شناسایی و تحلیل سیلوپتیک امواج گرمایی غرب ایران (ایلام، خوزستان، لرستان، کرمانشاه)

مصطلح گرمپور

استقلال گزارش‌یابی ادبیات و علوم انسانی دانشگاه لرستان

جهان رفیعی

دانش‌آموزی کارشناسی ارشد جغرافیایی طبیعی (اقیلی، شناسی کاربردی)

ایوب جعفری

دانشجوی دکتری اقیلی، شناسی، دانشکده جغرافیا، دانشگاه تهران (A.Jafari71@ut.ac.ir)

(تاریخ دریافت ۱۳۹۶/۶/۲۴- تاریخ پذیرش ۱۳۹۶/۱۰/۱۱) (۱۳۹۶/۶/۲۴- تاریخ پذیرش ۱۳۹۶/۱۰/۱۱)

چکیده

امواج گرمایی یکی از پلاکای طبیعی و اپوهایی است که اثر زیان‌بار بر محیط زیست دارد. در این پژوهش سعی شد امواج گرمایی منطقه غرب ایران شامل ولایت خوزستان، لرستان و کرمانشاه با شاخه‌های شرقی و غربی شناسی‌های شده و نیز دو دستگاهی این امواج با استفاده از تابع توپوژی گیبل مشخص شود و در نهایت کوه‌های همدست مؤثر در آن شناسایی شود. براساس نتایج، مجموع فراوانی امواج گرمایی استرایش‌دهنده در دوره‌های مورد مطالعه ۱۳۹۶ موج است که از این تعداد، ۷۰ موج در دوره گرم و ۳۳ موج در دوره سرد سال رخ داده است. بررسی ماهانه امواج گرمایی نشان می‌دهد که بیشترین میزان وقوع امواج در ماه فروردین و دیماست. تحلیل سیلوپتیک رخداد امواج گرم در طی فصول نشان می‌دهد که در فصل گرم، زبانه‌های کوه‌پوش گنج تا نواحی مرکزی ایران کشیده شده و حتی زبانه‌های آن تا شمال شرق ایران نیز که کرده است. در زمان رخداد این امواج، در سطح زمین کوه‌پوش‌های جنگلی مرتفع‌تری بر روی شاخ اقتربا، روابط و عروض سخت بهره و زبانه‌های کوهپوش تشکیل شده و رودخانه‌های جنوب غربی را تحت تأثیر قرار داده است. بررسی گزارش‌های همدست امواج گرمایی در دوره سرد نشان می‌دهد که منطقه تحکیق، گیجه مظهر قرار داشته و نفوذ هواهای گرم به منطقه سبب افزایش دما در این هماهنگ از سال شده است.

واژه‌های کلیدی: تابع توپوژی گیبل، تحلیل سیلوپتیک، دو دستگاه، غرب ایران، موج گرم

Email: karampoor.m@lu.ac.ir
1. Heat index
2. Hum index

نویسنده مستند

۱۳۹۶/۶/۲۴
مقدمه

أکوسیستم‌ها و بخش‌های مختلف فعالیت‌های انسانی به‌دیک‌دیهای حذف‌یاب هستند. این بخش‌های شامل باشکوه‌های تنگ‌پیک، سیلاب‌ها، خشکسالی‌ها و دیگر روش‌های کم‌زیانی که در دوره‌های مختلف گسترش می‌یابند [۱۲۴]. قلم‌وراءی که دما به فعالیت‌های انسانی تأثیر گذار است، شامل بخش‌های مختلف کشوازی، تفاوت‌های انرژی، بهداشت و منابع آب است. بنابراین در سال‌های اخیر، تغییرات جوگیرانه دما و تأثیرات آن بر شرایط محیطی و همچنین برنامه‌بزی‌های خرد و کلان مورد توجه محققان و بوده است [۱۲۹]. موج‌های گرم‌آبی بخشی از روده‌های اقیانوسی حیاتی شده که سبب تغییرات شدید و تغییر محیط زیست می‌شوند و همچنین با تأثیر بر بخش زیرساخت‌های هنگام و خدمات، خصائص زیابی به جویی و سلامت انسانی وارد می‌کند که ممکن است نیاز به مبنای در سیستمی برای رسانی (انرژی) ضروری در سیستم حمل و نقل عمومی و توقف برخی از خدمات پشتبینی، بهداشتی و اورژانسی شود. براساس آمار مؤسسه ملی جو و تغییرات (نوا)، از میان بلاهای جوی مانند سرمای، نیم، تونرودا، امواج گرم‌آبی هریک، تغییرات زمین‌شناسی و رعوبی دقیقاً امواج گرم‌آبی از مهم‌ترین بلاهای جوی بوده و میزان مرجع سالهای آن چندانی دیگر بایسته است [۱۴۶]. برای شناسایی اولیه موج‌های گرم‌آبی (وجود یا عدم) تعریف متقابل بین شده است. این تعریف با توجه به کشورها و مناطقی که در آنها استفاده شده است بسیاری دارد که برخی از آنها در زیر آن‌ها می‌شود.

