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Abstract
Outliers and influential observations have important effects on the regression

analysis. The goal of this paper is to extend the mean-shift model for detecting outliers
in case of ridge regression model in the presence of stochastic linear restrictions when
the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of
measures for diagnosing influential observations are derived. A numerical example of a
real data set is used to illustrate the findings. Finally, a simulation study is conducted to
evaluate the performance of the proposed procedure and measures. Results of this study
show the efficiency of the proposed mean-shift outlier model for the proposed model.
Also, the study resulted in some findings about the behavior of suggested measures for
the specified model. In fact, these measures are affected by the degree of collinearity
and the size of autocorrelation.
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Introduction

Departures from underlying assumptions in the
regression analysis can result in difficulties for ordinary
least squares (OLS) estimates of the model parameters.
The first departure is collinearity that occurs when two
or more regressors are almost linearly dependent.
Collinearity can make parameters estimates to have
large variances so the confidence intervals of regression
coefficients get wider and the p-values would be
misleading; consequently, we have doubt about the
necessity of a variable to enter the model. A number of
remedies have been suggested to overcome these
problems. Hoerl and Kennard [1] introduced the ridge
regression estimator, as a biased estimator to improve
the mean square error (MSE) of the parameter

estimators against the OLS approach (See Belsley et al.
[2] for more details). Belsley et al. [2] and Rao et al. [3]
considered using prior information about parameters in
the form of exact or stochastic linear restrictions that
leads to decrease the effect of collinearity and improve
the MSE of the estimator. In fact, the exact linear
restriction refers to a deterministic relation between
parameters while the stochastic linear restriction is
referred to stochastic situation.

Sarkar [4] and Özkale [5] combined the ridge
approach with exact linear restrictions and stochastic
linear restrictions, respectively, to obtain restricted ridge
regression estimator and stochastic restricted ridge
regression estimator in order to gain advantages of the
two approaches.

The second departure from underlying assumptions
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occurs when the error terms are autocorrelated such as
in the form of AR(1). Bayhan and Bayhan [6]
considered the estimation of parameters in the linear
regression model with both, autocorrelated errors and
the existence of collinearity between the explanatory
variables and Alkhamisi [7] concentrated on the ridge
parameters in the same model.

The approach of using prior information for
decreasing the effects of collinearity in case of
autocorrelated errors is also of interest. Özkale [5]
introduced a generalized least squares (GLS) estimator
by using the idea of restricted ridge regression estimator
proposed by Groβ [8] in the presence of exact linear
restrictions. Alheety and Golam Kibria [9] proposed a
generalized estimator as an alternative to the stochastic
restricted ridge estimator when the error terms are not
independent.

On the other hand, regression analysis can suffer
from anomalous data including outliers or influential
observations. Belsley et al. [2], and Chatterjee and Hadi
[10] considered this subject for models with
uncorrelated errors under constant variance error terms.

The case deletion method is the most common
approach for influential analysis which compares the
estimates of coefficients and the model fits for full
model and reduced model (DFBETA and DFFIT).

Roy and Curia [11] studied the case deletion effect of
individual observation in the autocorrelated errors
model. Özkale and Açar [12] formulated DFBETA in
the GLS estimators when the error terms are of the form
AR(1) and AR(2). Then, Açar and Özkale [13]
introduced influence measures for autocorrelated ridge
regression model. Ghapani et al. [14] discussed the
detection of outliers and influential observations in
linear ridge measurement error models with stochastic
linear restrictions.

Wang [15] and Rao et al. [3] discussed the method of
mean-shift outlier model. This method is based on
adding an ancillary parameter for each suspicious
observation to the model and handling a hypothesis
testing for significance of the parameter. Wen and Wing
[16] discussed the subject of mean-shift outlier model in
the general weighted regression and Pan and Xiong [17]
extended the subject to the case of presence of
collinearity and Ghapani et al. [18] studied this method
in case of linear measurement error models with
stochastic linear restrictions.

This paper concentrates on the outliers and influence
measures through the mean-shift outlier model and case
deletion methods using stochastic linear restrictions in
the ridge regression model when the error terms are
autocorrelated (of the type AR(1)). The above
mentioned issues are organized as follows.

In the preliminary section the restricted ridge
regression model and AR(1) error terms are introduced.
In the main results section the method of mean-shift
outlier model and the case deletion method for the ridge
regression model using stochastic linear restrictions are
discussed when the error terms are AR(1). Furthermore,
the performance of the proposed methods will be
illustrated using a real dataset and a simulation study
through some tables and figures.

Preliminaries
Consider the linear regression model
y X u  (1)

where y is the 1n  vector of responses, X is n p
matrix of explanatory variables,  is 1p  vector of

regression parameters and u is 1n  error vector with

1( ) 0nE u  and 2( )Var u   , where  is an

n n positive definite (p.d) matrix.
In case of presence of collinearity, an approach for

the estimation of parameters is to combine the method
of stochastic linear restrictions with ridge regression
approach (Özkale [5]). This approach is conducted
through an extension of mixed estimation method
introduced by Theil and Goldberger [19].

