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Abstract
In some applications, the response variable assumes values in the unit interval. The

standard linear regression model is not appropriate for modelling this type of data
because the normality assumption is not met. Alternatively, the beta regression model
has been introduced to analyze such observations. A beta distribution represents a
flexible density family on (0, 1) interval that covers symmetric and skewed families. In
this paper, a beta generalized linear mixed model with spatial random effect is proposed
emphasizing on small values of the spatial range parameter and small sample sizes.
Then some models with both fixed and varying precision parameter and different
combinations of priors and sample sizes are discussed. Next, the Bayesian estimation of
the model parameters is evaluated in an intensive simulation study. Selected priors
improved the Bayesian estimation of the parameters, especially for small sample sizes
and small values of range parameter. Finally, an application of the proposed model on
data provided by Household Income and Expenditure Survey (HIES) of Tehran city is
presented.

Keywords: Bayesian estimation; Beta regression model; Household income and expenditure data; Spatial

random effect.

Introduction

Regression models have been widely used in
statistical analysis when the basic assumptions are
satisfied, and normality of response variable is one of
the main assumptions. However, in many practical
studies, we have encountered data with the realization
of response variables lying in (0, 1) interval. There are
common examples of rates and proportions, such as
unemployment rate, illiteracy rate, fertility rate, the
fraction of income spent on food, the proportion of time

devoted to an activity, the percentage of a land covered
by special vegetation, the proportion of people
suffering from cancer, and so forth. So, in these
situations, the standard regression models are rather
restrictive and inaccurate for modelling large bodies of
authentic data with limited range.

A possible solution is to transform the dependent
variable in a way that the transformed response follows
a normal distribution, and then model the mean of the
transformed response. This approach can solve the
normality problem, but some new drawbacks may
emerge, for instance, the model parameters cannot be
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easily interpreted in terms of the original response. On
the other hand, measures of proportions may be
asymmetric hence any inference based on the
assumption of normality results in the departure from
reality. In order to overcome these drawbacks, [1]
introduced the beta regression model which is suitable
for modelling response variables restricted to the (0, 1)
interval. In this frequentist approach, the beta
distribution is reparametrized in terms of its mean and a
positive parameter that can be regarded as a precision
parameter. They have linked the mean parameter to a
regression structure while assuming that the precision
parameter is fixed. Likelihood-based inference in beta
regression may be misleading for small sample sizes. A
well-adjusted likelihood ratio statistics for small sample
sizes was introduced by [2].

A Bayesian approach for modelling both the mean
and the precision parameter, which has been linked to a
linear regression structure through logit and logarithm
link functions was proposed by [3,4] respectively.
Under the Bayesian paradigm, [5] implemented a
semiparametric beta regression model using penalized
splines to study the proportion of nucleotides that differ
by a given sequence or gene. Incorporation of a
nonlinear regression structure to the mean model is
developed by [6], as well as a regression structure for
the precision parameter which may also be nonlinear.
[7] added a random effect in the mean model of beta
regression and applied it to study the reaction time of
old people in a longitudinal study. Mixed beta
regression models for both the mean and precision
parameters were proposed by [8]. Both maximum
likelihood and Bayesian MCMC mixed beta regression
models were elaborated by [9]. Recently [10] proposed
a partially linear model with correlated disturbances
from a Bayesian perspective for modelling Brazilian
and Chilean monthly unemployment rate.

A new class of spatial models based on the
biparametric exponential family of distributions
proposed by [11], in which the spatial effect was
included in the model through the distance of points as
an explanatory variable. This model was applied to
study the quality of education in Columbia by [12].
Gholizadeh et al., ([13]) have developed a spatial
analysis of structured additive regression model using
Integrated Nested Laplace Approximation (INLA) and
modelled crime rate data in Tehran as an application of
their model. On the other hand, [14] proposed a
Bayesian approach on beta regression with spatial
dependence structure given by exponential covariance
function and has suggested a square beta as prior
distribution both for spatial range and spatial variance,
i.e.(aB)?, where B ~Beta (1 + ¢, 1 + ¢), for given
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positive values of a and & However, the Fustos
approach overestimates the small values of the spatial
range. In addition, [15] worked on spherical covariance
function assumed that the spatial range parameter gets
large values. Recently, [16] introduced a spatial beta
regression model in which the correlation existing in the
data was considered through an explanatory random
variable in the mean model.