۱. سازمان جهانی هوشمندی، موج گرم را زمانی که بیشتر دمای بیش از ۵ روز متوالی ۵ درجه سانتی‌گراد از متوسط بیش‌تر سایر موج گرم قلمداد می‌کند [۲۴].
۲. سرورس ملی گرم‌آبی ایالات متحده، یک موج گرم را می‌تواند از دماهای معید می‌کند که در طول آن دست‌کم دو شبانه‌روز متغییر، دما ظاهراً مشابه (تشخیص حرارت) بیش از آستانه تنش حرارتی برای شپ ۲۷ درجه سانتی‌گراد و برای روز ۴۱ درجه سانتی‌گراد باشد [۳۰].
۳. موج گرم برای موج پایانه که در آن درجه حرارت بیش از صدک ۱۰ درجه‌بیش‌تر دمای نسبت باشد [۱۷۶].

از تعریف مختلف موج گرم‌آبی می‌توان نتیجه گرفت که موج گرم‌آبی حذفی گرمی است که دوم و یا این‌ها یا از چند روز گذشته همه‌ها بوده و پیش‌بینی است با رطوبت شدت‌های دیگه‌ها باشد. در زمینه شناسایی امواج گرم‌آبی تحقیقات کنترل‌های انجام گرفته است. برخی از مطالعات نشان داده که به شناسایی و تحلیل محدودی و آماری امواج گرم‌آبی دราکتمنش، شامل مطالعات کلی‌پارسی و کالکوید[۲۱۷]. میل و برائد [۲۳۹]. سلیم و همکاران [۳۱]. رنگ [۱۲۹]. پرا [۲۷۶]. کروپور [۲۴۴]. میل و برائد [۲۳۹]. فیلیپ [۲۸۸]. سلیم و همکاران [۳۱]. رنگ [۱۲۹]. پرا [۲۷۶]. کروپور
شناسایی و تحلیل سیونوتگی امواج گرمابی غرب ایران...

منطقه تحقیق

در این پژوهش، استان‌های غرب ایران شامل ایلام، خوزستان، لرستان و کرمانشاه به مساحت ۱۲۸۹۸۷ کیلومتر مربع بررسی شد (شکل ۱).
مواد و روش‌ها
در این پژوهش نیاز به دو دسته داده است: الف) داده‌های سطحی که شامل داده‌های دما و بیشینه و میانگین رطوبت نسبی روزانه 21 ایستگاه هم‌دید و مشترک غرب ایران، از باره زمانی بدو تأسیس تا سال 2010 است که پس از بررسی اولیه، داده‌های مقفول که در حد چند روز بود توسط نرم‌افزار spss و از طریق رابطه همبستگی پارزاسی (ب) داده‌های جو شامل متغیرهای دما و هوای استفاده شده واریانس تجزیه و روند و ناحیه‌ها به داده‌های 2000 و 500 هکتوپاسکال در محدوده 30 درجه شریف و 10 درجه شمالی، با دقت مکانی 2/5 درجه قوسی که از مرکز ملی پیش‌بینی مهندسی آمریکا دیافرگت شد. نکته در مدل پژوهش‌های جوی NCDC برای شناسایی امواج از داده‌های سطحی تمام‌ایستگاه‌ها، از شاخه دمایی یا (رابطه 1) و شاخه رطوبت (رابطه 2) استفاده شد که ارائه‌شده از ارائهواتر هواشکنی کانادا است [19]. در این تحقیق، به‌منظور یکپارچه در نظر گرفتن منطقه بحث‌های مربوط به ثبات رفاهی دما و هوای در روزهای طبیعی و روز منفی‌الیا بررسی پوشنت 40 درجه شمالی را بهتر و همچنین رطوبت 50 درصد و پوشنت بوده از (22) در این پژوهش از تابع توزیع الگویی برای پرازش داده‌های خود و از تابع توزیع پیرسون برای محاسبه دوره بازگشت امواج استفاده شد [18].