They assumed both ridge restrictions proposed by

Troskie et al. [20] as 10p pk I     and stochastic

linear restrictions of the form
r R    (2)

simultaneously. In these restrictions,

 20 ,pN I  is a random vector, independent of u ,

r is an 1m  vector, R is an m p prior information

matrix of rank m p and 2(0, )mN W  is a

random vector, independent of u and  , where W is an

n n known p.d matrix.
The mixed model is defined as follows:

0 p

Xy u

k I

r R

 


    
         

        
or

m m my X   
(3)

where 2( )mV ar    and ( , , )diag I W   is
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a p.d matrix. There exist nonsingular matrices P and T

so that 1 P P   and 1W T T  (see Seber [23],

p.461). Consequently a nonsingular matrix
( , , T)L diag P I will be available such that

1 L L   .

Lemma 1: For the mixed stochastic restricted ridge
regression (MSR) model (3), the MSR estimator of  is

given by:

     1
1 1 1 1ˆ

MSR pk X X R W R kI X y R W r


          

Proof: Pre-multiplying (3) by L and defining

m my Ly , m mX LX and m mL  , the

model changes to m m my X     , where

2( )mVar I  . Hence the OLS estimator of  is

readily derived as follows:

 
 

   

1

11 1

1
1

1

1

1

11 1 1 1

ˆ

0 0

0 0

0 0

0 0

0 0 0

0 0

MSR m m m m

m m m m

p p p

p p

p

X X X y

X X X y

X

X k I R I k I

W R

y

X k I R I

W r

X X R W R kI X y R W r




 










   

 

   

   
          
       

   
          
     

        

   

Replacing
1 with P P in ˆ

MSR and letting

X PX and y Py we have

     1
1 1ˆ

MSR pk X X R W R kI X y R W r


          .   (4)

This estimator is the same as one given by Özkale
[5].

In the model (1) with the autocorrelated error terms,
the p.d matrix  is given by (See Firinguetti [21])

1

2

2

1 2

1 ...

1 ...1
.

1

1

n

n

n n

 
 



 





 

 
 
  
 
 
 

   



(5)

It should be noticed that for each element of vector y

in (1) denoted by 1,...,t t ty x u t n   , the

error term tu follows an AR(1) process, so

1t t tu u   where 1  , ( ) 0tE   and
2 2( )tE   for each t and ( ) 0i jE i j     . The

inverse matrix of  is

2

1

2

1 0 0 0

1 0 0

0 0 0 1

0 0 0 1


  

 




 
    
  
 

  
  











and there exists an n n nonsingular matrix P, such

that
1 P P   (Judge et al. [22]) as follows

21 0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1 0

0 0 0 1

P









 
 
 
 
 
  
 
 
 
 

  













.

At this point we assume  is known, but in the

unknown case letting ˆ
t̂ t tu y x   which are OLS

residuals,  can be estimated from
1

2
1

1 1

ˆ ˆ ˆ ˆ
n n

t t t
t t

u u u



 

  .

Results

Mean-shift outlier method
Suppose that the ith observation is suspicious as an

outlier. It is common to use mean-shift outlier model in
order to test whether this observation is an outlier.
Based on this method the data are arranged so that the
ith observation is moved to the end of data set. The
mean-shift outlier model with the rearranged data for
model (1) is written as y X Z     where

 0,..., 0,1Z  is an 1n  vector and  is an unknown

shift parameter. To check the significance of  we test

the hypothesis : 0H  
versus

1 : 0H   (see Seber

[23] and Rao et al. [3]).

However, in case of autocorrelated error model,
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displacement of any observation changes the
autocorrelated structure of errors into a disorder state.
Therefore, first, the mean-shift outlier model is
constructed without any changes in the order of data and

i is introduced as a column vector of one in the ith

element and zeros elsewhere, so the model is

0 0

0

i

p

Xy u

k I

r R









                         
or

m m my B    . (6)

Pre-multiplying (6) by matrix L gets

m m my B     where m mB LX and
2( )mVar I  . The changes of the model elements

are such that ith and (i+1)th transformed observations
involve the shift parameter  . We proposed to displace

these two elements to the end of matrix mB . Therefore,

without any changes in the model structure the final
mean-shift outlier model can be written as follows:

( , 1) ( , 1)

, 1 , 1
, 1

( 1)

2

,
0

00

0

i i i i i i

p

i i i i
i i

X u

k I

r R
y uX I

y








 

 



                                  

 

 

 



,

or

f f f f t t fy X A Z         . (7)

where  ( , 1) 1ii p iiA X k xI xR       ,

2

2

0q
tZ

I
 

  
 

, and t





 
   

with

 2q n p m    . Also, u Pu , r Tr ,

R TR , T  , , 1
1

i
i i

i

y
y

y


 
  
 





,

,
1

1
i

i
i i

x

x
X







 
  
 




 , ,

1

1
i

i

i

i

u

u
u




 
  
 




 , in which ix  , iy

and iu are the ith rows of X , y and u , respectively.