This paper proposes a Bayesian analysis for the
spatial beta generalized linear mixed model with a new
prior elicitation for the spatial dependence structure,
emphasizing on small values of the spatial range
parameter and small sample sizes. We consider two
cases in turn. First, we assume that the precision
parameter is fixed; next, we suppose that it is varying
over observations and for both cases, we consider
different scenarios for parameter estimations. This
proposal is evaluated through Markov Chain Monte
Carlo (MCMC) experiments and implemented via Gibbs
sampling. The Multivariate Proportional scale
Reduction Factor (MPRF) by [17] and [18] tests were
used to check the convergence of the Gibbs samplers.
Sensitivity analysis implementing more non-informative
priors also declares our proposed priors are reliable. The
Household Income and Expenditure Survey (HIES) is
one of the main surveys which is conducted annually by
the Statistical Center of Iran (SCI). The information
provided by this survey is used for calculation of
poverty line and national accounts. We calculate the
proportion of monthly expenses spent on food to the
entire expenditure of a household. This proportion can
be used for understanding the welfare situation of a
household. We aim to study the factors that affect this
proportion as our response variable and Deviance
Information Criterion (DIC) is used for models
evaluations. This paper is arranged in the following
order, the material and method part includes five
sections. In the first section, the beta regression model is
reviewed. Then, the beta generalized linear mixed
model with spatial random effects is introduced in
section two. In the third section, the motivation of
selecting the priors along with model fitting by using
Gibbs sampling method are presented. A simulation
study is also performed for model evaluations in the
fourth section. In the fifth section, we illustrated how to
apply the proposed model to a real data set. Finally, the
paper is closed with discussion and results.

Materials and Methods

Beta Regression Model
The Beta distribution is very flexible and adapts
different shapes in regard to values of the parameters.
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For instance, Beta (1, 1) is equivalent to U(0, 1), other
shapes involve the J shape, U shape, symmetric and
skewed shapes. If Y~Beta(a, b) then its probability
density function is given by

I'(a+b)

] 1b = S NN
F0:ab) = 1)
where a>0, b>0 and I'(*) is the gamma function. The
mean and variance of Y are given by E(Y) =

a ab
b and Var(Y) = (@b)2(ratd) In the of
introduced a

modeling the mean parameter, [8]
reparametrized beta density in a way that E(Y) =u and

Var(Y) = ”;1—;1”) In this case a =u¢ and b=(1 — u)¢.

Since ¢ is inversely related to the variance of Y, it can
be interpreted as a precision parameter. Obviously for a
fixed value of p, larger values of ¢ result in smaller
values of wvariance. The density function of the
reparametrized Beta distribution is given by

vy l1-y)PLo<y<1,

sake

o T(@) -
find) TR CENDM €y
_ y)(l—u)cb—l 0<y<1

where 0 <p < 1 and ¢ > 0. Situations where the

response is limited to a known interval (c, d) are also
accommodated through the transformation y* = —EZ :3

where ¢, d > 0.

The Beta density function (1) is due to Ferrari and
Cribari-Neto's (2004) aim for modelling the mean
parameter of the Beta distribution. If Vi, ...,Y, are
independent random variables from Beta(y;¢, (1 —
U;)d), i=1,..., n, then the beta regression model can be
defined as

g(uw) = 2?;& xijBjs

where ff = (BO, ...,[)’p_l)T is a vector of regression
coefficients, x;; is the known value of covariate j for
sample wunit i, and g(-) is a continuous twice
differentiable link function. In this model the parameter
¢ is assumed to be fixed over all observations.

The reparametrized Beta distribution has two
parameters, the mean and the precision parameter.
Modelling both parameters of the Beta distribution have
been proposed by [3], [4] and [6]. If V;,...,Y, are
independent random variables from Beta(u;¢;, (1 —
U)$;),i=1,...,n, then

m-—1

h(¢;) = Z Zip6y (2)

£=0
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as before & = (8, ...,0,-1)7 is the vector of
regression parameters, z;, known as a value of covariate
£ for the sample unit i, and h(:) is a continuous twice
differentiable link function. In the existing literature, the
common link function for ¢ is the logarithm function.
Note that covariates for modelling the mean and
precision parameters could be exactly the same,
completely different, or a combination of similar and
different features.

Spatial Beta Generalized Linear Mixed Model

When the location of sampling units affects the
response variable, there would be a spatial correlation.
Initially, [11] introduced spatial beta regression model
in which the spatial dependency was captured through
an explanatory variable, which was a multiple of the
response variable and corresponding spatial weights.
Their model is given by

logit(p)= x;B + pWY

log(¢:)= z;5+AWY,

where x;=(Xg, ..y Xi(p-1)) and z;=(zyo, ..., Zim-1))
are vectors of non-stochastic regressors. In addition,
pand A are regression parameters, W is the spatial
weight matrix and y = (y4,..,),) represents the vector
of response variables. The structure of the spatial
correlation is not considered in the [11] model.