برای تعیین روز نماینده از میان هر موج استفاده دندو و موج‌هایی که دارای روزهای زوج بوده و انتخاب از روز نماینده دما را انتخاب کرد. با بررسی تمامی نقشه‌ها و داده‌ها، برای هر یک از دوره‌های رخ دادن موج، مدل‌ها و اصلی‌لی در قطعه‌های آژانس، به بررسی شبیه‌سازی داده‌های زمانی و بیشتری به منظور سهولت مطالعه، برای واکاوی فناوره، یک دوره به‌صورت نمونه‌سازی، بررسی شد. برای تفسیر روز نماینده، نقشه‌های سطحی 20000500 و 500 و فشار و وزش دما آد 15 با برای نرم‌افزار Grads ترسیم شد.

\[
\text{Index heat} = -42/379 + 2.3/85282 + 10/42379 + 204901523 + 10/14333127 + 0.22475541
\]

(1)

1. National Climatic Data Center

2. برای مطالعه پیش‌بینی به کتاب نمایش و پردازش داده‌های جوی (مسعودیان و همکاران) مراجعه شود.
نتایج
براساس نتایج طی دوره آماری (1400-1399)، موج گرم رخ داد که از بین آنها، 73 موج گرم در دوره سرد سال و 70 رخداد موج گرم در دوره گرم سال بود. بیشترین رخدادها در موج‌هایی با تداوم 2 تا 4 روز اتفاق افتاده است (جدول 2). بررسی سالانه امواج نشان می‌دهد که 45 درصد امواج از سال 2006 بود و 43 درصد امواج از سال 2004 رخ داده و 9 درصد بقیه مانده مربوط به سال 2005 بود. در مجموع سال 2010 13 درصد و سال 2006 12 درصد بین‌تبت بیشترین امواج را به خود اختصاص داد (شکل 3). بررسی ماهانه امواج نشان داد که بیشترین رخداد امواج در ماه آوریل مصادف با دهه درموردین نا دهه اول اردبیلیت و کمترین آن در ماه زوده بود (شکل 4). نتایج حاصل از آمارهای ثابت توزیع کمیل تیپ یک نشان داد که امواج دارای میانگین 43 درجه سانتی گراد بیشترین احتمال رخداد را دارا هستند و دوره بارگشت آنها 141 در سال است (شکل 4). با توجه به این نتایج، امواج با احتمال دوره بارگشت دو ساله، پنج ساله، ده ساله و بیست و پنج ساله نیز بررسی شده که در جدول 3 نمایش داده شده است. همچنین نتایج حاصل از تابع توزیع پیرسون نشان می‌دهد که امواج گرم‌ای دو مسروزه دارای دوره بارگشت 1 سال، امواج بالاتر از 10 روز تداوم با دوره بارگشت 25 سال و در نهایت امواج گرم‌ای با تداوم 20 روز دارای دوره بارگشت 50 سال هستند (شکل 5).