Furthermore, ( , 1)i iy  , ( , 1)i iX 
 and ( , 1)i iu  are y ,

X and u with deleting the ith and (i+1)th rows,
respectively. Throughout the rest of paper subscript (i)
indicates that the ith row is deleted.

Remark 1: Testing the hypothesis of

2

  0
:

0tH





   
       

 for model (7) is equivalent

to the hypothesis 1 : 0H   for the original mean-

shift model (6).

Proof: If 2H  is not rejected, then  is absolutely

equal to zero and 1H  is not rejected too. If 2H  is

rejected, then
  1 0

0t


 

 
     
             

, but

from the basic definitions 0  so that 0  and

1H  is rejected too.

Applying the method used by Seber [23] to test 2H 

, under the null hypothesis of 0t  , let H be the hat

matrix of model

f fy A   
(8)

and then it is partitioned as

11 12
21

21 22
2 2 2

( ) q q q

q

H H

H A A A A
H H

 

 

 
     
 
 

 


 

.

Then the residuals of model (8) can be written

conformably with H as follows:

111 1 12 , 1
2

22 22 , 1 21 1

( )
( )

( )
q f i i

q f f
i i f

eI H y H y
e I H y Gy

eI H y H y





    
            

  
  

,

in which  ( 1,1 1) 0i if pyy r     . The OLS

estimate of t is

  11
2 22 2( )ˆ

t t t ft Z GZ Z Gy I H e
      .

For testing 2 : 0tH   , firstly the numerator of the

F-test is calculated (Seber [23]–Theorem 3.6) as
1

2 2 22 2t̂ t fZ G e Iy H e
       and the

denominator is derived as ˆ
f f ft tyGy yZ G   that
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equals to
1

2 2 22 2RSS e I H e


      , where RSS is

residual sum of squares of (8). Then the F statistic is as
follows:

 
1

2 2 22 2

1

2 2 22 2

2

2

e I H e

e I H e
F

RSS n p










  

   

 

 
,

which is distributed as 2, 2n pF   .

Remark 2: It should be noted that for any dataset
with autocorrelated errors, an observation can be
recognized as an outlier not only for a large vertical
distance from the bulk of the data, but also for
inconsistency with the autoregressive structure. The
existence of such an outlier observation may also causes
the previous or subsequent observations to be
recognized as outliers. This occurs when the
autoregressive connection between error terms does not
exist anymore and these observations are considered as
outliers in accordance with the autoregressive structure
of the errors. More details are discussed in the
numerical example section.

Influential diagnostics through the case deletion
method

Following Belsley [2] consider the ith observation as
an influential observation candidate. The case deletion
method is based on determining changes in the
estimated parameters and fitted values, when the ith
observation is deleted, by measuring DFBETA and
DFFIT, respectively. Acar and Özkale [13] found the
measures in case of autocorrelated ridge regression
model using leverage values. We intend to find these
measures when the stochastic restrictions are added to

the model, but through using the elements *
ie and *

iv
defined by Roy and Curia [11] for a simpler calculation.

We start with some adjustments in the previous
details and formulas according to deletion  of the ith
observation as follows:

( )( ) ( )

0

ii i

p

Xy u

k I

r R

 


    
         

        
or

( ) ( ) ( )m i m i m iy X    (9)

where 2
( ) ( )( )m i iVar    and

( ) ( )( , , )i idiag I W   is a p.d matrix. The matrix

( )i is also a p.d matrix, so a nonsingular matrix ( )iP

is available through the Result 3.1 in Roy and Curia

[11] such that
1

( ) ( ) ( )i i iP P   . Then There exists a

nonsingular matrix ( ) ( )( , , )i iL diag P I T such that

1
( ) ( ) ( )i i iL L  

Lemma 2: For the mixed stochastic restricted
autocorrelated ridge regression (MSAR) model (9), the
MSAR estimator of  is given by:

     11 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ
MSAR i i i i p i i ik X X R W R kI X y R W r

           

Proof: Pre-multiplying model (9) by ( )iL and

defining ( ) ( ) ( )m i i m iy L y , ( ) ( ) ( )m i i m iX L X and

( ) ( ) ( )m i i m iL  , the model changes to

( ) ( ) ( ) ,  m i m i m iy X   where
2

( )( )m iVar I  .

