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Abstract 

Optimization of the complete manufacturing and supply process has become a 
critical ingredient for gaining a competitive advantage. This article provides a 
unified mathematical framework for modeling manufacturing cell configuration and 
raw material supplier selection in a two-level supply chain network. The commonly 
used manufacturing design parameters along with supplier selection and a 
subcontracting approach are incorporated into our mathematical model. To the 
authors’ knowledge, there is no single model which integrates all of these attributes 
simultaneously. A sensitivity analysis is also performed to study the effects of this 
integration. An efficient meta-heuristic based on Genetic Algorithm (GA) search 
procedure is employed to effectively solve the model in medium and large scales. 
We improve the GA search mechanism by proper combination of linear 
programming optimization technique and GA in a cooperative framework. 
Computational results show that our hybrid solution technique can find satisfactory 
solutions in a timely manner. 
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Introduction 

Group Technology (GT) is an innovative theory in management that 
attempts to solve the trade-off between efficiency and flexibility of a 
system by decomposing it into smaller easily manageable subsystems. 
Cellular Manufacturing System (CMS) is known as the most 
important derivative of the GT principles in industrial applications. 
Wemmerlov and Johnson (1997) discussed the reasons for the creation 
of manufacturing cells. The main reasons are lower throughput time, 
work in process inventory, response time to customer order, higher 
manufacturing flexibility, better quality, supervision and utilization of 
resources. 

Typically, the CMS design includes four stages of cell formation, 
group layout, group scheduling, and resource allocation. For more 
information and detailed review, one can refer to Wu et al. (2007). In 
this article, we concentrate on the first stage in the design of a CMS 
that is cell formation and due to its direct impact on the establishment 
of an effective CMS, has been a topic with considerable amount of 
research in the related literature. At the conceptual level, cell 
formation deals with clustering machines and parts into machine cells 
and part families and its primary goal is to form independent 
manufacturing cells. In the last decades, many different 
procedures have been employed to tackle the Cell Formation Problem 
(CFP). An overview and discussion on some of these procedures can 
be found in Papaioannou and Wilson (2010). Mathematical 
programming models and methods are powerful tools to formulate and 
solve the CFP and its variants. However, since the CFP is known as 
NP-hard problem, the exact solution approaches are not able to find 
effective solutions in a timely manner for real-size problems. Thanks 
to the ability to cope with the complexity of this type, meta-heuristic 
algorithms are more suitable approaches to solve larger CFPs. 

Supplier selection is an extremely critical decision for purchase 
managers, since appropriate selection of suppliers can considerably 
reduce the purchase cost and strengthen corporate competitiveness. 
Production system design and component supplier selection were 
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being considered as two separate decisions for several decades until 
the requirements have been identified recently for an integrated 
approach. Integrating production and supply functions facilitates 
comprehensive and accurate decision-making process. Generally, the 
competitive advantage for a company can only be obtained by 
simultaneous optimization of functions that are in logical association 
with each other. Successful integration of CMS design and supplier 
selection related issues addresses the cell formation to obtain optimal 
or effective solutions in view of corporate overall operation. As 
reported in Paydar et al., (2014), simultaneous consideration of 
cellular manufacturing and supplier selection will lower production 
cost while keeping procurement cost low, and it also provides a rapid 
response for customer orders. 

Exact methods and heuristics (i.e., in particular meta-heuristics) 
have been usually regarded as two independent approaches. In this 
article, we develop a scheme for hybridizing an exact method based 
on Linear Programming (LP) with a nature-inspired meta-heuristic, 
Genetic Algorithm (GA), for solving the integrated cell formation and 
supplier selection problem. GA is a stochastic global search technique 
which mimics the mechanism of the evolution of living beings, that is 
natural selection, inheritance and variation. Each individual is 
interpreted as a viable solution for the problem at hand. GA selects the 
best individuals in each generation and combines them to create a new 
population. Two major problems arise when GA is used to solve 
optimization problems with continuous decision variables. The first 
problem is the generation of a high proportion of infeasible solutions 
in the initial population and evolutionary stages which considerably 
slows down the optimization process. The second problem is that 
since GA searches the continuous intervals completely to find the best 
value, it does not guarantee the quality of the final solution. On the 
other hand, LP is the most preferred method to search inside the 
continuous spaces. One of the initial assumptions of LP is divisibility 
in which the values of decision variables can be fractions. The synergy 
effect provided by the integration and cooperation of LP and GA, can 
facilitate the search process. As a matter of fact, when optimization 
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problem involves both discrete and continuous variables, the search 
space can be divided into two subspaces, corresponding to the two 
kinds of decision variables. In this framework, the LP embedded GA 
can be structured in such a manner that GA searches within the 
subspace of discrete variables and the LP searches over the continuous 
subspace. 

In the presented paper, a unified mathematical model for 
integrating manufacturing cell configuration and raw material supplier 
selection in a two-level Supply Chain (SC) network with an extensive 
coverage of important design attributes is presented. An efficient 
hybrid solution approach is also proposed to effectively solve the 
model. The aim of our hybrid approach is to join the strength of GA 
search procedure and LP optimization technique in a cooperative 
framework. The main contributions of this research are as follows: 

- We propose a new unified mathematical model for the 
generalized CFP and supplier selection in CMS. 