شکل 2. فرآیند سالانه امواج گرم‌ای
شکل 3. فراوانی ماهانه امواج گرامایی

جدول 1. فراوانی امواج بر حسب تداوم

<table>
<thead>
<tr>
<th>تداوم مناطق</th>
<th>روژ</th>
<th>فراوانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. دوره‌های بازگشت و دمای ظاهری مناطق و تداوم مناطق

<table>
<thead>
<tr>
<th>دوره بازگشت(سال)</th>
<th>میانگین دمایی/اسانی کراد</th>
<th>تداوم(روژ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>44/5</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>48/10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>50/15</td>
<td>22</td>
</tr>
</tbody>
</table>

شکل 4. نمودار تابع تجمعی احتمال توزیع احتمال گمل
بررسی سینوپتیکی امواج گرمایی دوره گرم سال

در زمان وقوع امواج گرمایی در طی فصل گرم، شاهد نوع الهی پراکنش فشار هستیم که این دو الهی مرتبط به سه ماه فصل بهار و سه ماه فصل تابستان است.

فصل بهار

برای تحلیل امواج گرمایی این الهی، نگاهی بر روز نمایندگی انتخاب شد. در این روز، در سطح 1000 هکتوپاسکال (شکل 3)، هسته کمکاری با ارتقای 80 زیستپاتیل متر در آقایا و چند هسته محیط با ارتقای 40 زیستپاتیل متر در غرب ایران، غرب خلیج فارس، مرکز عربستان و دربرآی عمان شکل گرفت و همچنین هسته کمکاری 60 زیستپاتیل متری در مرکز آقایا و هسته‌ی گرفتم در مناطق همچون سیبری و مدیرانه واقع شد. استقرار هسته‌های فشار موجب وزش هواهای گرم از بخش جنوبی عراق و کویت به‌منظور اطمینان که عامل اصلی رود هواهای یافته‌ای از سمت جنوب و جنوب غرب، رود زبانه گرفتم گنج از سمت جنوب شرق به ایران و منطقه تحقق است. این وزش هواهای گرم بیشتر در حدود 42 درجه سانتی‌گراد در طول 8 ساعت است (شکل 4).

هکتوپاسکال (شکل 8)، نواحی کمکاری از دیدگاه مدیرانه به راستای محوری شمال شرقی-

جنوب غربی واقع شد که حضور این نواحی همچنین حضور نواحی دیگر با امتیاز محور شمالی-

جنوبی در ایران مرکزی و استقرار بیشتری از این کمکاری با روز منطقه، موجب یافته‌ای هوا و همچنین تقویت سطح زمین در منطقه شد. نقشه وزش هوا در سطح 850 هکتوپاسکالی (شکل 9) نشان می‌دهد که مربد وزش هواهای گرم، 10 درجه سانتی‌گراد بود که از نواحی جنوب غربی ونیش شبه‌جزیره عربستان وارد منطقه شد و سرعت وزش هواهای گرم 20 متر بر ثانیه بود. در
سطح 700 هکتومترکال (شکل 10). نماهایگر استقرار سلول نیتروز از دیده می‌گردد که زیان‌های این موج وارد ایران شد. ولی با توجه به استقرار نیتروز بر روی عربستان و جنوب عراق، انتقال رطوبت در این سطح از دریای سرخ به درون منطقه صورت نگرفت و در نتیجه شرایط برای انتقال گرمای بین ایلامی عربستان و عراق از لایه‌های سطحی پایینی به داخل غرب ایران فراهم شد. ورش هوا گرم این سطح (شکل 11) از انسفر 5 درجه سانتی‌گراد در طی روز و با سرعت 20 متر در ثانیه از سمت کشور عراق بود. در سطح 500 هکتومترکال (شکل 12)، هسته‌های انتقال بر روی ترکیب قرار گرفت که این کم‌ارتفاع با کم‌ارتفاع عرض‌های بالاتر در ارتباط بود و محور این ناوه با توجه تقیت سلول پیش‌تر جنوب حاده به‌سیستم عرض‌های پایین تر گسترش پیدا نکرد. بنابراین همانند سطح زیرین شرایط انتقال رطوبت به داخل منطقه تحقیق وجوه ندارد. با توجه به وجود زیان‌های انباشت بین غرب ایران، هوا گرم عرض‌های پایین‌تر به داخل منطقه کسی‌شک شد و ورش 30 معنی‌داری در این سطح (شکل 13) از انسفر 5 درجه سطح عمق 10 متر در نیوتن 130 هکتومترکال در طی روز بود.

