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Abstract 

In some applications, the response variable assumes values in the unit interval. The 
standard linear regression model is not appropriate for modelling this type of data 
because the normality assumption is not met. Alternatively, the beta regression model 
has been introduced to analyze such observations. A beta distribution represents a 
flexible density family on (0, 1) interval that covers symmetric and skewed families. In 
this paper, a beta generalized linear mixed model with spatial random effect is proposed 
emphasizing on small values of the spatial range parameter and small sample sizes. 
Then some models with both fixed and varying precision parameter and different 
combinations of priors and sample sizes are discussed. Next, the Bayesian estimation of 
the model parameters is evaluated in an intensive simulation study. Selected priors 
improved the Bayesian estimation of the parameters, especially for small sample sizes 
and small values of range parameter. Finally, an application of the proposed model on 
data provided by Household Income and Expenditure Survey (HIES) of Tehran city is 
presented. 
 
Keywords: Bayesian estimation; Beta regression model; Household income and expenditure data; Spatial 
random effect. 
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Introduction 
Regression models have been widely used in 

statistical analysis when the basic assumptions are 
satisfied, and normality of response variable is one of 
the main assumptions. However, in many practical 
studies, we have encountered data with the realization 
of response variables lying in (0, 1) interval. There are 
common examples of rates and proportions, such as 
unemployment rate, illiteracy rate, fertility rate, the 
fraction of income spent on food, the proportion of time 

devoted to an activity, the percentage of a land covered 
by special vegetation, the proportion of people  
suffering from cancer, and so forth. So, in these 
situations, the standard regression models are rather 
restrictive and inaccurate for modelling large bodies of 
authentic data with limited range. 

A possible solution is to transform the dependent 
variable in a way that the transformed response follows 
a normal distribution, and then model the mean of the 
transformed response. This approach can solve the 
normality problem, but some new drawbacks may 
emerge, for instance, the model parameters cannot be 
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easily interpreted in terms of the original response. On 
the other hand, measures of proportions may be 
asymmetric hence any inference based on the 
assumption of normality results in the departure from 
reality. In order to overcome these drawbacks, [1] 
introduced the beta regression model which is suitable 
for modelling response variables restricted to the (0, 1) 
interval. In this frequentist approach, the beta 
distribution is reparametrized in terms of its mean and a 
positive parameter that can be regarded as a precision 
parameter. They have linked the mean parameter to a 
regression structure while assuming that the precision 
parameter is fixed. Likelihood-based inference in beta 
regression may be misleading for small sample sizes. A 
well-adjusted likelihood ratio statistics for small sample 
sizes was introduced by [2]. 

A Bayesian approach for modelling both the mean 
and the precision parameter, which has been linked to a 
linear regression structure through logit and logarithm 
link functions was proposed by [3,4] respectively. 
Under the Bayesian paradigm, [5] implemented a 
semiparametric beta regression model using penalized 
splines to study the proportion of nucleotides that differ 
by a given sequence or gene. Incorporation of a 
nonlinear regression structure to the mean model is 
developed by [6], as well as a regression structure for 
the precision parameter which may also be nonlinear. 
[7] added a random effect in the mean model of beta 
regression and applied it to study the reaction time of 
old people in a longitudinal study. Mixed beta 
regression models for both the mean and precision 
parameters were proposed by [8]. Both maximum 
likelihood and Bayesian MCMC mixed beta regression 
models were elaborated by [9]. Recently [10] proposed 
a partially linear model with correlated disturbances 
from a Bayesian perspective for modelling Brazilian 
and Chilean monthly unemployment rate. 

A new class of spatial models based on the 
biparametric exponential family of distributions 
proposed by [11], in which the spatial effect was 
included in the model through the distance of points as 
an explanatory variable. This model was applied to 
study the quality of education in Columbia by [12]. 
Gholizadeh et al., ([13]) have developed a spatial 
analysis of structured additive regression model using 
Integrated Nested Laplace Approximation (INLA) and 
modelled crime rate data in Tehran as an application of 
their model. On the other hand, [14] proposed a 
Bayesian approach on beta regression with spatial 
dependence structure given by exponential covariance 
function and has suggested a square beta as prior 
distribution both for spatial range and spatial variance, 
i.e.(aB)ଶ, where B ~Beta (1 + ε, 1 + ε), for given 

positive values of a and ε. However, the Fustos 
approach overestimates the small values of the spatial 
range. In addition, [15] worked on spherical covariance 
function assumed that the spatial range parameter gets 
large values. Recently, [16] introduced a spatial beta 
regression model in which the correlation existing in the 
data was considered through an explanatory random 
variable in the mean model. 

