation. 

 
Figure 5. Geometry and boundary conditions of thermoplastic elastomer 

specimen and punch. 

The results of the modified and unmodified models simulation 

could be observed in figure 6. The simulated stress-strain curves 

of the modified and unmodified formulations and the 

experimental stress-strain curve have been plotted in figure 7. 

According to figure 7, it could be understood that the modified 

hyperelastic model displayed an appropriate correlation with the 

experimental results. By comparing Figs. 4 and 7 it could be seen 

in the small deformation regime (<10% strain) both modified and 

unmodified models represented nearly the same results; by 

increasing deformation the difference was enhanced. According 

to table 1 and Eq. 6, the ISV for rubber was about 1.68 MPa and 

for the thermoplastic elastomer, it was about 0.05 MPa. 

Comparing Figs. 4 and 7 and considering the ISV values revealed 

that when the ISV was increased the difference between the 

modified and unmodified results was also increased. 

 
(a) 

           
(b) 

Figure 6. Von-Misses stress (Pa) distribution of thermoplastic elastomer: (a) 

modified and (b) unmodified models. 
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Figure 7. Comparison of the simulation results and experimental data of 
thermoplastic elastomer [3]. 

 

4.4. Stent deployment in the atherosclerosis artery 

In recent years, the coronary artery diseases have been identified 
as the main cause of death after accident. In this section, stent 
insertion in the human atherosclerosis artery was studied using 
exponential based hyperelastic equations. The assembled 
geometry of the model and dimensions of components could be 
seen in figure 8 and table 2, respectively. It should be noted that 
although some studies have consider the artery as an anisotropic 
material, here to represent the modification effect and to compare 
the results with the reference [26], the artery was considered as 
isotropic.  

 

 
Figure 8. Geometry of artery, stent, and plaque for stent deployment model. 

 

Table 2. Geometrical dimensions of stent deployment model. 
 Artery Stent Plaque 

Length (mm) 20 10 3 

Inner 
diameter 

(mm) 

4 
2.9 3 

Thickness 
(mm) 

0.5 
0.05 0.5 

 

As mentioned previously, in order to reduce the run time and 

increase the numerical stability, the one eighth model was 

considered due to the symmetry of geometry. Therefore, 

symmetric boundary conditions were applied to the left, bottom, 

and upper edges of the artery, and for the bottom and upper edges 

of the stent. Similar to the study conducted by Imani et al and 

Eshghi et al [26, 27], two loading steps were supposed. In the 

first step, a pressure of 13.3 kPa was applied to the plaque and 

the internal wall of the artery for realistic modeling. In the second 

step, with the preservation of the previous load step, the pressure 

of 0.4 MPa was applied to the inner wall of the stent to consider 

the balloon pressure [20, 34, 35]. The stent was considered as the 

elastic-plastic material with nonlinear hardening (figure 9). In 

addition, the mechanical property of the plaque was taken into 

account the 5-term Mooney-Rivlin hyperelastic model  [26], and 

the material coefficients were demonstrated, as shown in table 3. 

 

 

Figure 9. Comparison of nonlinear and bilinear plastic behavior of stent [22, 
26]. 

 

 

Table3. Material parameters of 5-terms Mooney-Rivlin model 

for plaque [26]. 

 
C10 

(MPa) 

C01 

(MPa) 

C20 

(MPa) 

C11 

(MPa) 

C30 (MPa) 

Plaque -0.495 0.506 1.193 3.637 4.737 

 

Figure 10 illustrates the von Mises stress contour of the human 

atherosclerosis artery for stent implantation using different 

hyperelastic constitutive models. As can be seen, the unmodified 

model predicted stresses more than the modified model, and this 

could increase the restenosis possibility [26, 36]. In addition, 

more non-uniformity could be observed in the stress contour of 

the unmodified formulation. Moreover, comparison of the results 

of the modified and the 5-term Mooney-Rivlin models showed a 

significant discrepancy through stent insertion due to the material 

instability of the equi-biaxial loading of the 5-term Mooney-

Rivlin hyperelastic model [26, 27].  

 
(a) 
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(b) 

 
(c) 

Figure 10. Stress distribution in artery using: (a) modified (Pa), (b) 

unmodified (Pa), and (c) Mooney-Rivlin (MPa) [26] models. 

 

5. Conclusion 

In this paper, the exponential based hyperelastic model was 
modified by eliminating the pseudo initial stresses in the 
undeformed configuration. Firstly, the exponential based strain 
energy function was checked by several experimental data (such 
as the uniaxial compression of the thermoplastic elastomer, the 
uniaxial tension of the natural rubber, and the uniaxial and equi-
biaxial tension of the artery) and the best material coefficients 
were determined. The fitting results indicated that the model 
captured several experimental data appropriately. In order to 
verify the modification procedure in the finite element modeling, 
the VUMAT user subroutines (modified and unmodified states) 
were provided in the corotational configuration. By using the 
VUMAT user subroutine, the uniaxial tension of the natural 
rubber and compression of the thermoplastic elastomer were 
simulated. The simulations results showed that the modified 
constitutive model had stability and a good correlation with the 
experimental data. Finally, implantation of the stent in the 
atherosclerosis artery was investigated. The results also indicated 
more acceptable stress ranges and a uniform distribution could be 
predicted in the artery and stent by using the modified model.  
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