شکل 7. نفیش ورش دما سطح 1000 هکتومترکال 2009/04/20

شکل 6. الگوی پراکنش فشار در سطح 1000 هکتومترکال 2009/04/20
شکل 8. نقشه ارتفاع زئوپتانسیل سطح 850 هکتوپاسکال
2009/04/08

شکل 9. نقشه وزش دمایی سطح 850 هکتوپاسکال
2009/04/08

شکل 10. ارتفاع زئوپتانسیل سطح 700 هکتوپاسکال
2009/04/08

شکل 11. نقشه وزش دمایی سطح 700 هکتوپاسکال
2009/04/08
فصل تاسنطن

برای تحلیل امواج گرمایی این اکو، تاریخ ۱۰ آبان ۱۳۴۰ (۹ مهر ۱۳۸۰) ساعت ۱۲ زوالی، نمایدگی این اکو انتخاب شد. در سطح ۱۰۰ هکتوپاسکال (شکل ۱۲)، پک کم‌ارتفاع چهار با سه‌راه‌ها ایجاد شد که هسته‌های آن بیشتر بر روی شبه‌جزیره عربستان، گنگ و عراق حاکمیت داشت. در این سطح کم‌فشار گنگ، کم‌فشار حرارتی عربستان و خلیج فارس باهم ادغام شده که زبان‌های کم‌فشار گنگ تا جنوب ترکیه کشیده شد. نشست وزش‌های گرم در این سطح (شکل ۱۵) نشان داد که دمای مناطق مجاری مرز پژوهش با دمای منطقه مورد پژوهش برابر بود و درنتیجه وزش‌های گرم صورت نگرفت. در سطح ۲۵ هکتوپاسکال (شکل ۱۶)، حاکمیت پر‌فشار سلول جنوب حاره‌ای عربستان بر روی غرب ایران برقرار بود که با توجه به شکل‌گیری کم‌فشار سطح زمین بر روی پایان‌های عربستان و عراق، شرایط برای انقلاب وزش‌های گرم بر روی غرب ایران فراهم گردید (شکل ۱۷). یک‌سوم پر افزایش قد آسمندی با ارتفاع ۳۲۶۰ هکتوپاسکال (شکل ۱۶) به‌طور کلی در ارتفاعات زیر نسبی‌سال متری در شمال شرق قره‌آباق واقع شد که زبان‌های آن‌ها بر روی خط آباده‌نشده شد. با استقرار مرکز پر‌ارتفاع سلول جنوب حاره‌ای در این سطح بر روی منطقه مورد مطالعه، هوای ارتفاعات بالا بر روی منطقه فورش‌شده کرد. نشست وزش در این سطح (شکل ۱۸) و سطوح قبیلی نشان می‌دهد که وزش‌های گرم بر روی منطقه صورت نگرفت و می‌توان نتیجه گرفت که گرمایش و بروز موج گرم در این روز، تحت تأثیر شرایط دینامیکی بود. در سطح ۵۰۰ هکتوپاسکال (شکل ۱۹)، در این
سطح مرکز بیปรقیق جنوب هزارشانه، از شمال آفریقا تا دریای خزر در بر گرفته شده است.