This paper proposes a Bayesian analysis for the 
spatial beta generalized linear mixed model with a new 
prior elicitation for the spatial dependence structure, 
emphasizing on small values of the spatial range 
parameter and small sample sizes. We consider two 
cases in turn. First, we assume that the precision 
parameter is fixed; next, we suppose that it is varying 
over observations and for both cases, we consider 
different scenarios for parameter estimations. This 
proposal is evaluated through Markov Chain Monte 
Carlo (MCMC) experiments and implemented via Gibbs 
sampling. The Multivariate Proportional scale 
Reduction Factor (MPRF) by [17] and [18] tests were 
used to check the convergence of the Gibbs samplers. 
Sensitivity analysis implementing more non-informative 
priors also declares our proposed priors are reliable. The 
Household Income and Expenditure Survey (HIES) is 
one of the main surveys which is conducted annually by 
the Statistical Center of Iran (SCI). The information 
provided by this survey is used for calculation of 
poverty line and national accounts. We calculate the 
proportion of monthly expenses spent on food to the 
entire expenditure of a household. This proportion can 
be used for understanding the welfare situation of a 
household. We aim to study the factors that affect this 
proportion as our response variable and Deviance 
Information Criterion (DIC) is used for models 
evaluations. This paper is arranged in the following 
order, the material and method part includes five 
sections. In the first section, the beta regression model is 
reviewed. Then, the beta generalized linear mixed 
model with spatial random effects is introduced in 
section two. In the third section, the motivation of 
selecting the priors along with model fitting by using 
Gibbs sampling method are presented. A simulation 
study is also performed for model evaluations in the 
fourth section. In the fifth section, we illustrated how to 
apply the proposed model to a real data set. Finally, the 
paper is closed with discussion and results. 

 

Materials and Methods 
Beta Regression Model 

The Beta distribution is very flexible and adapts 
different shapes in regard to values of the parameters. 
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For instance, Beta (1, 1) is equivalent to U(0, 1), other 
shapes involve the J shape, U shape, symmetric and 
skewed shapes. If Y~Beta(a, b) then its probability 
density function is given by 

,ݕ)݂  ܽ, ܾ) = Γ(a + b)Γ(a)Γ(b) yୟିଵ(1 − y)ୠିଵ, 0 < ݕ < 1, 
where a>0, b>0 and Γ(∙) is the gamma function. The 

mean and variance of Y are given by E(Y) =ା and Var(Y) = (ା)మ(ଵାା). In the sake of 
modeling the mean parameter, [8] introduced a 
reparametrized beta density in a way that E(Y) =ߤ and Var(Y) = ఓ(ଵିఓ)థାଵ . In this case a =ߤ߶ and b=(1 −  .߶(ߤ
Since ߶ is inversely related to the variance of Y, it can 
be interpreted as a precision parameter. Obviously for a 
fixed value of ߤ, larger values of ߶ result in smaller 
values of variance. The density function of the 
reparametrized Beta distribution is given by 

;ݕ)݂ μ, ϕ) = Γ(ϕ)Γ(μϕ)Γ൫(1 − μ)ϕ൯ yஜமିଵ(1)− y)(ଵିஜ)மିଵ      0 < y < 1 

where 0 <μ < 1 and ϕ > 0. Situations where the 
response is limited to a known interval (c, d) are also 
accommodated through the transformation ݕ∗ = (௬ି)(ௗି) 
where c, d > 0. 

The Beta density function (1) is due to Ferrari and 
Cribari-Neto's (2004) aim for modelling the mean 
parameter of the Beta distribution. If ଵܻ, … , ܻ are 
independent random variables from Beta(ߤ߶, (1  )߶), i=1,…, n, then the beta regression model can beߤ−
defined as g(ߤ) = ∑ βିଵୀݔ , 

where ߚ = ൫ߚ, … ,  ିଵ൯் is a vector of regressionߚ
coefficients, ݔ is the known value of covariate j for 
sample unit i, and g(∙) is a continuous twice 
differentiable link function. In this model the parameter ߶ is assumed to be fixed over all observations. 