Hence the OLS estimator of  is readily derived as

follows:

   1 11 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
1

( )( )

( )

1

1

( )

( )

1

ˆ

0 0

0 0

0 0

0 0

0 0 0

0 0

MSAR i m i m i m i m i m i i m i m i i m i

ii

i p p p

i

i p p

X X X y X X X y

X

X k I R I k I

W R

y

X k I R I

W r


  










      

   
          
       

   
         
    

   




   11 1 1 1

( ) ( ) ( ) ( ) ( ) ( )i i i p i i iX X R W R kI X y R W r
           

Replacing 1
( )i
 with ( ) ( )i iP P in ( )

ˆ
MSAR i and

letting ( ) ( ) ( )i i iX P X and ( ) ( ) ( )i i iy P y we have

     11 1
( ) ( ) ( ) ( ) ( )

ˆ
MSAR i i i p i ik X X R W R kI X y R W r

          

.

Taking into account the Result 3.2 of Roy and Curia
[11], for i=2,…,(n-1), we have

* *
( ) ( )i i i iX X X X e e       and * *

( ) ( )i i i iX y X y e v    

where * 2 1 2
1(1 ) ( x x )i i ie  
    and
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* 2 1 2
1(1 ) ( )i i iv y y 
    . So it follows that

     
1

1 * * 1 * *
( )

ˆ
M S A R i p i i i ik X X R W R k I e e X y R W r e v


              

   

Letting 1
pC X X R W R k I     and

1D X y R W r    then

       
1 * * 11

* * * * 1 * *
( ) * 1 *

ˆ
1

i i
MSAR i i i i i i i

i i

C e e C
k C e e D e v C D e v

e C e


 




 
      

  

.

Applying Sherman-Morrison-Woodbury formula
(Seber [23], p.467) for the second equality leads to

         1 ** *
1 *

( ) * 1 * * 1 *

ˆ
ˆ ˆ ˆ

1 1

i ii i MSAR
MSAR i MSAR i MSAR

i i i i

C ev e k
k k C e k

e C e e C e


  




 

 
    
    

where  ˆ
MSAR k is the same as  ˆ

MSR k with  of

the form (5) and 2 1 2
1(1 ) ( )i i i   
    in which

 ˆ
i i MSAR iy k x      . Therefore, it follows that

 1 *

( ) * 1 *
2,..., ( 1)

1

i i

MSAR i

i i

C e
DFBETA i n

e C e




  


.

In order to standardize the ( )MSAR iDFBETA for the

jth parameter, we note that
     1 1 2 1 1 1ˆ( )M S A RV ar k V ar C X X R W r C X X R W R C                 

   

so the estimate of standard error of  ˆ
jMSAR k is

    1 2
1 1 1

,

ˆ( ) ( )
jM S A R

j j
S E k S i C X X R W R C       

 

where ( )S i is the mixed restricted autocorrelated

estimate of  after deleting the ith case. Then

 
   

1 *

( ) j
* 1 * ˆ1 ( )

j

i ij
MSAR i

i i MSAR

C e
DFBETAS

e C e SE k











.

Furthermore, the DFFIT measure can be derived as

     1 *

( ) ( ) * 1 *

xˆ ˆx
1

i i i

MSAR i i MSAR MSAR i

i i

C e
DFFIT k k

e C e


 






      




.

The estimated standard error of the ith fitted value is
given by

   
1 2

1 1 1ˆ(x ) ( ) x xi M S A R i iS E k S i C X X R W R C        
 

   

so that the standardized DFFIT of the ith fitted value,
is as follows:

 
    

1 *

( )
* 1 *

x

ˆ1 x

i i i

MSAR i

i i i MSAR

C e
DFFITS

e C e SE k












 





.

Numerical Example
In order to illustrate diagnostic measures discussed in

the preceding sections, we use an example previously
employed by Bayhan and Bayhan [6] and Özkale [5].
This dataset belongs to a Turkish shampoo and soap
firm in which the purpose is to estimate the demand of
future weekly sales based on the weekly variation of
shampoo sales. 75 records of weekly observations of
sales collected in a period of time with a high and
irregular inflation are used. The first 60 observations in
Table 1 are assumed as historical data and the last 15
observations in Table 2 as fresh data. Two considered
explanatory variables and a dependent variable are as
follows: weekly list prices (averages from selected

Table 1. Historical data for weekly sales of shampoos and prices
Row y

1X 2X Row y
1X 2X Row y

1X 2X
1 28.445 49 12.5 21 30.441 72.4 18 41 32.441 88.5 22.3
2 28.547 49 12.5 22 30.549 72.4 21 42 32.545 68.7 22.9
3 28.644 51.2 13 23 30.641 80 21 43 32.643 68.7 22.9
4 28.746 51.2 13 24 30.739 72 18.3 44 32.748 91.3 22.9
5 28.849 40.3 13 25 30.845 72 18.3 45 32.842 91.3 22.9
6 28.940 52 13 26 30.949 55 19 46 32.950 91.3 23
7 29.045 52.3 13.8 27 31.051 48 19 47 33.039 92.8 23
8 29.142 58 14.4 28 31.148 80.1 19.4 48 33.144 92.8 23
9 29.248 58 14.4 29 31.245 80.1 21.2 49 33.249 76 25.4