- We consider various design attributes including alternative 
process routings, operation sequences, part demands, processing 
times, machine capacity, machine duplication, etcetera, and a 
subcontracting approach. 

- We use the top three indicators for supplier selection (i.e., quality, 
delivery and purchase price) in our integrated model. 

- We utilize LP within GA framework in order to create an 
advanced search procedure. 

Literature Review 

Conventional approaches of the cell formation seek to find machine 
clusters and part families based on a 0-1 machine-
part incidence matrix. Many researchers addressed the CFP using this 
binary input data. Of them, Mahdavi et al. (2009) proposed a 
mathematical model and a GA for the CFP based on the cell 
utilization concept. Paydar and Saidi-Mehrabad (2013) formulated a 
fractional (linear) model to the CFP to maximize the grouping efficacy 
in case the number of cells is not predetermined. Noktehdan et al. 
(2016) presented a league championship algorithm for the CFP based 
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on grouping efficacy and provided a real-world industrial case. 

It is very important to take into account the production design 
factors for modeling and simulating the real factory situation. 
However, it may increase the model complexity and consequently the 
computation time. Jayaswal and Adil (2004) incorporated operation 
sequence in their mathematical model for the CFP with alternative 
routings, cell size constraints, production volume, and machine 
redundancy considerations. Wu et al. (2009) developed a hybrid 
algorithm employing the Simulated Annealing (SA), together with the 
GA mutation operator for the design of cell configuration in which 
multiple process routings for parts can be planned. Rabbani et al. 
(2017) presented a new mathematical model for the CFP considering 
different design parameters such as inventory, subcontracting and 
especially backorder. They used GA and discrete particle swarm 
optimization techniques to manage the complexity of the model. 

Rao and Mohanty (2003) identified the necessity of integrating 
manufacturing systems and SC system. They noted that the traditional 
sequential procedure for making CMS strategic decisions and CMS 
design decisions results in sub-optimal SC designs. Schaller (2008) 
developed a mathematical model and a TS procedure for the 
integrated SC and cell design problem. Saxena and Jain (2012) 
suggested an integrated model of dynamic CMS and SC design that 
can be customized individually or in combination for operational, 
tactical and strategic decisions. Paydar and Saidi-Mehrabad (2015) 
developed a bi-objective possibilistic programming model which 
incorporates dynamic virtual CFP and SC. They also provided a case 
study which illustrates the applicability of the model. Alaei and 
Davoudpour (2016) applied a revised multi-choice goal programming 
for the integrated virtual CMS and SC design. They mainly considered 
location-allocation decisions and multi-period production planning 
under demand and capacity uncertainties. In another work, Alaei and 
Davoudpour (2017) developed a robust optimization model for SC-
CMS management. The objective considered in their study includes 
the total cost of SC design, exceptional elements and labor salary. 

Supplier selection has become a crucial part of SC management. 
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Although several studies have been carried out on the quantitative 
modeling for supplier selection in production systems, little attention 
was given so far to supplier selection in CMSs. Benhalla et al. (2011) 
proposed a single-period integrated mixed-integer non-linear model 
for supplier selection and multiple plant CMS design on active 
factories. They also provided several numerical examples to illustrate 
the cost-effectiveness of the integrated model. Paydar et al. (2014) 
developed a robust optimization model to integrate cell formation, 
machine layout, and supplier selection. The objective function of their 
model is to minimize the total cost of intracellular and intercellular 
movements, machinery, inventory, and procurement. Heydari et al. 
(2017) developed a unified fuzzy mixed-integer LP model to make the 
cell formation and supplier selection decisions simultaneously. They 
investigated the relationship between production and purchasing 
functions in CMS with respect to product quality considerations and 
the fuzzy nature of defect rate and demand data. Table 1 presents a 
summary of previous studies in the area of SC-CMS design. 

Whereas previous studies on the integration of CMS with supplier 
selection have focused on the utility of this integration, presented 
approaches suffer from a large number of constraints and decision 
variables which limit the application of these approaches only to some 
small cases. In this article, we fill this gap by designing a hybrid meta-
heuristic based on GA and LP for solving large-scale industrial cases. 
Different from previous studies on the problem formulation, we 
additionally consider more manufacturing and supply attributes to 
increase its applicability. 

Problem Hypotheses and Mathematical Model 

Hypotheses 

Consider a two-echelon SC with two or more competing suppliers and 
one manufacturer. The integrated approach is considered for 
concurrently making the cell formation and supplier selection decisions; 
thus, we are faced with two implicitly interrelated decisions including: 
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Table 1.A summary of Related Literature 

Study CMS decision(s) SC decision(s)
objective 

function(s) 
Solving method 

Schaller (2008) cell configuration

multi-plant 
location + 

multi-market 
allocation 

Min. total cost 
Meta-heuristic 

(TS) 

Benhalla et al. 
(2011) 

cell configuration 
+ routing selection

supplier 
selection 

Min. total cost 
Mathematical 
programming 

(branch and cut) 

Paydar et al. 
(2014) 

cell configuration 
+ machine layout

supplier 
selection 

Min. total cost 

Mathematical 
programming 

(robust 
optimization) 

Paydar and 
Saidi-Mehrabad 

(2015) 
cell configuration

supplier 
selection + 

multi-market 
allocation 

1. Min. total cost

2. Min total value 
of 

grouping efficacy

Mathematical 
programming 
(revised multi-

choice goal 
programming) 