The reparametrized Beta distribution has two 
parameters, the mean and the precision parameter. 
Modelling both parameters of the Beta distribution have 
been proposed by [3], [4] and [6]. If ଵܻ, … , ܻ are 
independent random variables from Beta(ߤ߶, (1  )߶), i=1,…,n, thenߤ−

ℎ(߶) =  ℓିଵߜℓݖ
ℓୀ  (2) 

as before ߜ = ,ߜ) … ,  ିଵ)் is the vector ofߜ
regression parameters, ݖℓ known as a value of covariate ℓ for the sample unit i, and h(∙) is a continuous twice 
differentiable link function. In the existing literature, the 
common link function for ߶ is the logarithm function. 
Note that covariates for modelling the mean and 
precision parameters could be exactly the same, 
completely different, or a combination of similar and 
different features. 
 
Spatial Beta Generalized Linear Mixed Model 

When the location of sampling units affects the 
response variable, there would be a spatial correlation. 
Initially, [11] introduced spatial beta regression model 
in which the spatial dependency was captured through 
an explanatory variable, which was a multiple of the 
response variable and corresponding spatial weights. 
Their model is given by 

logit(μ୧)= ݔβ + ρWY 
 log(߶)= ݖδ+λWY, 

where ݔ=(ݔ,  ((ିଵ)ݖ ,… ,ݖ)=ݖ (ିଵ)) andݔ ,…
are vectors of non-stochastic regressors. In addition, ρ and λ are regression parameters, W is the spatial 
weight matrix and y = (ݕଵ, . . ,  ) represents the vectorݕ
of response variables. The structure of the spatial 
correlation is not considered in the [11] model. 

In this paper, we aim to incorporate the spatial 
correlation structure of the response variable into the 
model. This can be achieved by adding a random 
component to the mean model. Models of this kind 
belong to the class of Spatial Generalized Linear Mixed 
Models (SGLMM) introduced by [19]. Suppose y(s) = 
(y(ݏଵ),…, y(ݏ)) are realizations of random variables 
Y(s)= (Y(ݏଵ),…,Y(ݏ)) at n distinct locations ݏଵ,…, ݏ. 
For simplicity assume ݕ and ܻ denote ݕ(ݏ) and ܻ(ݏ) 
respectively, in the following parts. We are interested in 
modelling beta distributed spatially dependent random 
variables, ଵܻ,…, ܻ, where their geographical 
associations are referenced by a Gaussian Random Field 
(GRF). Without loss of generality, the term can be 
extended for modelling spatially correlated response 
variables, restricted to the known positive interval (c, d). 
Let the random vector ߬(ݏ) = ൫߬(ݏଵ), … ,  ൯ denote(ݏ)߬
a GRF. Conditionally on ߬(ݏ), the spatial random fields 
Y(s) are independent and beta distributed, i.e., ܻ(ݏ)|߬(ݏ)~Beta ቀ(ݏ)߶(ݏ)ߤ, ൫1 −  ቁ, which is(ݏ)߶൯(ݏ)ߤ
obtained by replacing μ and ϕ with μ(s) and ϕ(s) in (1). 
Then, using the idea of SGLMM ([19]), we define 
Spatial Beta Generalized Linear Mixed Model 
(SBGLMM) as follows; which is a linear function both 
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in the fixed effects and random effect g൫ܧ(ݕ|߬)൯ = g(ߤ) = ߚݔ + ߬ = ݅     ߟ = 1, … , ݊ (3) 

where ݔ  = ,ݔ)  … , ߚ (ିଵ))  andݔ = ൫ߚ, … ,  ିଵ൯் are vectors of covariates and relatedߚ
regression coefficients respectively, and ߬ denote ߬(ݏ) 
is the random effect capturing the spatial correlation. 
The random process ߬ = (߬ଵ, … , ߬) follows a 
multivariate normal distribution, i.e., ߬(ݏ)~ ܰ(0, Σఛ), 
where  (Σఛ) = Cov ቀ߬(ݏ), ߬൫ݏ൯ቁ = ଶCorrߪ ቀ߬(ݏ), ߬൫ݏ൯ቁ, 

and describe the spatial correlation structure. 
Following the previous studies we choose the logit link 
function, so (3) can be rewritten as below 

 logit(ߤ) = ߚݔ + ߬   i=1,…, n.                        (4) 