In this paper, we aim to incorporate the spatial
correlation structure of the response variable into the
model. This can be achieved by adding a random
component to the mean model. Models of this kind
belong to the class of Spatial Generalized Linear Mixed
Models (SGLMM) introduced by [19]. Suppose y(s) =
(y(s1),---, y(sp)) are realizations of random variables
Y(s)= (Y(s1),---,Y(Sp,)) at n distinct locations Sy,..., Sy.
For simplicity assume y; and Y; denote y(s;) and Y(s;)
respectively, in the following parts. We are interested in
modelling beta distributed spatially dependent random
variables, Yj,...,Y,, ~where their geographical
associations are referenced by a Gaussian Random Field
(GRF). Without loss of generality, the term can be
extended for modelling spatially correlated response
variables, restricted to the known positive interval (c, d).
Let the random vector 7(s) = (T(Sl), e T(Sn)) denote
a GRF. Conditionally on 7(s), the spatial random fields
Y(s) are independent and beta distributed, i.e.,
Y(s)[r(s)~Beta (u(s)$(s), (1 — u(s))b(s)). which is
obtained by replacing p and ¢ with p(s) and ¢(s) in (1).
Then, using the idea of SGLMM ([19]), we define
Spatial Beta Generalized Linear Mixed Model
(SBGLMM) as follows; which is a linear function both
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in the fixed effects and random effect

g(Eilt)) =gw) =xp+t,=m

where

i=1,..,n03)

X = (xio,...,xi(p_l)) and
B = ([)’0, s Bp_l)r are vectors of covariates and related
regression coefficients respectively, and t; denote 7(s;)
is the random effect capturing the spatial correlation.
The random process T = (Ty,..,T,) follows a

multivariate normal distribution, i.e., 7(s)~N,(0,Z,),
where

(2. = Cov (T(Si),‘l'(s]-)) = ¢2Corr (T(Si),f(sj)),
and describe the spatial correlation structure.

Following the previous studies we choose the logit link
function, so (3) can be rewritten as below

lOgit(‘Lll') = xi,B + 1; i=1,... (4)

The precision parameter ¢ can also be modelled
using a suitable link function and a linear predictor, e.g.
h(¢;) = z;6 = w;. According to existing studies on
beta regression models, a suitable link function would
be the logarithm link function. So, we assume

,n.

log(¢;) = z;6 = w; i=1,..,n;

where z; = (Zj, ..., Zigm-1)) is the vector of
covariates and & = (8, ..., 8,,—1)7is the vector of
regression parameters. In cases where ¢ is fixed, the
corresponding model is readily obtained by assuming ¢;
=¢p,i=1, ..., n, 6§ =38, and z = 1. In the following
section, we will consider SBGLMM in two cases and
intend to estimate the parameters involved in the
proposed model using the Bayesian approach. First, we
assume that the precision parameter is fixed and then
assume a linear structure for the varying precision
parameter as well.

Bayesian Estimation of the Model Parameters
Consider the spatial beta regression model given by

YilB, i ti~Beta(u;y, (1 — p)py), i =1, ...,m;

Tlu~N,(0,%,) 5

where v is the vector of structural parameters related
to the spatial covariance function and logit(y;) = x; +
T; = 1; as in (4). The precision parameter ¢; could be
fixed or varying. We will discuss both cases in turn.

In order to complete the Bayesian specification of the
spatial beta regression model, elicitation of prior
distributions for all unknown parameters is required.
Multivariate normal prior distributions are typically
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considered for the regression coefficients involved in
the mean model, i.e., we propose B~Np(0, EB), where
Zg is a diagonal matrix with large values of variances,
which provides a vague prior. In the Bayesian context, a
popular choice for the prior distribution of the variance
would be inverse gamma distribution. Since ¢ is the
precision parameter and inversely related to the variance
of the Beta distribution, it can be assumed that ¢ is
gamma distributed with small positive values of
parameters to avoid using an informative prior. In the
case of a varying dispersion parameter ¢; as in (2), we
have specified a convenient prior for fixed effects given
by 6~N,,(0,Z5), where Zgis a diagonal matrix with
large values of variance components.

We assume that the spatial dependence between two
geographical points is given by the exponential
correlation function i.e.,

P, ) = exp(=5) (©)

where ™! is the spatial range and d = |si —s]-|
denotes the distance between sample units i and j which
are sited at locations s; and s; respectively, for 7, j=1, ...,
n. Therefore () = oexp(—y~'d) and odescribe
the spatial variance. Thus, through this study we assume
thatv = (o2, ¢y 1).

In this paper, we focus our attention on the
exponential covariance function, which has been used in
various applications [20]. We have not yet investigated
the estimation and properties of Matern covariance
models [21], which include the exponential model as a
special case, and this issue needs further research. Note
that the wvariance component of the exponential
covariogram is called spatial variance and its inverse
will be called spatial precision in the following parts.

An inverse gamma distribution is set as prior for
spatial variance o2 which is a typical prior for variance
in the Bayesian context. The range parameter is
commonly given an inverse gamma or a bounded
uniform prior distribution. The bounded interval is
essential to avoid improper priors. Because using
improper prior distributions for the parameters of a GRF
without attention may result in improper posteriors,
[22].

The joint posterior distribution is obtained by
combining the likelihood function of beta distribution
(1) with the prior information. We now present the joint
posterior distribution for the varying precision
parameter model and omit the observable vectors x and
z in the notation since these are non-random and already
known. Let y = (yy,...,y,)T be the observed spatial
variable, under the assumption that the parameters
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Box-1

F(B.5.0.0% Atly) e ﬁf(yi 7.8, 5)1f[f(ri |B.a. 0 )% f(B)f (@) £ (0> | ) f(A)f(&).