10 29.250 58 14.4 30 31.342 84.4 21.2 50 33.347 76 26
11 29.443 62 16 31 31.446 84.4 21.2 51 33.442 93.4 24.1
12 29.545 62 16 32 31.549 85 21.2 52 33.543 93.4 24.1
13 29.644 62 16 33 31.641 85 21.2 53 33.647 93.4 24.1
14 29.747 52 17.1 34 31.743 78 20.1 54 33.746 96.3 24.1
15 29.841 67.2 17.1 35 31.848 78 20.1 55 33.849 96.3 24.3
16 29.045 67.2 17.1 36 31.940 81.3 20.1 56 33.940 97.2 24.3
17 30.046 67.2 18 37 32.043 83.1 21 57 34.041 97.2 24.3
18 30.142 67.2 18 38 32.146 83 21 58 34.143 75.2 25.1
19 30.245 72.4 18 39 32.250 88.5 22.3 59 34.248 100 25.1
20 30.348 72.4 18 40 32.344 88.5 22.3 60 34.345 101.5 25.4
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supermarkets) of the firm's shampoos ( 1X ), weekly list

prices of a certain brand of soap, substituted for

shampoos ( 2X ) and weekly quantities of shampoos

sold (bottle average for the selected supermarkets) (Y).
Prices are in Turkish Liras. Table 3 represents a
summary of descriptive statistics for all variables in
both data series.

Our computations are carried out by R software of
version 3.30. First, each variable is centered and scaled
by the unit normal scaling technique such that

1 1 2 2
1 2

1 2

- - -
, ,j j j

j j j
yy

y y x x x x
w z z

S S S
  

where

 22

1

1

1 

 
 

n

yy j
j

S y y
n

,  22
1 1 1

1

1

1 

 
 

n

j
j

S x x
n

,

 22
2 2 2

1

1

1 

 
 

n

j
j

S x x
n

(see Montgomery and

Peck[24], p.113). Then following Bayhan and Bayhan
[6] and Özkale [5], the Durbin-Watson (DW) statistic of
fresh and historical data are calculated as 0.3533 and
0.562, respectively, which mean that error terms of the

both datasets are of the form AR(1) at 0.05 significance
level (for more details about the autocorrelated structure
of this data set, see Özkale [5]). The estimated value of
 using historical data is 0.7072. Substituting ̂ in

 the condition number of 1ˆX X for fresh data is
126.3 which indicates that the fresh dataset has strong
collinearity problem.

We employ the observations 48 and 49 from
transformed historical data as prior information in the

form of stochastic linear restrictions with 0.1303

0.1380
r
 
  
 

0.1450 0.1049

0.0077 0.1850
R
 
  
 

, and 1 0.7072
.

0.7072 1
W

 
  
 

Following Firinguetti [21], the estimate of ridge

parameter estimate is ˆ 0.356k  . So we have,

 
0.2835ˆ
0.4383MSAR k
 
  
 

.

In order to investigate outlier observations through
the mean-shift outlier model, the F-statistic for each
observation is given in Table 4. It can be seen that 1st

and 3rd observations have larger F values than the table

Table 2. Fresh data for weekly sales of shampoos and prices
Row y

1X 2X Row y
1X 2X Row y

1X 2X
1 34.481 101.3 25.3 6 34.308 104.9 26.2 11 34.780 108.5 27.1
2 34.369 102 25.5 7 34.402 105.6 26.4 12 34.875 109.1 27.3
3 34.268 102.7 25.7 8 34.479 106.9 26.6 13 34.963 109.9 27.5
4 34.160 103.5 25.9 9 34.580 107 26.8 14 35.540 110.6 27.7
5 34.215 104.2 26.1 10 34.682 107.7 27 15 35.173 111.3 27.8

Table 3. Summary of descriptive statistics for shampoos and prices

Data n
y 1X 2X

Mean
Standard
Deviation

Mean
Standard
Deviation

Mean
Standard
Deviation

Historical 60 31.35 1.79 75.05 15.94 19.86 3.9
Fresh 15 34.59 0.32 106.35 3.19 26.59 0.8

Table 4. F-statistic for mean-shift outlier model
Obs. F p-value Obs. F p-value

1 6.66 0.0085 8 0.11 0.8966

2 1.72 0.2126 9 0.01 0.9901

3 4.54 0.0287 10 0.23 0.7973

4 2.99 0.0808 11 0.39 0.6837

5 0.26 0.7745 12 0.43 0.6583

6 0.01 0.9901 13 0.60 0.5615

7 0.07 0.9327 14 1.83 0.1945
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2, 2 3.68n pF    at 0.05  , so these observations

will be diagnosticated as outliers.