Aalaei and 
Davoudpour 

(2016) 

cell configuration 
+ subcontracting 

+ labor 
assignment 

multi-plant 
location + 

multi-market 
allocation 

Min. total cost 

Mathematical 
programming 

(Benders’ 
decomposition) 

Aalaei and 
Davoudpour 

(2016) 

cell configuration 
+ subcontracting 

+ labor 
assignment 

multi-plant 
location + 

multi-market 
allocation 

1. Min. total cost

2. Min. 
exceptional 

elements 

Mathematical 
programming 
(revised multi-

choice goal 
programming) 

Aalaei and 
Davoudpour 

(2017) 

cell configuration 
+ labor 

assignment 

multi-plant 
location + 

multi-market 
allocation 

Min. total cost 

Mathematical 
programming 

(robust 
optimization) 

Heydari et al. 
(2017) 

cell configuration 
+ routing selection 

+ lot sizing 
optimization with 

part quality 
consideration 

supplier 
selection 

Min. total cost 

 

Fuzzy 
mathematical 
programming 

This paper 
cell configuration 
+ routing selection 
+ subcontracting 

supplier 
selection 
(single 

sourcing 
strategy) 

Min. total cost 
Hybrid meta-

heuristic (GA-LP) 
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Supplier selection 

At the first echelon, there are a number of component suppliers for 
each type of required items. The manufacturer as a buyer has pre-
evaluated all suppliers according to various criteria such as 
management and strategy, financial status, performance history, 
geographical location, capacity, etcetera, and now needs to further 
assess the qualified suppliers for ultimate selection based on 
quantitative criteria including quality, delivery, and purchase price. 

Close working with a few good suppliers yields an effective 
purchasing function (Akinc, 1993). It is recommended that a single 
supplier should be selected to make a long-term supplier-manufacturer 
relationship and enhance the service quality (Qi, 2007). For this 
purpose, the single sourcing strategy is employed by purchasing 
department. Treleven and Schweikhart (1988) defined the single 
sourcing as the complete fulfillment of all corporate requirements for 
a particular raw material from one supplier by choice. In this manner, 
the purchase managers should decide for each component type, which 
supplier is the best choice to supply whole of the required items. 

Cell formation design 

At the second echelon, there is one manufacturer with cellular layout 
consisting of a number of multi-purpose machines with limited 
capacities that should be placed in a pre-determined number of 
manufacturing cells for processing required operations of a number of 
parts. The demand is constant and predefined. Machines can be 
replicated. The maximum and minimum cell sizes are given in terms 
of number of machines. The required operations of a part can be 
processed on different routings with different time and cost values. 
Subcontracting approach can be used as a tool to reduce machine 
unused capacity and unit product cost. In subcontracting, some of the 
required final products are provided from the outside of the 
manufacturing company to meet the market demand. However, in 
order to develop in-house skills and to cope with intrinsic constraints 
on subcontracting (i.e., unfulfilled orders, poor quality products, 
decreasing compatibility of innovation, etc.) management determines 
an upper bound for quantities of parts to be subcontracted. 
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Mathematical Model 

The integrated problem is formulated as an effective non-linear 
mixed-integer programming model to make the cell formation and 
supplier selection decisions concurrently. 

Indexing sets 

C Cell index, c = 1, 2, …, C 
M Machine index, m = 1, 2, …, M 
P Part index, p = 1, 2, …, P 
O Operation index, o = 1, 2, …, Op 
T Component index, t = 1, 2, …, T 
S Supplier index, s = 1, 2, …, St 
 

Parameters 

Dp Demand of part type p. 
aopm 1, if oth operation of part p can be processed on machine m; 

0, otherwise. 
PTopm Time to process the oth operation of part p on machine m. 
SCp Subcontracting cost per part p. 
ACm Acquisition cost of machine m. 
OCm Operating cost of machine m per unit time. 
TCm Time capacity of one unit of machine m. 
IMCp Intercellular material handling cost per unit of part p. 
AMCp Intracellular material handling cost per unit of part p 
LSc Lower size limit for cell c. 
USc Upper size limit for cell c. 
UBp Upper bound for subcontracting proportion of part type p. 
CRtp Consumption rate of component t for producing one unit of 

part type p. 
FCst Fixed cost of selecting sth supplier of component t. 
PCst Unit sale price of sth supplier of component t. 
RRst Reject rate of sth supplier of component t. 
LDst Lead time delay for sth supplier of component t. 
UPCt Unit penalty cost for quality deficiency of component t. 
UDCt Unit delay cost of component t. 