B,8, c2and P~ tare prior independent, the joint posterior
density is given by

U ARINTS | (OILNR) | AV
X (B (@)W @)

Note that, in cases where the precision parameter ¢ is
constant, the posterior distribution is obtained by
replacing prior distributions of & with ¢. The joint
posterior distribution is complicated, so the Gibbs
sampler [23] can be utilized to generate samples from
the joint posterior density. The Gibbs sampler in this
context involves iteratively sampling from the full
conditional distributions, and this procedure is
implemented by means of a MCMC scheme.

Next, in order to evaluate the performances of the
specified priors, a simulation study for the fixed
precision parameter case was conducted. Outcomes of
the simulation study reveal that the above mentioned
inverse gamma and uniform priors for the spatial range
provide overestimation. Regarding this issue, we tried to
choose a prior distribution for the transformed
parameter. Suppose that the spatial range is the growing
amount of a quantity, this can be reduced by logarithm
transformation. Therefore a uniform distribution is
utilized as prior distribution for logarithm of the spatial
range according to [22]. Assuming that (! €
(0.01,10), then a bounded uniform prior on the
logarithm  of the range is given by
a = —Ln(y)~U(—4.5,2.3).

Implementing an inverse gamma prior for the spatial
variance led to a slight underestimation. Therefore we
tried to find another prior to achieve the desired
improvement in our estimation. Based on the idea of
using a prior distribution that has the property of rapid
growing values, we assume that o? is following an
exponential distribution, i.e., 62~exp(7). But there is no
clue about the value of A, so we set a hierarchical prior
and assume that A~N(0,02)I(0, ), where o2 takes
large values to have a non-informative prior. Note that
the truncated normal distribution was chosen due to the
support of the exponential distribution parameter.
Results of the simulation over these recent priors and
typical priors for spatial parameters will be presented
simultaneously in the next section.

Implementing the new proposed priors under the
assumption that the parameters 3,9, a, 0% and Aare
priori independent, the joint posterior density is given
by (Box-1).
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To deal with this complicated posterior distribution,
again the Gibbs sampler has been applied to generate
samples from the full conditional distributions which
are presented in Appendix I. Posterior inferences on
B,8,a,02 and A are readily obtained using WinBUGS
through the R2ZWinBUGS package [24] in R [25]. When
conditional distributions are nonstandard, it can’t
sample directly from them using Gibbs sampling.
Therefore, Metropolis-within-Gibbs  algorithm is
implemented by WinBUGS to sample from difficult full
conditional distributions.

Hypothesis  testing regarding the regression
coefficients and mean responses are also
straightforward. The program codes are available from
the authors wupon request. When the MCMC
implementation is applied to the simulated data (see the
Simulation Study section), the convergence of the
MCMC samples is assessed using standard tools within
WinBUGS such as trace plots and autocorrelation
function (ACF) plots, as well as the Gelman-Rubin [17]
convergence diagnostic.

Simulation Study
In this section, we study through some intensive

simulation experiments, the behavior of the Bayesian
estimators based on the square root of MSE and relative
bias. We performed the simulation of the spatial beta
regression model by assuming a GRF whose covariance
structure is given by (6) while incorporating different
scenarios for the spatial parameter. Consider the model

yilB, i, ti~Beta(uipy, (1 — ppy),  i=1,..
‘l,'|0'2, ¢_1~Nn (o, Zr):

n,

where B = (Bo,B1,B)" and log = (;£) =xip +

1

T; = 1;. The values of the covariates xy; and x,; were
generated from a uniform distribution on the unit
interval referring to [8], and we set, B= (-1,
2,—1.5)Tand $=50. On the other hand, we consider the
spatial variance 2 = 0.5 and different spatial range
settings; Y™t =0.1, 0.45 and 0.9. These values are
considered after an initial study of the spatial parameters
and we find out that the natural prior for the range
parameter overestimates the aimed parameter in the case
of spatial beta regression, so we attempt to estimate
small values of the range.

Additionally, we consider different settings for the
precision parameter ¢;, generating two possible models.
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Model 1: ¢p;=0,

Model 2: log(d;) = 8¢ + 61245

In order to evaluate our proposal priors, a simulation
study was conducted for two sets of priors, and
parameters of prior distributions were specified in a way
that would provide noninformative priors. Priors for
each scenario are defined as follow.

Set 1. Bi~N(0,100) for j=0,1,2,
$~Gamma(0.01,0.01) whereas for spatial parameter
we have o%|A~exp(A), A~N(0,03)1(0,0). We attempt
to find a prior for small values of the range and have our
aimed value for ¢~ lying in the (0.01, 10) interval,
therefore a = —Ln(Y)~U(—4.5, 2.3).

Set 2. Bi~N(0,100) for j=0,1,2,
¢b~Gamma(0.01,0.01) with spatial parameter given by
0~ 2~Gamma(0,0.01) and Yy~1~U(0.01, 10).