شکل 15. نقشه وزش دمایی سطح 1000 هکتوپاسکال، 19 مرداد 1380

شکل 16. نقشه ارتفاع زئواستاسیل سطح 700 هکتوپاسکال، 10/8/2001

شکل 17. نقشه ارتفاع زئواستاسیل سطح 850 هکتوپاسکال، 10/8/2001
بررسی سينوپتيکي امواج گرمایي در دو سال
برای تحلیل امواج گرمایی در دوره سرد، تاریخ 13 زانویه 1400 (22 دی 1282) ساعت 13:18 (ستون 100 هکتوپاسکال) شد. در سطح 100 هکتوپاسکال (شکل 20)، مرکز کوادفیکت بروی شرق مدیریت و شمال عرضستان قرار گرفت که زانویه 1400 ان وارد منطقه تحقیق شد. این نوع آرامش موجب ایجاد گرمی کالی (استخر گرم) بروی ریوی منطقه و افزایش دمای منطقه شد. نقشه وزش هواها ژرم (شکل 21) در این تاریخ نشان می‌دهد که دما و رطوبت از سمت عرضستان و کوهی قارس با سرعت 10 متر/ثانیه به‌سرعت منطقه وارد شده که هوای موجود را در این سطح به‌سرعت 4 تا 5 درجه سانتی‌گراد ژرم کرد. در سطح 85 هکتوپاسکال (شکل 22)، هسته کوادفیکت 1400 زیتونالسپری یا در شرق مدیریت واقع شد که با حرکت پادام‌کردن خود موجب ایجاد هواها ژرم و رطوبت از سمت خلیج فارس و هواها ژرم از سمت عرضستان به‌سرعت منطقه تحقیق شد. نقشه وزش دمایی سطح 85 هکتوپاسکال (شکل 23)، نشان می‌دهد که برخی از فراوردهای ژرم تا 14 درجه سانتی‌گراد در طول روز و جهت این فراوردها از سمت دریای عمان و شرق عرضستان بود. نقشه سطح 200 هکتوپاسکال (شکل 24)، نشان می‌دهد شکل‌گیری کوادفیکت بروی قبرس و کسب‌ریز جریان‌ها به‌سرعت غربی و شمال شرقی ایران است و شرایط مانع انتقال ژرم و رطوبت به عرض‌های جنوبی فراهم کرده است. در حقیقت، در این هنگ منطقه تحقیق، جلوی به‌سرعت گرم قرار داشت و نفوذ هواها ژرم به‌سرعت منطقه، سبب افزایش دما در این موقعیت از سال شد. نقشه سطح 500 هکتوپاسکال (شکل 25) نشان می‌دهد یک فرآیند بر روی ایران گسترش دگردیده و با ایجاد شرایط پایداری هوا، مانع صعود هواهای ژرم و رطوبت در منطقه شد.
شکل 21. نقشه وزش دما سطح 1000 هکتوباسکال، 2004/1/12

