تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,660 |
تعداد دریافت فایل اصل مقاله | 97,230,761 |
ارزیابی وضعیت خشکسالی در حوضۀ آبخیز تمر (بالادست سد گلستان) با استفاده از شاخصهای SPI و SPEI تحت شرایط اقلیمی حال و آینده | ||
اکوهیدرولوژی | ||
مقاله 18، دوره 5، شماره 1، فروردین 1397، صفحه 215-228 اصل مقاله (1.01 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.239226.689 | ||
نویسندگان | ||
عبدالله پیرنیا1؛ محمد گلشن1؛ سمیرا بیگنه2؛ کریم سلیمانی* 3 | ||
1دانشجوی دکتری آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری | ||
2دانشآموختۀ کارشناسی ارشد آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه یزد، یزد | ||
3استاد دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکدۀ منابع طبیعی ساری، ساری | ||
چکیده | ||
خشکسالی از گستردهترین و مخربترین بلایای طبیعی است که با رخداد تغییر اقلیم پیچیدهتر میشود. برای فراهمکردن یک دید کلی از شرایط خشکسالی، شاخصهایی برای پایش آن بهطور گسترده استفاده میشوند. در این مطالعه، برای ارزیابی وضعیت خشکسالی آیندۀ حوضۀ آبخیز تمر (بالادست سد گلستان)، ابتدا دادههای روزانۀ خروجی مدل CanESM2 تحت سناریوهای RCP 2.6 و RCP 8.5 با استفاده از مدل SDSM برای دورۀ 2020-2049، ریزمقیاس و پیشبینی شدند. در ادامه، با استفاده از دادههای پیشبینیشده و شاخصهای خشکسالی SPI و SPEI، وضعیت خشکسالی در آینده بررسی شد. همچنین، آنالیز روند دادههای دما و بارندگی، با استفاده از آزمون ناپارامتریک من-کندال انجام گرفت. نتایج آنالیز روند بیانکنندۀ تغییرات ناچیز بارندگی و افزایش معنادار دما در بیشتر سریهای زمانی است. همچنین، عملکرد مدل SDSM برای پیشبینی دادههای دما و بارندگی بسیار خوب ارزیابی شد و خروجیهای آن نشان داد دما و بارندگی نسبت به زمان حال افزایش مییابند. نتایج شاخص SPI نشان داد در هر دو دورۀ پایه (1985ـ 2014) و آتی (2020-2049)، بیشترین خشکسالیها و ترسالیها بهترتیب در اواخر و نیمۀ ابتدایی دو دوره رخ دادهاند. از آنجا که در شاخص SPEI در مقایسه با شاخص SPI پارامترهای اقلیمی بیشتری علاوه بر بارندگی برای ارزیابی خشکسالی لحاظ میشود و با توجه به افزایش روند دما در دورۀ حال و آینده، میتوان گفت که نتایج شاخص SPEI، واقعیتر و منطقیتر از نتایج شاخص SPI است بهطوری که ارزیابی خشکسالی بر اساس شاخص SPEI، شرایط خشکسالی شدیدتری را نسبت به شاخص SPI نشان داد. | ||
کلیدواژهها | ||
حوضۀ آبخیز تمر؛ خشکسالی؛ شاخصهای SPI و SPEI؛ گزارش پنجم IPCC؛ مدل SDSM | ||
عنوان مقاله [English] | ||
Investigating the drought characteristics of Tamar basin (upstream of Golestan Dam) using SPI and SPEI indices under current and future climate conditions | ||
نویسندگان [English] | ||
Abdollah Pirnia1؛ Mohammad Golshan1؛ Samira Bigonah2؛ Karim Solaimani3 | ||
2Graduated in Watershed Management, Faculty of Natural Resources, University of Yazd, Yazd, Iran | ||
3University Academic member | ||
چکیده [English] | ||
To predict climate change and its effect on drought future situation in Tamar Basin, first daily output data of CanESM2 model downscaled and predicted by SDSM model and also RCP 2.6 and RCP 8.5 scenarios in the 2020-2049 period. Then, drought conditions evaluated by predicted data and SPI and SPEI indices in the future. Trend analysis of temperature and precipitation variables also carried out by Mann-Kendall non-parametric test. The results of trend analysis showed that precipitation changes is negligible and increase of temperature in most time series is significant. The performance of SDSM model to predict temperature and precipitation data is also very suitable and its outputs showed that temperature and precipitation have increased rather than that in the baseline period. The results of SPI index indicated that in both the periods the most droughts and wets have occurred at the late and first half of the two periods respectively. Evaluation of drought by SPEI index showed more severe drought rather than SPI index and according to increase of temperature trend in the baseline period and also temperature increase in the future can say the results of SPEI index are more actual and logical than the results of SPI index. | ||
کلیدواژهها [English] | ||
Drought, SPI and SPEI indices, SDSM model, Fifth Assessment Report of IPCC, Tamar Basin | ||
مراجع | ||
Li B, Su H, Chen F, Wu J, Qi J. The changing characteristics of drought in China from 1982 to 2005. Natural Hazards, 2013; 68:723–743
[2]. Soleimani K, Ramazani K, Ahmadi MZ, Bayat F. Investigation of droughts and wets trend in basins of Mazandaran. Journal of Agricultural Sciences and Natural Resources of the Caspian Sea, 2005; 3 (1): 13-28. [Persian]
[3]. Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho O. Monitoring the 1996 drough using the Standardized Precipitation Index. Bulletin of the American Meteorological Society (BAMS), 1999; 80 (3): 429-438.