To illustrate the effect of sample size on Bayesian
estimators, we consider different locations defined on a
regularly spaced grid, which consist of [0,5]% [0,5], [0,
10]x[0, 10] and [0, 15] x [0, 15].

First, we study the model with a fixed precision
parameter (Model 1). For the generated data set of size
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225, we simulate one chain of size 100,000 for each
parameter, disregarding the first 50,000 iterations to
eliminate the effect of the initial values. Further, to
avoid correlation problems we considered spacing of
size 100. Thus we obtained an effective sample of size
500, and the posterior inference is based on this. The
chains are mixed slowly especially for the intercept of
the model,S,, so we need to consider more iterations for
smaller sample sizes to reach convergence.

Diagnostic tests of convergence were implemented
and there was no evidence of divergence of the chains.
To validate this assertion, we have used the multivariate
proportional reduction factor. Two chains with different
random initial values were generated simultaneously.
The resulted MPREF is equal to 1.02 which is lower than
1.2, indicating that the chains are convergent. Geweke's
statistics [26] also show the convergence of the results
of Gibbs samplers for each parameter. The reference
diagnostics were done using the Coda package in R.
Plots of autocorrelation in Figure 1 show independence
between distinct replication for estimating parameters.

Figure 2 displays another tool employed to assess the
Markov chain convergence on all parameters. Trace
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plots showed that the chains have a stable performance
around the true parameter value.

We computed the relative bias (RelBias) and the
square root of MSE (RMSE) for each parameter over
the 50 simulated samples. They are defined as

RelBias(6) = =352, (z—— 1) and RMSE(6) =
A
o 1
Lxw.6,-6)) "

Where 0 = (B, By, B2 P, 0% P~ Dand §; is the
posterior estimate of 0; for the ith sample. Table [1]
presents the summary results for the estimation of all
the parameters. It seems that the spatial variance is
overestimated or underestimated according to the first
and second sets of priors respectively. Nevertheless, it is
worth mentioning that using a hierarchical prior for
spatial variance, resulted in a reduction in the RelBias

and RMSE values when the sample size is increased.
Moreover, bounded uniform distribution on the
logarithm of the range resulted in proper estimates. This
prior has solved the problem of over estimation and has
also reduced the RelBias and RMSE in comparison with
uniform prior density, especially for small sample sizes.

Another important aspect that should be assessed is
the performance of the Bayesian estimators for other
values of the spatial range when the sample size is
small. The data generation scheme is similar to the
simulation study described above, whereas other values
for the range parameter are considered. Table 2
summarizes the numerical results of our simulation
study over a 5X5 lattice, where the RelBias and the
RMSE of the parameter estimators of Set 1 are smaller
than Set 2. Hence we can conclude that our method

Table 1. Estimates of the parameters of Model 1 for different priors and sample sizes

Prior Set 1 Prior Set 2
n Par. Value  Mean Bias Sd. RMSE Mean Bias Sd. RMSE
Bo -1 -1.043 0.043 0.191 0.442 -1.156 0.156 0.212 0.263
B 2 2.093 0.046 0.215 0.483 2225 0.112 0.219 0313
25 B2 -1.5 -1.542 0.028 0.219 0.472 -1.383 0.078 0.242 0.269
¢ 50 60.527 0.211 17.472 4.516 75.281 0.506 22.782 34.032
o? 0.5 0.724 0.449 0.323 0.627 0.503 0.006 0.542 0.541
-1 0.1 0.218 1.183 0.072 0.372 9.353 92.532 5.873 10.959
Bo -1 -0.912 0.088 0.167 0.189 -1.173 0.173 0.540 0.567
By 2 2.075 0.038 0.165 0.181 2.022 0.011 0.102 0.104
100 B2 -1.5 -1.528 0.019 0.121 0.124 -1.513 0.009 0.191 0.192
¢ 50 64.779 0.295 23.665 27.90 67.319 0.346 20.107 26.538
o? 0.5 0.685 0.370 0.235 0.298 0.311 0.376 0.242 0.306
-1 0.1 0.161 0.616 0.052 0.080 1.047 9.475 2.065 2272
Bo -1 -0.930 0.069 0.338 0.345 -0.922 0.077 0.382 0.389
B1 2 1.972 0.013 0.067 0.072 1.99 0.005 0.106 0.106
225 B -1.5 -1.486 0.01 0.111 0.112 -1.518 0.012 0.098 0.100
(0] 50 59.612 0.192 12.018 15.389 65.347 0.307 16.728 22.702
o? 0.5 0.579 0.159 0.130 0.152 0.376 0.246 0.205 0.239
-1 0.1 0.158 0.586 0.039 0.070 0.252 1.525 0.133 0.142
Table 2. Estimates of the parameters of Model 1 for different priors and different values of spatial range
Prior Set 1 Prior Set 2
Par. Value Mean Bias Sd. RMSE Mean Bias Sd. RMSE
Bo -1 -0.903 0.097 0.223 0.243 -1.696 0.131 0.166 0.257
B1 2 1.939 0.030 0.266 0.273 2.792 0.396 0.262 0.835
B2 -1.5 -1.568 0.045 0.218 0.228 -0.901 0.399 0.215 0.636
¢ 50 33.233 0.335 9.899 19.470 44.288 0.114 11.558 12.893
o? 0.5 0.637 0.273 0.263 0.296 0.123 0.754 0.059 0.382
Pt 0.45 0.361 0.199 0.166 0.188 14.046 30.213 3914 14.148
Bo -1 -0.814 0.186 0.282 0.338 -0.798 0.202 0.191 0.279
B1 2 1.532 0.234 0.359 0.590 1.932 0.034 0.177 0.190
B2 -1.5 -1.354 0.097 0.362 0.390 -1.713 0.142 0.247 0.326
0} 50 37.112 0.258 13.577 18.720 31.347 0.373 8.282 20.409
¢? 0.5 0.949 0.898 0.606 0.754 0.095 0.810 0.002 0.405
P! 0.9 0.819 0.091 0.330 0.340 22.303 22.477 3.804 21.690