To investigate influential observations using the case
deletion method, the related diagnostic measures are

given in Figure 1. The cutoff points are 2 0.46n 
for DFBETAS and 2 0.69p n p  for DFFITS

(see Seber [23], p.307). While the absolute values of
DFBETAS and DFFITS for 8th observation are at least
three times more than those for the other observations,
none of these measures exceed the cutoff points and no
influential observation is recognized (the above
influence measures cannot be evaluated for 1st and 15th

observations).

In order to identify the efficiency of our methods, a
reduction shift for dependent variable, equal to 0.4 can
be chosen (which is slightly more than one standard
deviation of y) and exerted on 8th observation. We
emphasize that this observation is more likely
influential under reduction shift according to the
position of 8th point in Figure 1. Table 5 shows that
applying the mean-shift outlier model to the shifted
dataset, the 8th observation is recognized as an outlier,
but it is observed that 7th observation is also discerned
as an outlier. According to the Remark 2, the reason is
disbanding the autoregressive structure of data by
shifting 8th observation implying that these observations
are outliers in accordance with the autoregressive nature
of data. Again, for more investigation, a proposed

Figure 1. (a) DFBETAS for 1 , (b) DFBETAS for 2 (c) DFFITS for fitted values after fitting Mixed Stochastic restricted

Autocorrelated Ridge model to the shampoo data. The dashed lines are cutoff points.

Figure 2. (a) DFBETAS for 1
, (b) DFBETAS for 2

(c) DFFITS for fitted values after fitting Mixed Stochastic
Autocorrelated Ridge model to the shampoo data with a shift in 8th observation. The dashed lines are cutoff points.

Table 5. F-statistic for mean- shift outlier model after changing 8th observation
Obs. F p-value Obs. F p-value

1 1.16 0.34 8 15.84 0.00

2 0.46 0.64 9 2.5 0.12

3 0.99 0.39 10 0.14 0.87

4 0.71 0.51 11 0.22 0.81

5 0.07 0.93 12 0.24 0.79

6 0.0002 0.99 13 0.33 0.72

7 5.67 0.01 14 0.79 0.47
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reduction shift equal to ˆ ( )SD y  is exerted on 7th

observation and the result of this relief action shows
that, only 8th observation was recognized as an outlier.
In other words, the shift exerted to 7th observation
recovers the destroyed autocorrelated connection
between the two observations.

By the reduction shift action for 8th observation, as
expected, substantial changes occur in the outcome of
diagnosing influential observations (see Figure 2). It can
be seen that DFBETAS and DFFITS of 8th observation
exceed the cutoff points. So, in the shifted dataset, 8th

observation is an influential observation.

Simulation Study
In this section the performance of the proposed

methods are investigated through a simulation study.
We generate data with autocorrelated error terms taking
into account different values of  , sample size, degree

of collinearity and shift values. Then the mean-shift
outlier and the case deletion methods are conducted.

In order to produce autocollinear explanatory
variables, the formula

 1 22
, 11- , 1,..., , 1,...,ij ij i px d d i n j p     

suggested by McDonald and Galarneau [25] is used

where ijd are independent standard normal pseudo-

random numbers and  is specified so that the
correlation between any two explanatory variables is

given by 2 .

The dataset is generated based on the model

1,...,t t ty x u t n   with 1t t tu u   . For

40,100,200n  , define 0.5 , 0.9  , (0,5)ijd N ,

1 2' ( , ) (0.6 ,0.4)      , 0.6 , 0.9  and t is

generated from (0,1)N .

Each data set is produced by a combination of model

specification and generating the error terms t , then

40% of the sample sizes are assigned to historical data
(i.e. 16, 40, 80) and 60% to fresh data (i.e. 24, 60, 120).
Then the assigned data are centered and scaled by the
unit normal scaling technique. The DW statistic for each
set of data is calculated to assure that the autocorrelated
property is still hold.

This procedure is replicated 1000 times by generating

new error terms t , for each combination of model

specification and using the assigned historical data, the
estimates of  and P matrices are obtained. Then the
mixed stochastic restricted ridge estimator (4) is
calculated. Following Bayhan and Bayhan [6], a subset
of  2n th and  2 1n  th observations of transformed

historical data are used as the stochastic linear

restrictions (2), so ˆ1

ˆ 1
W



 
  
 

. The ridge parameter

estimate k̂ is calculated as suggested by Firinguetti
[21] from assigned fresh dataset.