[4]. Bazrafshan O, Mohseni Saravi M, Malekian A, Moeini A. A study on drought characteristics of Golestan Province using Standardized Precipitation Index (SPI). Iranian Journal of Range and Desert Reseach, 2011; 18 (3):395-407. [Persian]
[5]. Moradi H, Rajabi M, Farajzadeh M. Trend analysis and spatial characteristics of droughts intensity in Fars province. Iranian Journal of Range and Desert Research, 2007; 14 (1): 97-109. [Persian]
[6]. Moafi Madani SF, Mousavi Bayegi M, Ansari H. Prediction of drought in Razavi Khorasan province during 2011-2030 using LARS-WG model. Geography and Environmental Hazards, 2012; 3:21-37. [Persian]
[7]. Salehpour Jam A, Mohseni Saravi M, Bazrafshan J, Khalighi Sigaroodi SH. Investigation of climate change effect on drought characteristics by HadCM3 Model in future (Case Study: North-Western of Iran). Iranian Journal of Natural Resources, 2014; 67(4):537-548. [Persian]
[8]. Yousefi H, Nohegar A, Khosravi Z, Aziz Abadi Farahani M. Management and zonation of drought using by SPI and RDI indices (Case study: Markazi province), Iranian Journal of Ecohydrology, 2015; 2 (3): 337-344. [Persian]
[9]. Jahangir MH, Khosh Mashraban M, Yousefi H. Predicton of drought conditation using by SPI index and artificial neural network of Multilayer Perceptron (MLP) (Case study: Tehran and Alborz province), Iranian Journal of Ecohydrology, 2015; 2 (4): 417-428. [Persian]
[10]. Akbari M, Ownegh M, Asgari H, Sadoddin A, Khosari H. Drought monitoring based on the SPI and RDI indices under climate change scenarios (Case study: Semi-Arid areas of West Golestan Province). Ecopersia, 2016; 4 (4): 1585-1602. [Persian]
[11]. Parvaneh B, Shiravand H, Dargahian F. Prediction of Drought in Lorestan province during 2011-2030 by downscaling 4 GCM models. Quarterly Geographical Journal of Territory, 2015; 12 (45):1-13. [Persian]
[12]. Loukas A, Vasiliades L, Tzabiras J. Climate change effects on drought severity. Advances in Geosciences, 2008; 17:23-29
[13]. Vrochidou AE, Tsanis I, Grillakis M, Koutroulis A. The impact of climate change on hydrometeorological droughts at a basin scale. Journal of Hydrology, 2012; 476:290-301
[14]. Philip GO, Babatunde JA, Gunner L. Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Global and Planetary Change, 2017; 155; 121-132.
[15]. Muhire I, Ahmed F. Spatiotemporal trends in mean temperatures and aridity index over Rwanda. Theoretical and Applied Climatology, 2016; 123(1-2), 399-414
[16]. Plattner GK, Stocker TF. From AR4 to AR5: New Scenarios in the IPCC Process. Workshop Report, 2010.
[17]. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 2011; 38 (5): 1-6.