 
Decision variables 

Nmc Number of machines type m assigned to cell c. 
Zopmc 1, if oth operation of part p can be processed on machine m 
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in cell c; 0, otherwise. 
Vst 1, if sth supplier of component t is selected; 0, otherwise. 
xp Proportion of the total demand of part type p to be 

produced inside the manufacturing plant (i.e., xp.Dp shows 
the production volume of part type p). 

yt Procurement quantity of component t. 
Objective function and constraints 

Minimize OF= 
pOC M C M P

m mc m opm p p opmc
c=1 m =1 c=1 m =1 p=1 o=1

A C × N + OC × PT × x × D × Z   

pO -1C P M M

p p p o+1, pmc opmc
c=1 p=1 o=1 m =1 m =1

1
+ × IM C × x × D × Z - Z

2    
 

pO -1C P M

p p p o+1,pmc opmc
c=1 p=1 o=1 m=1

M M

o+1,pmc opmc
m=1 m=1

1
+ × AMC × x × D × ( Z - Z -

2

Z - Z )

 

 
 

t tS SP T T

p p p st st st t st
p=1 t =1 s=1 t =1 s=1

+ SC × (1 - x ) × D + FC ×V + PC × y ×V  
 

(1)
t tS ST T

st t t st st t t st
t=1 s=1 t=1 s=1

+ RR ×UPC × y ×V + LD ×UDC × y ×V 
 

 
Subject to: 

pOP

opm p p opmc m mc
p=1 o=1

PT × x × D × Z TC × N
 

m,c  

 
(2) 

M

mc c
m=1

N LS  
 

c  
 

(3) 

M

mc c
m=1

N US  
 

c  
 

(4) 

C M

opm opmc
c=1 m=1

a × Z = 1  
 

o, p  
 

(5) 
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opmc opmZ a  o, p,m,c  (6) 

p p1 - x UB  p  (7) 

tS P

t st st tp p p
s =1 p=1

y ×V × (1 - R R ) = CR × x × D   
 

t  
 

(8) 

tS

st
s=1

V = 1  
 

t  
 

(9) 

 mcN 0,1,2,3,...  m,c  (10) 

 opmc stZ ,V 0,1  o, p,m,c  (11) 

px 1  p  (12) 

p tx , y 0  p,t  (13) 

 
The objective function given in Equation (1) seeks to minimize 

machine acquisition cost, machine operating cost, intercellular 
movements cost, intracellular material handling cost, final product 
subcontracting cost, component supplier selection fixed cost, 
component procurement cost, component quality deficiency penalty 
cost, and component lead time delay penalty cost, respectively. 
Constraint (2) guarantees that the time capacity of a machine in a cell 
does not exceed the upper bound. Constraints (3) and (4) specify the 
minimum and maximum cell sizes according to the user defined lower 
and upper bounds. Equation (5) ensures that a specific operation of a 
part is processed on just one machine in one cell. Constraint (6) 
ensures that each part operation is assigned to a machine only when 
this machine can process the corresponding job. Constraint (7) 
guarantees that the proportion of total demand of each part type which 
is subcontracted does not exceed the pre-determined upper bound. 
Equation (8) is related to the quantity of components of each type with 
desirable quality that should be procured. Equation (9) allocates each 
component type to only one supplier. Finally, constraints (10)-(13) 
denote the decision variables types. 
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Linearized model 

Although, off-the-shelf optimization software packages have an ability 
to solve complicated non-linear mathematical programming models, 
in some cases, converge to local optimal solutions. Moreover, there 
are difficulties to solve the problems of this type, in a reasonable 
amount of computational time. Therefore, to ensure that the global 
optima will be reliably discovered, linearization is necessary. The 
second, seventh, eighth, and ninth terms of the objective function and 
the Constraints (2) and (8) because of being the product of decision 
variables and also third and fourth terms of the objective function 
because of the existence of absolute expression and multiplication to 
another decision variable are cases in which the proposed model is 
non-linear. To linearize the second term of the objective function and 

Constraint (2), the product terms p opmcx × Z  are rewritten by: 

p opmc opmcx × Z = w  
(13) 

Moreover, these auxiliary constraints are added: 

opmc p opmcw x + Z -1  
o, p,m,c  (14) 

opmc pw x  
o, p,m,c  (15) 

opmc opmcw Z  
o, p,m,c  (16) 

Such that wopmc is a non-negative variable. 
Similarly, the seventh, eighth, ninth terms of the objective function 

and Constraint (8) can be linearized by introducing non-negative 
variable ust. The transformation equation is as follows: 

t st sty ×V = u  (17) 

Where the following new constraints are added: 

st t stu y +BPN ×V - BPN  
s,t  (18) 

st tu y  
s,t  (19) 

st stu BPN ×V  
s,t  (20) 

The Constraint (5) and the binary nature of decision variable zopmc 
confine the absolute expressions to take a binary value. Hence, to 
linearize the third term of the objective function, at the first step we 
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introduce a binary variable 1
opcz  where the transformation equation is 

as follows: 
M M

1
o+1,pmc opmc opc

m=1 m=1

Z - Z = Z 
 
(21) 

Moreover, the following auxiliary constraints are added: 
M M

1
o+1, pmc opmc opc

m =1 m =1

Z - Z Z 
 

 
o, p,c  

 
(22) 

M M
1

o+1, pmc opmc opc
m =1 m =1

- Z + Z Z 
 

 
o, p,c  

 
(23) 

Next, to transform the product term 1
p opcx × Z  we introduce the 

following continuous variable: 
1 1

p opc opcx × Z = k  
(24) 

Where the below sets of constraints are added: 
1 1
opc p opck x + Z  

o, p,c  (25) 

1
opc pk x o, p,c  (26) 

1 1
opc opck Z  

o, p,c  (27) 

To linearize the fourth term of the objective function, at the 
beginning, the mentioned term should be segregated as follows: 

pO -1C P M

p p o+1,pmc opmc
c=1 p=1 o=1 m=1

1
× AMC × x × ( Z - Z )