شکل 20. اکوی پراکنش فشار در سطح 1000 هکتوباسکال، 2004/1/12

شکل 22. نقشه ارتفاع زنویوسیل سطح 850 هکتوباسکال، 2004/1/12

شکل 23. نقشه وزش دما سطح 850 هکتوباسکال، 2004/1/12
نتایج

هدف این پژوهش ایجاد شناسایی امواج گرماپی غرب ایران و سپس شناسایی سانه‌های جوی مؤثر در رخداد امواج گرماپی غرب ایران بود. بر اساس نتایج، تعداد امواج گرماپی استخراج‌شده در دوره‌های مختلف تا ۱۲۰ موج بود که از این تعداد ۲۰ موج در دوره ۱۳۷۳، ۱ موج در دوره ۱۳۷۲ و ۲ موج در دوره ۱۳۷۱ سرد سال رخ داد. این امواج از ۲ روز تا ۲۲ روز از نظر تداوم طیف‌بندی شدند. بیشترین رخداد این موجها به صورت دو، سه و چهار روزه و سهم موج‌های دورو روزه به بالا اندک است. بررسی ماهانه امواج گرماپی نشان می‌دهد که بیشترین میزان رخداد امواج در ماه فروردین و از نظر فصل تمرکز امواج گرماپی در دوره سرد سال در فصل زمستان قرار داشت. بررسی سالانه امواج گرماپی در دوره آماری مناسب نشان داد که نیمه دوم دوره زمستان ۱۳۹۸-۱۳۹۹ دارای بیشترین قرارگرفتن و کمترین قرارگرفتن در دوره ۱۳۹۷ و ۱۳۹۶ بود که در دو روز ۱۲ و ۱۳ درصد آن در سال ۱۳۹۶ و ۱۲ درصد آن در سال ۱۳۹۷ رخ داد. بررسی هم‌دیدن امواج گرما نشان می‌دهد که در قبول گرم در سطح زمین، التوی کم‌نشان حاکم است. بررسی نقشه‌های قرارگرفتن سطح زمین به‌خصوص ناشان می‌دهد که زبان‌های کم‌نشان گنج تا نواحی مرکزی ایران کشیده شده و حتی زبان‌های آن تا شمال شرق ایران نفوذ کرده است. در این فصل، کم‌نشان شکلی که گرفته روز عربستان یکی از سانه‌های مهم تأثیرگذار بر رخداد امواج گرما و به‌خصوص تداوم آن‌هاست که زبان‌های آن جنوب، جنوب غرب و بخش‌هایی از غرب ایران را تحت تأثیر قرار می‌دهند.
بررسی شرایط همگامی امواج گرمایی دوره سرد نشان می‌دهد که آب‌های الگویی فشار در سطح زمین و ارتفاعات غرب ایران، الگویی پرداختم است. در حقيقة، در این فصل منطقه تحقيق جلوی جبهه گرم قرار داشت و نفوذ هواهای گرم به منطقه سبب افزایش دما در این هنگام از سال شد. در زمان رخداد امواج گرمایی نزدیک به پراز افتراق یکی بر روی سپری و دیگری بر روی دربای مدیران مستقر بود که با حرکت ساعتهای بین سه ایجاد مکش گرم نواحی جنوبی همچون عربستان و آمریکا به‌طور عمده‌ای در این منطقه نتایج این پژوهش با دیگر مطالعات نشان داد که نتایج هم‌گامی صورت‌های گرم در فصول گرم با مطالعات قوی‌السیر، ورودی‌السیر و همکاران (۱۲۳)، مجرد و همکاران (۱۴۱) و عسکر و همکاران (۱۰۱) مطالعات دیگر، الگوی هم‌گامی موج گرمایی قصر جهانی بررسی نهاده و نگرده استهمجین نتایج امروز این مطالعه با استان‌های زود و همکاران پرورا و عسکر و همکاران (۱۴۱) و باری و همکاران (۱۴۱) مطالعات دارد.

منابع

[۱] احمدی، حسین و تقوی، فرجی‌نیا. «رونده‌شاخ‌های حذف دما و بارش در تهران». پژوهش‌های جغرافیایی. ش ۱۳۸۲.

[۲] اسماهی‌نژاد، مرتضی؛ خسروی، محمود؛ علی‌حسینی، بهنود؛ و مسعودیان، ابوالفضل. «پارسی امواج گرمایی ایران». مجله جغرافیایی و توسعه. ش ۱۳۹۴ ص ۵۴-۶۳.

[۳] واحدی، ماهی؛ طلاوی، نیویه؛ و حسین ظادی، نسرین. «واکاوي رفتار و تغییرات بسامد رخداد امواج گرمایی شهر یاسوج». فصلنامه آمیاب جغرافیایی فضای. ش ۱۳۸۳ ص ۱۲۷-۱۳۳.

[۴] عصمت‌اللهی، الله‌پور و سپه‌پور. «تأثیر اوضاع اقیانوسی و ارتفاعات سطح در رخداد امواج گرمایی». نشریه تحلیل فضاهای محیطی. ش ۱۳۸۳ ص ۳۳-۳۲.

[۵] امین‌زاده، کمال؛ محمودی‌نژاد، مهدی؛ الفتی، سعید؛ و مرادی، خدیجه. «بررسی آماری احتمال وقوع و رخداد امواج گرمایی در استان‌های منتسب استان قم». مجله محیط‌های طبیعی. ش ۱۳۸۳ ص ۳۴-۳۲.

[۶] برتری، فARAMروضا و موسوی، شهید. «آب‌های مکانیکی موج‌های زمستانی گرم در ایران». جغرافیایی و توسعه. ش ۱۳۸۳ ص ۵۱-۴۱.

[۷] امیری‌آهنگ، سیمین و امیری، سیمین. «آب‌های جغرافیایی در ایران». قصه‌نامه تحقیقات جغرافیایی. ش ۷۴.
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.