[18]. Massah Bavani A, Morid S. Climate change effects on Zayandehrud river flow in Isfahan. Journal of Sciences and Technology of Agriculture and Natural Resources, 2005; 9 (4) :17-27. [Persian]
[19]. Noghankar H. Evaluation of global warming impact on agricultur droughts characteristics in Iran during 21 century (Case Study: some climatic simples). MSc Thesis, agriculture College, Tehran University, 2011; [Persian]
[20]. Wilby RL, and Dawson WC. SDSM 4.2- A decision support tool for the assessment of regional climate change impacts, SDSM manual version 4.2, Environment Agency of England and Wales, 2007; 94pp
[21]. McKee TB, Doesken NJ, Kleist J. The relation of drought frequency and duration to time scales. Proceedings of the Eighth Conference on Applied Climatology, 1993; 179–184
[22]. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 2010; 23 (7):1696–1718
[23]. Zhang Q, Kong D, Singh VP, Shi P. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Global and Planetary Change, 2017; 152: 1-11.
[24]. Allen RG, Pereira LS, Raes D, Smith M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper 56. FAO: Roma, 1998; Italia.
[25]. Abramowitz M, Stegun IA. Handbook of Mathematical Functions. Dover Publications, 1965; New York.
[26]. Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology, 2009; 368: 117-130.
[27]. Durbin J, Watson GS. Testing for serial correlation in least squares regression. III.Biometrika, 1971; 58: 1-19.
[28]. Yue S, Wang CY. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 2002; 38 (6): 1068.
[29]. Mann HB. Non-parametric tests against trend, Econometric, 1945; 13:245–259
[30]. Kendall MG. Rank Correlation Measures. London: Charles Griffin. 1975.
[31]. Yang Y, Chen Y, Li W, Wang M, Sun G. Impact of Climate Change on River Runoff in Northern Xinjiang of China over Last Fifty Years. Chinese Geographical Science 2010; 20 (3):193-201
[32]. Sabziparvar A, Mirmasoudi SSh, Nazemosadat MJ. Investigation of evapotranspiration long term changes in few country warm climatic instances, Natural Geography Researches, 2011; 75: 1-17. [Persian]
[33]. Ibrahimi H. Investigation of climate change effect on water consumptions of agriculture in Mashhad Plain. PhD thesis, Islamic Azad University, sciences and researches unit. 2005. [Persian]
[34]. Yang T, Li H, Wang W, Xu CY, Yu Z. Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrological Processes, 2012; 26 (23): 3510-3523.
[35]. Aziz Abadi Farahani M, Bakhtiari B, Ghaderi K, Rezapour M. The survey of climate change impact on drought severity-duration-frequency curves using Copulas. Iranian Journal of Soil and Water Research, 2016; 47 (4), 743-754. [Persian]
[36]. Modaresi F, Araghinejad SH, Ebrahimi K, Kholghi M. Assessment of Climate Change Effects on the Annual Water Yield of Rivers: A Case Study of Gorganroud River, Iran. Journal of Water and Soil, 2011; 25 (6):1365-1377. [Persian]
[37]. Karami M. Investigation of climate change effect on streamflow (Case Study: Gorganroud Basin). MSc Thesis, Natural Resources College, Malayer University, 2014; [Persian]
[38]. Liu ZH, Wang Y, Shao M, Jia X, Li X. Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China. Journal of Hydrology, 2016; 534:281-299.
[39]. Nosrati K. Evaluation of Standardized Precipitation Evapotranspiration Index (SPEI) for drought identification in different climates of Iran. Journal of Environmental Sciences, 2014; 12 (4). 63-74. [Persian]
[40]. Zare-Abyaneh H, Ghabaei Sough M, Mosaedi A. Drought monitoring based on standardized precipitation evapotranspiration index (SPEI) under the effect of climate change. Journal of Water and Soil, 2015; 29 (2), 374-392. [Persian]
[41]. Bazrafshan O, Mahmudzadeh F, Bazrafshan J. Evaluation of temporal trends of the SPI and SPEI drought indices in the Southern Coast of Iran. Desert Management, 2016; 4 (8), 54-69. [Persian]
[42]. Zeynali B, Safarian Zengir V. Drought monitoring in Urmia Lake by fuzzy index. Journal of Natural Environmental Hazard, 2017; 6 (12), 37-62. [Persian] | ||
آمار تعداد مشاهده مقاله: 817 تعداد دریافت فایل اصل مقاله: 586 |