179



Vol. 29 No. 2 Spring 2018

exhibits good performances in the estimation of the
range parameter.

To explore how Bayesian estimates are affected by
less informative priors, a sensitivity analysis was
conducted. So applying vague priors, we use the
following  elicitation =~ of  prior  distributions
Bj~N(0,1000) for j=0,1,2, $p~Gamma(0.001,0.001)
and A~N(0, 1000)1(0, ).

The results of this assessment are given in Table [3].
It can be observed that estimation of the parameters is
not significantly affected by the use of less informative
priors. In conclusion, the sensitivity analysis,
convergence tests, plots and results over the 50
simulated data sets indicate that our results are reliable
and can be applied to analyze real data sets when the
basic circumstances of the model are met.

After investigating Model 1, we expended
considerable effort to develop an SBGLMM model,
assuming that the precision parameter is not fixed and
then going on to examine different scenarios for
parameter estimation. Consider the spatial beta
regression model presented in (5) and suppose that
log(d;) = z;6. As mentioned before, in Model 2 we
have log(;) = 8, + 8,24;. Table 4 shows the outcomes
of our simulation study for Model 2 assuming
8;~N(0,100) for j = 0, 1 and a prior distribution for
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other parameters are the same as when assuming the
precision parameter is fixed. In this state, we consider
two samples in the regular grid, namely, 10 X10 and
15% 15, then RelBias and RMSE of each parameter are
computed over the 50 simulated samples.

From Table 4, we find out that 6, and 6; are not
estimated properly for the sample of size 100. In order
to obtain better estimates for these parameters, we
examine different priors such as non-informative
uniform prior distribution for each §;, and a zero mean t-
student distribution with large variance and 3 degrees of
freedom [27], i.e., we assume that 6;~t(0,100,3). Our
motivation to use these priors was implementing a flat
prior and a prior with heavier tails in comparison with
normal distribution in order to treat extreme values if
they exist. These suggested priors were not achieving
proper estimates, so for the sake of brevity, outcomes
are not presented here.

[8] utilized an exponential prior for degrees of
freedom in t-student distribution, while setting a
hierarchical prior for the random effect in the mixed
beta regression model. Borrowing this idea for fixed
effects, we assume a hierarchical prior for regression
coefficients, that is 8]-~t(0,100, gj) where ¢;~exp(0.1).
Considering these priors the joint posterior distribution
is given by (Box-2).

Table 3. Summary results of sensitive analysis for estimation of the parameters of Model 1

n=100 n =225
Par. Value Mean Bias Sd. RMSE Mean Bias Sd. RMSE
Bo -1 -0.830 0.170 0.337 0.377 -1.042 0.042 0.152 0.158
B1 2 2.067 0.033 0.161 0.175 2.040 0.020 0.125 0.132
B2 -1.5 -1.551 0.034 0.130 0.140 -1.509 0.006 0.123 0.123
() 50 90.146 0.803 39.974 56.654 80.184 0.604 39.184 49.462
o? 0.5 0.679 0.357 0.218 0.282 0.411 0.178 0.187 0.207
P! 0.1 0.364 2.643 0.213 0.340 0.192 0.923 0.087 0.127
Table 4. Estimates of the parameters of Model 2 for different priors and sample sizes
Prior Set 1 Prior Set 2
n Par. Value Mean Bias Sd. RMSE Mean Bias Sd. RMSE
Bo -1 -0.999 0.0004 0.241 0.240 -1.047 0.047 0.168 0.174
B 2 2.016 0.008 0.162 0.163 2.069 0.034 0.169 0.182
100 B -1.5 -1.463 0.025 0.187 0.191 -1.468 0.021 0.169 0.171
8o 4 5.819 0.454 3.080 3.577 6.154 0.538 2.278 3.135
6, -0.4 1.780 5.451 3.116 3.803 0.053 0.053 3.180 3.212
o? 0.5 0.463 0.072 0.235 0.237 0.382 0.234 0.325 0.345
-1 0.1 0.663 5.629 1.058 1.198 1.501 14.016 1.422 2.538
Bo -1 -0.701 0.299 0.245 0.387 -0.994 0.006 0.322 0.322
B 2 2.013 0.007 0.083 0.084 2.066 0.033 0.112 0.130
225 B -1.5 -1.525 0.016 0.080 0.084 -1.491 0.006 0.068 0.069
8o 4 4.013 0.003 0.282 0.283 4.385 0.096 0.493 0.626
61 -0.4 -0.390 0.026 0.406 0.406 -0.159 0.602 1.222 1.246
o? 0.5 0.510 0.020 0.224 0.224 0.402 0.196 0.078 0.125
Pt 0.1 0.188 0.880 0.083 0.121 0.234 1.340 0.092 0.163
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Box-2
f(ﬂ:é‘.-a,o':,/ﬂt,.’;,ﬂy)cc