2  
 

pO -1C P M M

p p o+1,pmc opmc
c=1 p=1 o=1 m=1 m=1

1
- × AMC × x × ( Z - Z )

2     

(28) 

pO -1C P M

p p o+1,pmc opmc
c=1 p=1 o=1 m=1

1
= × AMC × x × Z - Z

2 
 

pO -1C P M M

p p o+1,pmc opmc
c=1 p=1 o=1 m=1 m=1

1
- × AMC × x × ( Z - Z )

2     
(29) 
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Linearization procedure for the second term of (29) is similar to the 
third term of the objective function as mentioned above. To linearize 

the first term of (29) we define a binary variable 2
opmcZ  as follows: 

2
o+1,pmc opmc opmcZ - Z = Z

 
(30) 

Where the following constraints are added: 
2

o+1,pmc opmc opmcZ - Z Z  
o, p,m,c  (31) 

2
o+1,pmc opmc opmc-Z + Z Z  

o, p,m,c  (32) 

Then we introduce the following continuous variable: 
2 2

p opmc opmcx × Z = k  
(33) 

Where the below constraints are added: 
2 2

opmc p opmck x + Z  
o, p,m,c  (34) 

2
opmc pk x o, p,m,c  (35) 

2 2
opmc opmck Z  

o, p,m,c  (36) 

Numerical Illustration with Global Optimization Experience 

To validate the proposed mathematical model a comprehensive 
numerical example is solved by branch-and-cut method using GAMS 
software CPLEX 12 solver on a PC including an Intel® Core™ i7 
@2.40 GHz CPU and 8 GB of RAM. This example consists of five 
part types, five machine types and five component types in which for 
each component type there are at most five suppliers. Each part has 
three operations. All parts’ operations are processed in three fairly 
independent manufacturing cells with the lower size of 2 and the 
upper size 7. In addition, the upper bound of subcontracting 
proportion of total demand is considered equal to 0.5 for each part 
type. Other input parameters are in Tables 2 to 4. The last four 
columns of Table 2 contain unit intracellular movement, intercellular 
movement, and subcontracting costs and also the demand volume of 
each part that is shown in the last column. In this table, the last three 
rows show the machine acquisition cost, machine operating cost, and 
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machine time capacity in hours, respectively. The required processing 
time for each part operation on eligible machines is also given in 
Table 2. For example, consider the first operation of Part Type 1 that 
can be processed either on Machine Type 1 in 0.54 h or on Machine 
Type 5 in 0.45 h. 

Table 3 presents the bill of material identifying the consumption 
rate of each component type in one unit of each part type. Table 4 
shows the suppliers’ information including the fixed cost of supplier 
selection, procurement and transportation cost, reject rate and lead 
time delay for each component type presented by each supplier. 
Moreover, the unit quality deficiency and lead time delay penalty 
costs for all of the component types are assumed to be equal to 9 and 
3, respectively. 

After linearization, this model consists of 1075 variables under the 
considered example; 535 of them are discrete variables. Moreover, the 
corresponding number of constraints is equal to 2391. The output of 
software is in Tables 5 and 6, and the optimal objective function value 
is 219999.8. The cell configuration is shown in Table 5. 
Manufacturing cells are specified as rectangular shapes and the 
numbers within cells represent the required operations of parts as 
numbered. For example, Operation 1 of Part Type 3 must be 
processed by Machine Type 4 in Cell 3, Operation 2 by Machine Type 
2 in Cell 2, and Operation 3 by Machine Type 1 in Cell 2, 
respectively. Therefore, producing one unit of Part Type 3 inside the 
manufacturing plant requires one intercellular movement and one 
intracellular movement. As is clear from Table 5, Cell 1 consists of 
two units of Machine Type 4 and one unit of Machine Types 3 and 5. 
The demand of Part Type 2 is entirely satisfied by internal production 
in Cell 1 and the demand of Part Type 4 is satisfied partially by 
internal production in Cell 1 and partially by subcontracting. Cell 2 
includes one quantity of Machine Types 1, 2, 5. Part Type 5 entirely 
and Part Type 3 partially are allocated to this manufacturing cell. 
Finally, 641 units of total demand of Part Type 1 are allocated to Cell 
3 including one quantity of Machine Types 2, 4, 5 and remained 59 
units are subcontracted. 
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Table 2.Machine and Part Information 

Part Operation 
Machine 

AMCp IMCp SCp Dp 
M1 M2 M3 M4 M5 

P1 Opr1 0.54    0.45 2 5 77 700 

 Opr2  0.67        

 Opr3   0.50 0.31      

P2 Opr1    0.95  2 5 69 650 

 Opr2 0.40    0.30     

 Opr3   0.32  0.63     

P3 Opr1    0.67  2 5 65 600 

 Opr2  0.42 0.20  0.50     

 Opr3 0.35         

P4 Opr1 0.47  0.35   2 5 61 650 

 Opr2  0.74   0.54     

 Opr3  0.60  0.60      

P5 Opr1  0.18    2 5 73 700 

 Opr2 0.25 0.55  0.33      

 Opr3    0.9 0.60     

ACm  250
0 

240
0 

230
0 

2500 260
0 

    