The precision parameter ϕ can also be modelled 
using a suitable link function and a linear predictor, e.g. 
h(߶) = ߜݖ = ߱.  According to existing studies on 
beta regression models, a suitable link function would 
be the logarithm link function. So, we assume 

 log(߶) = ߜݖ = ߱           ݅ = 1, … , ݊; 
 
where ݖ = (ݖ, …, ݖ(ିଵ)) is the vector of 

covariates and ߜ = ,ߜ) … ,  ିଵ)்is the vector ofߜ
regression parameters. In cases where ϕ is fixed, the 
corresponding model is readily obtained by assuming ߶ 
=ϕ, i = 1, …, n, δ = δ, and z = 1. In the following 
section, we will consider SBGLMM in two cases and 
intend to estimate the parameters involved in the 
proposed model using the Bayesian approach. First, we 
assume that the precision parameter is fixed and then 
assume a linear structure for the varying precision 
parameter as well. 

Bayesian Estimation of the Model Parameters 
Consider the spatial beta regression model given by 
,ߚ|ݕ  ߶, ߬~ߤ)ܽݐ݁ܤ߶, (1 − ,()߶ߤ ݅ = 1, … , ݊; 
 ߬|߭~ ܰ(0, Σఛ)           (5 
 
where ߭ is the vector of structural parameters related 

to the spatial covariance function and logit(μ୧) = x୧β +τ୧ = η୧ as in (4). The precision parameter ߶ could be 
fixed or varying. We will discuss both cases in turn. 

In order to complete the Bayesian specification of the 
spatial beta regression model, elicitation of prior 
distributions for all unknown parameters is required. 
Multivariate normal prior distributions are typically 

considered for the regression coefficients involved in 
the mean model, i.e., we propose β~N୮൫0, Σஒ൯, where Σஒ is a diagonal matrix with large values of variances, 
which provides a vague prior. In the Bayesian context, a 
popular choice for the prior distribution of the variance 
would be inverse gamma distribution. Since ϕ is the 
precision parameter and inversely related to the variance 
of the Beta distribution, it can be assumed that ϕ is 
gamma distributed with small positive values of 
parameters to avoid using an informative prior. In the 
case of a varying dispersion parameter ϕ୧ as in (2), we 
have specified a convenient prior for fixed effects given 
by δ~N୫(0, Σஔ), where Σஔ is a diagonal matrix with 
large values of variance components. 

We assume that the spatial dependence between two 
geographical points is given by the exponential 
correlation function i.e., 

,݀)ߩ  ߰) = exp ቀ− ௗటቁ   (6) 
where ψିଵ is the spatial range and d = หs୧ − s୨ห 

denotes the distance between sample units i and j which 
are sited at locations s୧ and s୨ respectively, for i, j=1, …, 
n. Therefore (Σத)୧୨ = σଶexp(−ψିଵd) and σଶdescribe 
the spatial variance. Thus, through this study we assume 
that ߭ = (σଶ, ψିଵ). 

In this paper, we focus our attention on the 
exponential covariance function, which has been used in 
various applications [20]. We have not yet investigated 
the estimation and properties of Matern covariance 
models [21], which include the exponential model as a 
special case, and this issue needs further research. Note 
that the variance component of the exponential 
covariogram is called spatial variance and its inverse 
will be called spatial precision in the following parts. 

An inverse gamma distribution is set as prior for 
spatial variance σଶ which is a typical prior for variance 
in the Bayesian context. The range parameter is 
commonly given an inverse gamma or a bounded 
uniform prior distribution. The bounded interval is 
essential to avoid improper priors. Because using 
improper prior distributions for the parameters of a GRF 
without attention may result in improper posteriors, 
[22]. 

The joint posterior distribution is obtained by 
combining the likelihood function of beta distribution 
(1) with the prior information. We now present the joint 
posterior distribution for the varying precision 
parameter model and omit the observable vectors x and 
z in the notation since these are non-random and already 
known. Let y = (yଵ, … , y୬) be the observed spatial 
variable, under the assumption that the parameters 
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β, δ, σଶand ψିଵare prior independent, the joint posterior 
density is given by 

2 1 2 1

1 1
2 1

( , , , , ) ( , , ) ( , , )

( ) ( ) ( ) ( ).

n n

i i i
i i

f f y f

f f f f

σ ψ τ τβ δ τ β δ β

β

σ ψ

δσ ψ

− −

= =

−

∝

×

∏ ∏y∣ ∣ ∣

Note that, in cases where the precision parameter ϕ is 
constant, the posterior distribution is obtained by 
replacing prior distributions of δ with ϕ. The joint 
posterior distribution is complicated, so the Gibbs 
sampler [23] can be utilized to generate samples from 
the joint posterior density. The Gibbs sampler in this 
context involves iteratively sampling from the full 
conditional distributions, and this procedure is 
implemented by means of a MCMC scheme. 