[1/6: 1789 116, f.a.c’. % fB @

Posterior inference is made up by applying the Gibbs
sampling method on related full conditional
distributions. Since these latest prior distributions do not
work properly for the sample of sizes 100, only the
simulation results for n =225 are presented in Table [5].
Values of posterior mean, RelBias and RMSE indicate
that the suggested priors are able to estimate &
appropriately.

From Table 4 and 5, it can be seen that by applying
Normal, t-student and hierarchical t-student prior
distributions for 8, the obtained estimates are close to
the corresponding true values of the parameter. In
addition, RelBias and RMSE are relatively similar.
Therefore, it can be concluded that these prior
distributions do not make significant differences in
estimation of §. Accordingly, it is suggested to apply the
Normal distribution for the sake of simplicity. Finding a
suitable prior for regression coefficients of the precision
parameter model requires further research. The results
of the sensitivity analysis indicate that the proposed
priors can be used for estimation of the parameters
involved in an SBGLMM. Hence, these priors are
implied to analyze a real data set provided by HIES as
an application of our proposed model.

Application on HIES data

As an application, we consider the information
available from the Household Income and Expenditure
Survey (HIES) of Iran, which is an important survey to
provide information about national accounts. The HIES
aims to provide estimates of the average income and
expenditure for urban and rural households at provincial
and national levels. Making it possible to learn about the
households income, expenditure composition, and
distributional patterns, the information provided by
HIES has been applied to calculate poverty line and

DFAFEIDf()

study the impurity in household income and facilities.
The HIES has a three-stage cluster sampling method for
its survey which is conducted annually with a 0-5
rotating panel design and its target population includes
all private and collective settled households in urban
and rural areas. In a 0-5 rotating panel design, each
sampling unit remains in the sample for five sequential
surveys and then goes out of the survey forever. In order
to obtain more representative estimates of the whole
year, the samples are distributed across the months of
the year, so each month some samples are considered.
The working data set is a selected subset of the data for
Tehran provided by HIES. The dataset is not publicly
available due to the privacy policy of SCI but it is in
access from the corresponding author on a reasonable
request. The response variable is the proportion of
expenses spent on food to the total expenditure of a
house-hold during the reference month of sampling.
This proportion can be used for exploring the welfare
situation of households. We expect that our desired
response variable gets lower values for households with
a better economic status. The potentially useful
covariates provided by HIES questionnaire are the
Decile of Income (DI), the Household Size (HS), Area
of Housing Unit (AHU), Household Income (HI) and
Number of Employed Members of the household
(NEM). The Moran-I test showed significant spatial
dependency, so we adopted SBGLMM for modelling
the data. Figure [3] shows the spatial map of the
response variable in Tehran.

In order to extract the best subset of effective
covariates on the response variable, we proceed using
the backward elimination procedure starting by the full
model and at each step remove a non-significant
covariate until all remaining covariates are significant.
We initially suggest using the following full spatial

Table 5. Summary results of modelling both parameters of Beta density

t- student Hierarchical t-student
Par. Value Mean Bias Sd. RMSE Mean Bias Sd. RMSE
Bo -1 -0.921 -0.079 0.089 0.119 -0.846 -0.154 0.394 0.423
B1 2 2.105 0.052 0.083 0.133 1.996 -0.002 0.100 0.100
B> -1.5 -1.540 0.027 0.079 0.089 -1.501 0.001 0.132 0.132
8o 4 4.148 0.037 0.441 0.465 4.209 0.052 1.103 1.123
61 -0.4 -0.369 -0.076 0.730 0.731 -0.235 -0.413 1.325 1.335
o 0.5 0.204 -0.592 0.101 0.313 0.664 0.328 0.271 0.316
P! 0.1 0.434 3.336 0.219 0.399 0.111 0.115 0.065 0.066
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Box-3
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Full Model : log(L) =B, +BDI + B,HS, + B,AHU, + B, HI, + BNEM, +7,i = 1,..., 57

l_ﬂi
model (Box-3).