OCm  8 6 7 8 7     

TCm(h)  400 430 410 450 420     
 

Table 3.Bill of Material 

   Component    

  T1 T2 T3 T4 T5 

Part P1  2  0  1  0   1 

 P2  0  2  0  0  1 

 P3  0  2  1  2  0 

 P4  0  1  0  2  1 

 P5  2  0  2  0  0 
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Table 4 .Supplier Information 

Component Supplier FCst PCst RRst LDst 

T1 S1 750 5 0.20 3 

 S2 800 7 0.13 2 

 S3 640 8 0.10 1 

 S4 700 7 0.17 1 

T2 S1 700 4 0.15 3 

 S2 950 7 0.10 1 

 S3 800 10 0.10 0 

 S4 750 5.5 0.12 2 

 S5 850 5 0.10 2 

T3 S1 900 4.5 0.11 0 

 S2 850 5 0.12 0 

 S3 720 2.5 0.20 2 

 S4 800 2.5 0.19 2 

 S5 790 3 0.15 1 

T4 S1 800 4 0.10 1 

 S2 770 6.5 0.13 0 

 S3 950 3 0.15 3 

T5 S1 650 4.5 0.19 2 

 S2 860 7 0.17 1 
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Table 5.Optimal Cell Formation 

  

Machine type (quantity) 

Part 

 P2 P4 P3 P5 P1 

 

C
el

l1
 M3 (1) 3 1    

M4 (2) 1 3    

M5 (1) 2 2    

 

C
el

l2
 M1 (1)   3 2  

M2 (1)   2 1  

M5 (1)    3  

 

C
el

l3
 

M2 (1)     2 

M4 (1)   1  3 

M5 (1)     1 

 Internal production 650 416 300 700 641 

 

 

Subcontracting ̶ 234 300 ̶ 59 

 

Table 6.Optimal Procurement Decision 

Component T1 T2 T3 T4 T5 

Selected supplier S3 S3 S1 S1 S2 

Procurement quantity 2981 2574 2631 1592 2058 

 
Table 6 represents the optimal procurement decision in the 

proposed integrated mathematical model. For instance, 2631 units of 
component Type 3 are required that all of them are provided by the 
first supplier of this component. 

In order to demonstrate the effects of incorporating supplier selection 
into CMS decisions, a comparative analysis is made. To this end, the 
proposed example is solved according to the conventional two-phase 
procedure in which at the first phase, optimal cell configuration is 
determined and then at the second phase, suppliers are selected on the 
basis of the obtained cell formation. Comparing Tables 5 and 7 reveals 
the differences between the proposed integrated approach and the 
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conventional two-phase procedure from the perspective of optimal cell 
configuration. For example, the demand of Part Type 1 in the integrated 
approach is satisfied partially by internal production in Cell 3 and 
partially by subcontracting. However, Part Type 1 in the conventional 
two-phase procedure is assigned to Cell 1 along with Part Type 2 and it 
also requires one intercellular movement. Cell 3 includes one quantity 
of Machine Types 2, 4, 5 in the integrated approach. However, in the 
conventional two-phase procedure Cell 3 includes one quantity of 
Machine Type 3 and two quantities of machine Type 2. The results also 
show that the total cost corresponding to the proposed integrated 
approach accompany by nearly 2.01% cost saving as compared with the 
conventional two-phase procedure. In systems of such size, even a 
small percentage reduction in total cost by applying an integrated 
approach can be valuable for the overall competitiveness. 

Table 7.Optimal Cell Formation in the Conventional Two-Phase Procedure 

  

Machine type (quantity) 

Part 

 P2 P1 P3 P5 P4 

 

C
el

l1
 M3 (1) 3     

M4 (2) 1 3    

M5 (1) 2     

 

C
el

l2
 M1 (1)   3 2  

M2 (2)  2 2 1  

M4 (1)   1   

 M5(2)  1  3  

 

C
el

l3
 

M2 (2)     2, 3 

M3 (1)     1 

 Internal production 650 700 600 700 641 

 

 

Subcontracting ̶ ̶ ̶ ̶ 9 
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The Suggested Hybrid Solution Approach 

The algorithmic steps of LP embedded GA are represented in the flow 
chart given in Figure 1. Moreover, the detailed description of the main 
components for implementing LP embedded GA, as a solution 
approach to the integrated cell formation and supplier selection 
problem, is proposed in the following. 

Solution Representation 

The first stage in any GA implementation is to design a suitable 
chromosomal structure. Each chromosome is a string of genes taken 
from a predefined alphabet. In the case of the integrated problem 
under consideration, the chromosome structure consists of three 
sections corresponding to the discrete decision variables Nmc, Zopmc 
and Vst. Figure 2 illustrates the schematic structure of chromosomes 
for the proposed numerical example. In this figure, the first section, 
labeled “Cells”, specifies the machine configuration. For example, the 
term of N52 = 3 means that the number of Machine Type 5 in Cell 2 is 
equal to 3. The second section, labeled “Parts”, indicates the operation 
assignment of the parts to manufacturing cells and also to machines. 
For example, the term of CI31 = 3 means that Operation 3 of Part Type 
1 is assigned to Cell 3. The gene related to the assignment of an 
operation of a part to a machine type is named MIop. For example, the 
term of MI31 = 4 means that Operation 3 of Part Type 1 is assigned to 
Machine Type 4. In order to avoid infeasible solutions, the machine 
assigned to process a specified operation should be a member of 
machines on which the considered part operation can be processed. 
Finally, the third section in the chromosome structure, labeled 
“Components”, is associated with the supplier selection process. In 
this section, the gene SIt takes an index related to the selected supplier 
of each component type. For example, the term SI3 = 5 means that 5th 
supplier of component Type 3 is selected for procurement. 
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Fig. 1. LP embedded GA framework 