For each of the generated dataset the method of

mean-shift outlier model for testing 2 : 0tH   is

applied and the percentage of times that the F-statistic is
greater than the corresponding critical F value for

Table 6. The probability of type I error ( 0.05  ) and power of F test for the mean-shift outlier

model with a combination of parameters n,  ,  for 1 2( , ) (0.6,0.1)   and shift=3.5 and 4

n-total
n 

 Sig level Power
Historical Fresh Shift=3.5 Shift=4

40 16 24

0.5
0.6 0.100 0.821 0.876

0.9 0.065 0.826 0.872

0.9
0.6 0.104 0.843 0.894

0.9 0.063 0.830 0.879

100 40 60

0.5
0.6 0.058 0.950 0.975

0.9 0.048 0.958 0.984

0.9
0.6 0.050 0.944 0.986

0.9 0.051 0.960 0.991

200 80 120

0.5
0.6 0.059 0.964 0.989

0.9 0.044 0.982 0.999

0.9
0.6 0.050 0.966 0.989

0.9 0.030 0.990 0.999



Vol. 29 No. 1 Winter 2018 A. Zaherzadeh, et al. J. Sci. I. R. Iran

76

0.05  is calculated.
For each generated data set, the 4th observation is

considered as an outlier by exerting two shift values 3.5
and 4, which are around the mean of standard deviation
of generated dependent observations, to its original
dependent values. The autocorrelated structure of errors
is tested again by calculating the DW statistic to assure
this property still hold. The power of test is calculated
by the foregoing method and the results of this
simulation study for different combinations of model
specifications are given in Table 6.

Table 6 indicates that except for simultaneous small
values of  and n, in other combinations of n,  and

 the significance level remains around 0.05  .

Moreover, it shows that the power of the test is
increasing continuously with increase of the shift
values.

In case-deletion method, the mean of absolutes of
DFBETAS, DFFITS and the proportion of replications
which exceed the related cutoff points in 1000 replicates
are used as judgment tools. The results of different shift
values are shown in Tables 7 and 8.

Some related results from this study are presented as

follows:

- It can be seen that the mean of DFFITS and

DFBETAS and their related proportions for the

mixed stochastic autocorrelated ridge regression model
are smaller than the measures for autocorrelated ridge
regression model. It may be due to improved accuracy
of the advanced model and its reduced sensitivity to the
observations which do not have a large displacement
from the bulk of data.

- Increment in  does not have a significant effect

on the mean of DFFITS and the related proportion in

the small sample sizes for the both models, whereas for
large sample sizes, it mainly causes a growth in the
measures. These results are somehow valid for the mean

of DFBETAS and related proportions.

- Increment in degree of collinearity which is

delegated by  has mainly a reduction effect on the

mean of DFFITS and the related proportion for both

models. These results are somehow valid for the mean
of DFBETAS and related proportions.

Table 7. Mean and proportion (%) of DFFITS and DFBETAS of 4th observation for different values of n,  and  when Shift=3.5

n-
total

n   Mean of DFFITS (%
of Influential)

Mean of DFFBETAS (% of Influential)

1 2

Historical Fresh
With

Restriction
Without

Restriction
With

Restriction
Without

Restriction
With

Restriction
Without

Restriction
40 16 24 0.5 0.6 0.9429

(0.7)
1.0395
(0.73)

0.6017
(0.594)

0.6624
(0.609)

0.6681
(0.629)

0.7280
(0.646)

0.9 0.9115
(0.668)

1.0175
(0.7)

0.5902
(0.584)

0.6629
(0.613)

0.6298
(0.604)

0.6970
(0.625)

0.9 0.6 0.8940
(0.671)

0.9901
(0.689)

0.6046
(0.574)

0.6697
(0.59)

0.5981
(0.569

0.6615
(0.604)

0.9 0.9111
(0.672)

1.0267
(0.704)

0.6375
(0.6)

0.7132
(0.62)

0.6161
(0.582)

0.6917
(0.616)

100 40 60 0.5 0.6 0.6787
(0.752)

0.7114
(0.759)

0.4299
(0.634)

0.4509
(0.646)

0.4886
(0.654)

0.5123
(0.672)

0.9 0.7271
(0.767)

0.7879
(0.788)

0.5052
(0.691)

0.5471
(0.703)

0.4955
(0.678)

0.5368
(0.698)

0.9 0.6 0.6772
(0.746)

0.7079
(0.758)

0.4667
(0.659)

0.4869
(0.662)

0.4887
(0.659)

0.511
(0.676)

0.9 0.6967
(0.722)

0.7617
(0.751)

0.4845
(0.656)

0.5311
(0.679)

0.4901
(0.654)

0.5357
(0.677)

200 80 120 0.5 0.6 0.5127
(0.775)

0.5241
(0.781)

0.3380
(0.652)

0.3454
(0.658)

0.3549
(0.66)

0.3628
(0.662)

0.9 0.5344
(0.764)

0.5662
(0.782)

0.3763
(0.695)

0.3982
(0.708)

0.3717
(0.678)

0.3931
(0.694)