Next, in order to evaluate the performances of the 
specified priors, a simulation study for the fixed 
precision parameter case was conducted. Outcomes of 
the simulation study reveal that the above mentioned 
inverse gamma and uniform priors for the spatial range 
provide overestimation. Regarding this issue, we tried to 
choose a prior distribution for the transformed 
parameter. Suppose that the spatial range is the growing 
amount of a quantity, this can be reduced by logarithm 
transformation. Therefore a uniform distribution is 
utilized as prior distribution for logarithm of the spatial 
range according to [22]. Assuming that ψିଵ ∈(0.01, 10), then a bounded uniform prior on the 
logarithm of the range is given by α = −Ln(ψ)~U(−4.5, 2.3). 

Implementing an inverse gamma prior for the spatial 
variance led to a slight underestimation. Therefore we 
tried to find another prior to achieve the desired 
improvement in our estimation. Based on the idea of 
using a prior distribution that has the property of rapid 
growing values, we assume that σଶ is following an 
exponential distribution, i.e., σଶ~exp(λ). But there is no 
clue about the value of λ, so we set a hierarchical prior 
and assume that λ~N(0, σଶ)I(0, ∞), where σଶ takes 
large values to have a non-informative prior. Note that 
the truncated normal distribution was chosen due to the 
support of the exponential distribution parameter. 
Results of the simulation over these recent priors and 
typical priors for spatial parameters will be presented 
simultaneously in the next section.  

Implementing the new proposed priors under the 
assumption that the parameters β, δ, α, σଶ and λ are 
priori independent, the joint posterior density is given 
by (Box-1). 

To deal with this complicated posterior distribution, 
again the Gibbs sampler has been applied to generate 
samples from the full conditional distributions which 
are presented in Appendix I. Posterior inferences on β, δ, α, σଶ and λ are readily obtained using WinBUGS 
through the R2WinBUGS package [24] in R [25]. When 
conditional distributions are nonstandard, it can’t 
sample directly from them using Gibbs sampling. 
Therefore, Metropolis-within-Gibbs algorithm is 
implemented by WinBUGS to sample from difficult full 
conditional distributions.  

Hypothesis testing regarding the regression 
coefficients and mean responses are also 
straightforward. The program codes are available from 
the authors upon request. When the MCMC 
implementation is applied to the simulated data (see the 
Simulation Study section), the convergence of the 
MCMC samples is assessed using standard tools within 
WinBUGS such as trace plots and autocorrelation 
function (ACF) plots, as well as the Gelman-Rubin [17] 
convergence diagnostic. 
 
Simulation Study 

In this section, we study through some intensive 
simulation experiments, the behavior of the Bayesian 
estimators based on the square root of MSE and relative 
bias. We performed the simulation of the spatial beta 
regression model by assuming a GRF whose covariance 
structure is given by (6) while incorporating different 
scenarios for the spatial parameter. Consider the model 

,ߚ|ݕ  ߶, ߬~ߤ)ܽݐ݁ܤ߶, (1 − ,()߶ߤ ݅ = 1, … , ,ଶߪ|߬ ,݊ ߰ିଵ~ ܰ(0, Σఛ), 
 
where β = (β, βଵ, βଶ) and log = ቀ ஜଵିஜቁ = x୧β +τ୧ = η୧. The values of the covariates ݔଵ and ݔଶ were 

generated from a uniform distribution on the unit 
interval referring to [8], and we set, β = (−1,2, −1.5)and ϕ=50. On the other hand, we consider the 
spatial variance ߪଶ = 0.5 and different spatial range 
settings; ψିଵ =0.1, 0.45 and 0.9. These values are 
considered after an initial study of the spatial parameters 
and we find out that the natural prior for the range 
parameter overestimates the aimed parameter in the case 
of spatial beta regression, so we attempt to estimate 
small values of the range. 

Additionally, we consider different settings for the 
precision parameter ߶, generating two possible models. 

Box-1 

2 2 2

1 1
( , , , , , ) ( , , ) ( , , , ) ( ) ( ) ( ) ( ) ( ).

n n

i i i
i i

f f y f f f f f fβ δ τ β δα σ λ τ τ α σ λ β α σ λ λ δβ
= =

∝ ×∏ ∏y∣ ∣ ∣ ∣  
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plots showed that the chains have a stable performance 
around the true parameter value. 