 
Cells  Parts  Components 

C1 C2 C3 P1 P2 P3 P4 P5 T1 T2 T3 T4 T5 

 
 
 
 

 

 
 
 

Fig. 2. Chromosome structure 

Generating Initial Population 

The procedure used here is to randomly generate initial population and 
consequently to satisfy the constraints in (5), (6), and (9). In fact, these 

Obtain the discrete decision variables Nmc, Zopmc, Vst 

Evaluate the fitness of initial population 

Is termination 
condition met?

Generate initial population 

Formulate and solve LP sub-problem (obtain the continuous decision variables xp, yt) 

Report the final solution 

End 
Perform selection mechanism 

Begin GA 

Construct the scheme for solution representation 

Apply crossover operator Apply mutation operator 

Obtain the discrete decision variables Nmc, Zopmc, Vst 

Formulate and solve LP sub-problem (obtain the continuous decision variables xp, yt) 

Evaluate the fitness of new chromosomes 

Constitute the new population 

P1 
Opr1 Opr2 Opr3 

Opr3 
CI3,1 MI3,1 

T3 
SI3 

C2 
N1,2 N2,2 N3,2 N4,2 N5,2 
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randomly generated solutions satisfy all the constraints involving only 
the discrete variables, except the cell size constraints which are being 
taken care by the penalty manner. 

Solving LP Sub-Problem 

By eliminating all of the constraints and objective function terms 
involving only the discrete variables, the following LP sub-problem is 
formulated. In this formulation by fixing the values of the discrete 
variables there is no need for linearization. Determination of discrete 
variables not only simplifies the mathematical model by reducing the 
number of constraints and variables, but also facilitates the LP search 
procedure by removing all integer and binary variables. 

Minimize OFLP= 
pOC M P

m opm p p opmc
c=1 m =1 p=1 o=1

OC × PT × x × D × Z
 

pO -1C P M M

p p p o+1, pmc opmc
c=1 p=1 o=1 m =1 m =1

1
+ × IMC × x × D × Z - Z

2    
 

pO -1C P M

p p p o+1, pmc opmc
c =1 p=1 o=1 m =1

M M

o+1, pmc opmc
m =1 m =1

1
+ × A M C × x × D × ( Z - Z -

2

Z - Z )

  

 

 

tSP T

p p p st t st
p=1 t =1 s =1

+ SC × (1 - x ) × D + PC × y ×V 
 

t tS ST T

st t t st st t t st
t =1 s=1 t =1 s=1

+ RR ×UPC × y ×V + LD ×UDC × y ×V 

(37) 

Subject to: 

pOP

opm p p opmc m mc
p=1 o=1

PT × x × D × Z TC × N   
m ,c  

 
(38) 

p p1- x UB  p  (39) 
tS P

t st st tp p p
s =1 p=1

y ×V × (1 - RR ) = CR × x × D    
t  

 
(40) 

px 1  p  (41) 

p tx , y 0  p , t  (42) 
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The objective of the LP sub-problem is to minimize the sum of the 

operating cost, intercellular and intracellular movements cost, final 
product outsourcing cost, component variable procurement cost, 
component quality deficiency penalty cost, and lead time delay 
penalty cost, subject to the constraints in (2), (7)-(8) and (12)-(13). 
These constraints were renumbered as (38)-(42). 

Fitness Function 

As seen from Equation (43) below, the fitness of a given solution in 
the algorithm is equal to the objective function value of the main 
model plus two penalty terms. The penalty manner is used to penalize 
solutions which violate the constraints. The model objective function 
is comprised of the objective function value of the LP sub-problem, 
machine acquisition cost, and component supplier selection fixed cost. 
The first penalty term controls the cell size constraints and the second 
one is related to infeasible LP sub-problems. The factors PFcs and 
PFLP were used to scale these penalty terms. These factors are easily 
determined by a preliminary trial-and-error process. 
FF = model objective function + 

 
C M M

cs c mc mc c
c=1 m =1 m =1

PF × max 0, (LS - N ), ( N - US )
 
 
 

    

+ 
 If  the corresponding LP sub-prob1;

0; othe
lem

rwis
is infeasi

e
ble.

.LPPF ×
 

(43) 

Selection Mechanism 

The purpose of selection mechanism is to provide a situation in which 
the fittest individuals have more chance to be selected and to produce 
new offspring. Roulette wheel is one of the standard selection 
mechanisms in GA and other evolutionary algorithms. Each 
individual, on the basis of its fitness value, receives a probability of 
being selected. We modify the conventional Roulette wheel 
mechanism as follows: 

i population

i populationi population

j i

j
i i

FF - ( min FF )
R F =

( max FF ) - ( min FF )


  
(44) 
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Where RFj is the relative fitness value of individual j and FFi is the 
absolute fitness value of individual i in the population. 