The Variance Inflation Factor (VIF) is calculated to
check the multicollinearity problem between the
regressors. The largest VIF value is 3.33(<5) when all
the assumed covariates are included in the model, so
there is no significant evidence of multicollinearity. As
mentioned in results of the simulation study, sensitive
analysis and convergence tests indicate that we can use
the proposed priors to analyze SBLGMM in small
sample sizes. So we use the same priors in the
application, i.e., p~N5(0,10%I5) and assume that the
precision parameter is fixed with
¢~Gamma(0.01,0.01). In addition, for the spatial
parameter, we have o?|A~exp(A), A~N(0,0%)I(0, ),
and a = —Ln(y)~U(—4.5,2.3).

To estimate the parameters, we burned-in 500,000 of
the 800,000 values of the chain considering spacing of
size 100. Thus, we have a total of 3,000 samples upon
which the posterior inference is based on. The following
model is the outcome of the backward elimination
procedure.

log (24--) = o + BuDIi + oS, + 7
i

To evaluate the effectiveness of including spatial
correlation structure in the study, we omit the spatial
random effect from the model in (7) and fit it again.

log (20 = Bo + BuDli + BoHS,
N

The deviance information criterion (DIC) is used for
evaluating the performance of the fitted models. The
DIC criteria for models (7) and (8) are -160.52 and -
138.007, respectively. So according to the DIC criteria,
the model containing the spatial random effect better fits
the data.

Table [6] shows the posterior mean and the 95%
credible  interval (CI)  for the B, ¢,0?,
and y~! parameters. It can be seen that the two
covariates household size and decile of income are
significant. Increasing household size results in
increasing the proportion of expenses spent on food to
the total expenditure of a household. By increasing the
decile of income the proportion will be reduced. It
means that households with more income allocate a
smaller proportion of their expenses to food in
comparison with households with a weaker economic

0.0461 0.3461
Figure 3. Spatial plot of response variable in Tehran city
Table 6. Parameter estimates, Sd. and 95% CI for Model Step 4
Par. Estimates Sd. 95%CI
Bo -1.574 0.627 (-3.255,-0.556)
B1 -0.165 0.075 (-0.317,-0.019)
B> 0.172 0.061 (0.058, 0.293)
¢ 69.94 26.87 (33.48, 139.2)
o? 1.496 4.808 (0.079, 9.695)
-1 5.282 6.475 (0.109, 24.68)
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status.

It is important to note that adding spatial effect is
necessary to study the response variable. Because
ignoring the spatial correlation results in increasing the
DIC value, it means that if the spatial dependency of the
response variable is neglected, the model is not well
fitted.

Results and Discussion

In cases of working with spatially correlated data,
this property should be considered in the data analysis
to prevent arriving at misleading results. Our proposed
SBGLMM is applicable when the spatial response
variable is beta distributed. The reparametrized beta
distribution has two parameters namely, the mean and
the precision parameter. We consider SBGLMM in two
situations. First, we assumed that the precision
parameter is fixed and then the model was extended for
a varying precision parameter status. The spatial
correlation structure was included in the model using a
random effect in the mean model. After doing an initial
study and realizing that typical priors in the Bayesian
context are unable to estimate small values of the spatial
range parameter, we made an effort to find a suitable
prior for this parameter. To analyze the sensitivity of
priors, an intensive simulation study carried out upon
which the proper values of hyper parameters were
assigned. The Bayesian approach was applied to
estimate the parameters involved in the proposed model.
As the posterior distribution is complicated, the Gibbs
sampler was run to fit the model using MCMC scheme,
while facing slow mixing chains. The further inference
was performed considering convergence tests and
graphical diagnostic tools. Outcomes of intensive
simulation studies over different sample sizes  and
results of sensitivity analysis, demonstrated that
parameter estimations are reliable based on the
proposed priors which are working properly, especially
for small values of spatial range even for small sample
sizes.

Additionally, we targeted to fit a model while a
varying precision parameter is supposed. The linear
pattern including fixed effects is assumed for the
precision parameter. Finding proper priors for these
regression coefficients was challenging and time
consuming. Although Normal prior distribution does not
provide appropriate estimates for the regression
coefficients when the sample size is small, results of
simulations confirm that Normal prior distribution is
able to estimate regression parameters of the precision
model when the sample size is increased.

SBGLMM provides us with a wuseful tool for
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modelling spatially correlated rates and proportions
which are common in many areas such as official
statistics. As an application, we used our model to study
HIES data in Tehran, the capital of Iran. The results
show that the proportion of expenses spent on food in a
household is affected by decile of income and
household size. It is worth to mention that due to the
spatial dependency of the response variable, adding the
spatial effect to the model yielded to get better results.

There is a wide vicinity for future work on this issue.
For instance, this can be carried out by extending the
models including some other random effects, working
on other spatial correlation structures, or studying
spatiotemporal issues.
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