We computed the relative bias (RelBias) and the 
square root of MSE (RMSE) for each parameter over 
the 50 simulated samples. They are defined as 

RelBias(ߠ) = ଵହ ∑ ቀఏఏ − 1ቁହୀଵ  and RMSE(ߠ) =ቄ ଵହ ∑ ൫ߠ − ൯ଶହୀଵߠ ቅଵ ଶൗ
 

Where θ = (β, βଵ, βଶ, ϕ, σଶ, ψିଵ)and θ୧ is the 
posterior estimate of θ୧ for the ith sample. Table [1] 
presents the summary results for the estimation of all 
the parameters. It seems that the spatial variance is 
overestimated or underestimated according to the first 
and second sets of priors respectively. Nevertheless, it is 
worth mentioning that using a hierarchical prior for 
spatial variance, resulted in a reduction in the RelBias 

and RMSE values when the sample size is increased. 
Moreover, bounded uniform distribution on the 
logarithm of the range resulted in proper estimates. This 
prior has solved the problem of over estimation and has 
also reduced the RelBias and RMSE in comparison with 
uniform prior density, especially for small sample sizes. 

Another important aspect that should be assessed is 
the performance of the Bayesian estimators for other 
values of the spatial range when the sample size is 
small. The data generation scheme is similar to the 
simulation study described above, whereas other values 
for the range parameter are considered. Table 2 
summarizes the numerical results of our simulation 
study over a 5×5 lattice, where the RelBias and the 
RMSE of the parameter estimators of Set 1 are smaller 
than Set 2. Hence we can conclude that our method 

Table 1. Estimates of the parameters of Model 1 for different priors and sample sizes 
    Prior Set 1   Prior Set 2 
n Par. Value Mean Bias Sd. RMSE  Mean Bias Sd. RMSE 
  -1 -1.043 0.043 0.191 0.442  -1.156 0.156 0.212 0.263ߚ 
 ଵ 2 2.093 0.046 0.215 0.483  2.225 0.112 0.219 0.313ߚ 
 ଶ -1.5 -1.542 0.028 0.219 0.472  -1.383 0.078 0.242 0.269ߚ 25
 ߶ 50 60.527 0.211 17.472 4.516  75.281 0.506 22.782 34.032 
ଶߪ 

 0.5 0.724 0.449 0.323 0.627  0.503 0.006 0.542 0.541 
 ߰ିଵ

 0.1 0.218 1.183 0.072 0.372  9.353 92.532 5.873 10.959 
            
  -1 -0.912 0.088 0.167 0.189  -1.173 0.173 0.540 0.567ߚ 
 ଵ 2 2.075 0.038 0.165 0.181  2.022 0.011 0.102 0.104ߚ 

 ଶ -1.5 -1.528 0.019 0.121 0.124  -1.513 0.009 0.191 0.192ߚ 100
 ߶ 50 64.779 0.295 23.665 27.90  67.319 0.346 20.107 26.538 
ଶߪ 

 0.5 0.685 0.370 0.235 0.298  0.311 0.376 0.242 0.306 
 ߰ିଵ

 0.1 0.161 0.616 0.052 0.080  1.047 9.475 2.065 2.272 
            
  -1 -0.930 0.069 0.338 0.345  -0.922 0.077 0.382 0.389ߚ 
 ଵ 2 1.972 0.013 0.067 0.072  1.99 0.005 0.106 0.106ߚ 

 ଶ -1.5 -1.486 0.01 0.111 0.112  -1.518 0.012 0.098 0.100ߚ 225
 ߶ 50 59.612 0.192 12.018 15.389  65.347 0.307 16.728 22.702 
ଶߪ 

 0.5 0.579 0.159 0.130 0.152  0.376 0.246 0.205 0.239 
 ߰ିଵ

 0.1 0.158 0.586 0.039 0.070  0.252 1.525 0.133 0.142 
 

Table 2. Estimates of the parameters of Model 1 for different priors and different values of spatial range 
   Prior Set 1   Prior Set 2 