0.9 0.6 0.4905
(0.732)

0.5023
(0.734)

0.3412
(0.646)

0.3497
(0.655)

0.3466
(0.653)

0.3544
(0.65)

0.9 0.5313
(0.763)

0.5649
(0.774)

0.3793
(0.694)

0.4043
(0.699)

0.3830
(0.688)

0.4072
(0.7)



Diagnostic Measures in Ridge Regression Model with AR(1) Errors under …

77

- Increment in the sample size n has similar effects
on the mean of DFFITS , the mean of DFBETAS

and the related proportions as follows. Almost for all of
the cases it causes a significant reduction in both
DFFITS and DFBETAS , whereas it usually causes

the related proportions increases, since the cutoff points
are dependent on n.

- Increment in the size of shift values causes the
measures and related proportions increase in all cases.

Discussion

In this article we extended the mean-shift outlier
model, DFFITS and DFBETAS measures to the case of
autocorrelated ridge regression model under stochastic
linear restrictions. We applied our results to a real
dataset with AR(1) error terms and stochastic linear
restrictions. We observed that the proposed mean-shift

outlier model is efficient for detecting observations
which do not conform to the nature of data which are
known as outliers. Also, the derived measures are
suitable for diagnosing influential observations. In
addition, a simulation investigation conducted to study
the performance of mean-shift outlier method showed
that if shift values increase, the power of the mean-shift
F test will also increase. Also, a simulation was carried
out to study the behavior of DFFITS and DFBETAS for
the cases of mixed stochastic autocorrelated ridge
regression model and autocorrelated ridge model. This
simulation study demonstrated that, in general, the
influence measures in the first model are smaller than
those in the second model. A reduction occurs mainly
when the degree of collinearity increases, whereas
increasing autocorrelation coefficient for large sample
sizes causes mainly a growth in the measures and,
increasing sample size almost always causes a reduction
in the measures.

Table 8. Mean and proportion (%) of DFFITS and DFBETAS of 4th observation for different values of n,  and  when Shift=4

n-
total

n   Mean of DFFITS (%
of Influential)

Mean of DFFBETAS (% of Influential)

1 2
Historical Fresh With

Restriction
Without

Restriction
With

Restriction
Without

Restriction
With

Restriction
Without

Restriction
40 16 24 0.5 0.6 1.0807

(0.783)

1.2044

(0.795)

0.7119

(0.657)

0.7945

(0.675

0.7058

(0.661)

0.7807

(0.677)

0.9 1.0302

(0.714)

1.1526

(0.743)

0.7117

(0.654)

0.7927

(0.675)

0.7081

(0.638)

0.7894

(0.659)

0.9 0.6 1.0468

(0.753)

1.1576

(0.772)

0.6860

(0.638)

0.7544

(0.645)

0.6957

(0.644)

0.7698

(0.658)

0.9 0.9728

(0.717)

1.0933

(0.733)

0.6631

(0.632)

0.7383

(0.656)

0.6638

(0.604)

0.7420

(0.631)

100 40 60 0.5 0.6 0.7851

(0.791)

0.8223

(0.802)

0.5266

(0.708)

0.5512

(0.71)

0.5378

(0.711)

0.5613

(0.72)

0.9 0.8117

(0.794)

0.8834

(0.807)

0.5585

(0.729)

0.6046

(0.74)

0.5677

(0.7)

0.6183

(0.72)

0.9 0.6 0.7674

(0.8)

0.8023

(0.813)

0.5110

(0.688)

0.5341

(0.698)

0.5265

(0.681)

0.5482

(0.69)

0.9 0.8025

(0.788)

0.8761

(0.811)

0.5612

(0.694)

0.6141

(0.732)

0.5690

(0.71)

0.6197

(0.724)

200 80 120 0.5 0.6 0.5802

(0.814)

0.5943

(0.817)

0.3883

(0.708)

0.3975

(0.709)

0.3963

(0.712)

0.4060

(0.713)

0.9 0.6580

(0.807)

0.6991

(0.816)

0.4447

(0.742)

0.4734

(0757)

0.4667

(0.734)

0.4944

(0.753)

0.9 0.6 0.5744

(0.81)

0.5892

(0.818)

0.3884

(0.713)

0.3982

(0.717)

0.3977

(0.71)

0.4081

(0.716)

0.9 0.6061

(0.788)

0.6417

(0.795)

0.4256

(0.724)

0.4486

(0.728)

0.4315

(0.736)

0.4558

(0.747)
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Finally, in this paper we concentrated on the case
deletion methods in restricted autocorrelated ridge
models. This work can be extended in different
directions. One direction is to study the local influence
of observations in the above mentioned model. The
other direction is using different biased estimators
including Liu estimators and Lasso estimators.

Regarding the possible limitations, the main obstacle
was that the authors had no access to the suitable real
data sets from national research studies.
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