Par. Value Mean Bias Sd. RMSE  Mean Bias Sd. RMSE  -1 -0.903 0.097 0.223 0.243  -1.696 0.131 0.166 0.257  2 1.939 0.030 0.266 0.273  2.792 0.396 0.262 0.835  -1.5 -1.568 0.045 0.218 0.228  -0.901 0.399 0.215 0.636  50 33.233 0.335 9.899 19.470  44.288 0.114 11.558 12.893 ો
 0.5 0.637 0.273 0.263 0.296  0.123 0.754 0.059 0.382 ૐି

 0.45 0.361 0.199 0.166 0.188  14.046 30.213 3.914 14.148 
            -1 -0.814 0.186 0.282 0.338  -0.798 0.202 0.191 0.279  2 1.532 0.234 0.359 0.590  1.932 0.034 0.177 0.190  -1.5 -1.354 0.097 0.362 0.390  -1.713 0.142 0.247 0.326  50 37.112 0.258 13.577 18.720  31.347 0.373 8.282 20.409 ો

 0.5 0.949 0.898 0.606 0.754  0.095 0.810 0.002 0.405 ૐି
 0.9 0.819 0.091 0.330 0.340  22.303 22.477 3.804 21.690 
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exhibits good performances in the estimation of the 
range parameter. 

To explore how Bayesian estimates are affected by 
less informative priors, a sensitivity analysis was 
conducted. So applying vague priors, we use the 
following elicitation of prior distributions β୨~N(0,1000) for j=0,1,2, ϕ~Gamma(0.001,0.001) 
and λ~N(0, 1000)I(0, ∞). 

The results of this assessment are given in Table [3]. 
It can be observed that estimation of the parameters is 
not significantly affected by the use of less informative 
priors. In conclusion, the sensitivity analysis, 
convergence tests, plots and results over the 50 
simulated data sets indicate that our results are reliable 
and can be applied to analyze real data sets when the 
basic circumstances of the model are met. 

After investigating Model 1, we expended 
considerable effort to develop an SBGLMM model, 
assuming that the precision parameter is not fixed and 
then going on to examine different scenarios for 
parameter estimation. Consider the spatial beta 
regression model presented in (5) and suppose that log(ϕ୧) = z୧δ. As mentioned before, in Model 2 we 
have log(ϕ୧) = δ + δଵzଵ୧. Table 4 shows the outcomes 
of our simulation study for Model 2 assuming δ୨~N(0,100) for j = 0, 1 and a prior distribution for 

other parameters are the same as when assuming the 
precision parameter is fixed. In this state, we consider 
two samples in the regular grid, namely, 10 ×10 and 
15× 15, then RelBias and RMSE of each parameter are 
computed over the 50 simulated samples. 

From Table 4, we find out that δ and δଵ are not 
estimated properly for the sample of size 100. In order 
to obtain better estimates for these parameters, we 
examine different priors such as non-informative 
uniform prior distribution for each δ୨, and a zero mean t-
student distribution with large variance and 3 degrees of 
freedom [27], i.e., we assume that δ୨~t(0,100,3). Our 
motivation to use these priors was implementing a flat 
prior and a prior with heavier tails in comparison with 
normal distribution in order to treat extreme values if 
they exist. These suggested priors were not achieving 
proper estimates, so for the sake of brevity, outcomes 
are not presented here. 

[8] utilized an exponential prior for degrees of 
freedom  in t-student distribution, while setting a 
hierarchical prior for the random effect in the mixed 
beta regression model. Borrowing this idea for fixed 
effects, we assume a hierarchical prior for regression 
coefficients, that is δ୨~t൫0,100, ς୨൯ where ς୨~exp(0.1). 
Considering these priors the joint posterior distribution 
is given by (Box-2). 

Table 3. Summary results of sensitive analysis for estimation of the parameters of Model 1 
   n = 100   n = 225 

Par. Value Mean Bias Sd. RMSE  Mean Bias Sd. RMSE  -1 -0.830 0.170 0.337 0.377  -1.042 0.042 0.152 0.158  2 2.067 0.033 0.161 0.175  2.040 0.020 0.125 0.132  -1.5 -1.551 0.034 0.130 0.140  -1.509 0.006 0.123 0.123  50 90.146 0.803 39.974 56.654  80.184 0.604 39.184 49.462 ો
 0.5 0.679 0.357 0.218 0.282  0.411 0.178 0.187 0.207 ૐି

 0.1 0.364 2.643 0.213 0.340  0.192 0.923 0.087 0.127 

Table 4. Estimates of the parameters of Model 2 for different priors and sample sizes 
    Prior Set 1   Prior Set 2 
n Par. Value Mean Bias Sd. RMSE  Mean Bias Sd. RMSE 
  -1 -0.999 0.0004 0.241 0.240  -1.047 0.047 0.168 0.174ߚ 
 ଵ 2 2.016 0.008 0.162 0.163  2.069 0.034 0.169 0.182ߚ 

 ଶ -1.5 -1.463 0.025 0.187 0.191  -1.468 0.021 0.169 0.171ߚ 100
  4 5.819 0.454 3.080 3.577  6.154 0.538 2.278 3.135ߜ 
 ଵ -0.4 1.780 5.451 3.116 3.803  0.053 0.053 3.180 3.212ߜ 
ଶߪ 

 0.5 0.463 0.072 0.235 0.237  0.382 0.234 0.325 0.345 
 ߰ିଵ

 0.1 0.663 5.629 1.058 1.198  1.501 14.016 1.422 2.538 
            
  -1 -0.701 0.299 0.245 0.387  -0.994 0.006 0.322 0.322ߚ 
 ଵ 2 2.013 0.007 0.083 0.084  2.066 0.033 0.112 0.130ߚ 

 ଶ -1.5 -1.525 0.016 0.080 0.084  -1.491 0.006 0.068 0.069ߚ 225
  4 4.013 0.003 0.282 0.283  4.385 0.096 0.493 0.626ߜ 
 ଵ -0.4 -0.390 0.026 0.406 0.406  -0.159 0.602 1.222 1.246ߜ 
ଶߪ 

 0.5 0.510 0.020 0.224 0.224  0.402 0.196 0.078 0.125 
 ߰ିଵ

 0.1 0.188 0.880 0.083 0.121  0.234 1.340 0.092 0.163 
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status. 
It is important to note that adding spatial effect is 

necessary to study the response variable. Because 
ignoring the spatial correlation results in increasing the 
DIC value, it means that if the spatial dependency of the 
response variable is neglected, the model is not well 
fitted. 

 

Results and Discussion 
In cases of working with spatially correlated data, 

this property should be considered in the data analysis 
to prevent arriving at misleading results. Our proposed 
SBGLMM is applicable when the spatial response 
variable is beta distributed. The reparametrized beta 
distribution has two parameters namely, the mean and 
the precision parameter. We consider SBGLMM in two 
situations. First, we assumed that the precision 
parameter is fixed and then the model was extended for 
a varying precision parameter status. The spatial 
correlation structure was included in the model using a 
random effect in the mean model. After doing an initial 
study and realizing that typical priors in the Bayesian 
context are unable to estimate small values of the spatial 
range parameter, we made an effort to find a suitable 
prior for this parameter. To analyze the sensitivity of 
priors, an intensive simulation study carried out upon 
which the proper values of hyper parameters were 
assigned. The Bayesian approach was applied to 
estimate the parameters involved in the proposed model. 
As the posterior distribution is complicated, the Gibbs 
sampler was run to fit the model using MCMC scheme, 
while facing slow mixing chains. The further inference 
was performed considering convergence tests and 
graphical diagnostic tools. Outcomes of intensive 
simulation studies over different sample sizes   and 
results of sensitivity analysis, demonstrated that 
parameter estimations are reliable based on the 
proposed priors which are working properly, especially 
for small values of spatial range even for small sample 
sizes. 

Additionally, we targeted to fit a model while a 
varying precision parameter is supposed. The linear 
pattern including fixed effects is assumed for the 
precision parameter. Finding proper priors for these 
regression coefficients was challenging and time 
consuming. Although Normal prior distribution does not 
provide appropriate estimates for the regression 
coefficients when the sample size is small, results of 
simulations confirm that Normal prior distribution is 
able to estimate regression parameters of the precision 
model when the sample size is increased. 

SBGLMM provides us with a useful tool for 

modelling spatially correlated rates and proportions 
which are common in many areas such as official 
statistics. As an application, we used our model to study 
HIES data in Tehran, the capital of Iran. The results 
show that the proportion of expenses spent on food in a 
household is affected by decile of income and 
household size. It is worth to mention that due to the 
spatial dependency of the response variable, adding the 
spatial effect to the model yielded to get better results. 

There is a wide vicinity for future work on this issue. 
For instance, this can be carried out by extending the 
models including some other random effects, working 
on other spatial correlation structures, or studying 
spatiotemporal issues. 
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Full conditional distributions are as follow 
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