Genetic Operators 

A new filial generation of individuals is created by crossover and 
mutation operators. Crossovers combine the features of the two 
parents so that by iteratively applying these operators, the genes of 
good chromosomes are appearing more and more in the population. 
Unlike crossovers, mutation operators try to make indiscriminate 
changes in single randomly selected individuals. This provides an 
opportunity to diversify search direction and to escape from local 
optimums. We developed six types of crossover operators in our GA. 
These are (1) simple crossover, (2) “Cells” swap crossover, (3) “Parts” 
swap crossover, (4) “Components” swap crossover, (5) single-cell 
swap crossover, and (6) single-part-type swap crossover. We also 
applied four different types of mutation, called the (1) cell-machine 
mutation, (2) part-operation-cell mutation, (3) part-operation-machine 
mutation, and (4) component-supplier mutation. For more information 
on these operators we refer to Defersha and Chen (2008). 

Computational Results 

We arrange 10 randomly generated instances to evaluate different 
aspects of our algorithm. Problems’ dimensions data, number of 
constraints and number of discrete and continuous variables are given 
in Table 8. The instance number 2 in Table 8 is that which was 
presented above in Section 4. The meta-heuristic was also compiled in 
MATLAB R2014a. 

The main parameters of GA, namely, the number of generations, 
population size, crossovers rates and mutations rates, control the 
behavior of the algorithm. In this study, a plan of experiments based 
on Taguchi technique with three levels for each parameter was 
executed to calibrate the hybrid GA parameters, while a L9 (3^ 4) 
orthogonal array is taken into account. 
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Table 8.Problem Dimension Data, Number of Constraints and Variables 
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D
is

cr
et

e 

C
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1 5 4 3 2 5 4 1348 302 310 

2 5 5 3 3 5 5 2391 535 540 

3 7 4 3 3 6 4 2730 603 614 

4 6 6 3 3 6 6 3370 756 760 

5 7 7 3 3 6 8 4512 
101
4 

1016 

6 8 8 3 3 9 6 5804 
130
2 

1305 

7 10 7 3 4 7 9 8460 
188
4 

1890 

8 15 11 4 3 10 8 19117 
426
4 

4255 

9 18 14 3 4 11 9 28781 
640
5 

6402 

10 20 17 4 3 13 8 38444 
857
2 

8547 

 
Table 9 shows the candidate levels for each parameter. These values 

were determined by preliminary tests. The experiments of the Taguchi 
design and the corresponding response values are shown in Table 10. 

The response value for each experiment in the last column of the 
Taguchi design table is the average of OF values of three consecutive 
runs with the hybrid GA. In order to determine the optimum levels of 
process parameters, Taguchi uses a statistical performance measure 
called Signal to Noise (SN) ratio. For the design problem under 
consideration, the smaller is the better case of Taguchi’s SN ratio 
selected. Table 11 presents details of analyzing the statistical 
experimental results by Minitab software. 

The response graph of SN ratio is also given in Figure 13. In this 
figure, the optimum level for each process parameter is the one with the 
highest value of SN ratio. Accordingly, the third level of a number of 
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generations (50), the third level of population size (60), the third level 
of crossover rate (0.7), and the first level of mutation rate (0.05), are 
selected. The estimated values of all GA parameters for small, medium 
and large size problems are given in Table 12. It is expected that larger 
values for these control parameters will increase the computational 
burden without noticeable improvement in solution quality. 

Table 9.Control Parameters and Their Levels 

Parameter Range Level 1 
(low) 

Level 2 
(medium) 

Level 3 
(high) 

Number of generations 30- 50 30 40 50 

Population size 20- 60 20 40 60 

Crossovers rate 0.5- 0.7 0.5 0.6 0.7 

Mutations rate 0.05- 0.15 0.05 0.10 0.15 
 

 

Table 10.L9 Orthogonal Array of Taguchi Design of Experiments 

Experiment 

Coded levels Decoded levels Response 

Avg. 
Fitness 
values 

A B C D 
Number of 

gen. 
Pop. size 

Cross. 
rate 

Mute. 
rate 

1 1 1 1 1 30 20 0.5 0.05 228393.7 

2 1 2 2 2 30 40 0.6 0.10 226786.4 

3 1 3 3 3 30 60 0.7 0.15 224802.5 

4 2 1 2 3 40 20 0.6 0.15 226856.6 

5 2 2 3 1 40 40 0.7 0.05 223458.9 

6 2 3 1 2 40 60 0.5 0.10 223811.5 

7 3 1 3 2 50 20 0.7 0.10 225439.4 

8 3 2 1 3 50 40 0.5 0.15 222890.7 

9 3 3 2 1 50 60 0.6 0.05 222246.6 
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Table 11.Results of Implementing Taguchi Design of Experiments 

Response table for SN ratios (smaller is 
better) 

Response table for means Response table for 
standard deviations 

Level A B C D Level A B C D Level A B C D 

1 -
107.107

-
107.116 

-
107.044 

-
107.031

1 226661

 

226897

 

225032

 

224700

 

1 * 

 

* 

 

* 

 

* 

 

2 -
107.032

-
107.019 

-
107.055 

-
107.057

2 224709

 

224379

 

225297

 

225346

 

2 * 

 

* 

 

* 

 

* 

 

3 -
106.986

-
106.990 

-
107.027 

-
107.038

3 223526

 

223620

 

224567

 

224850

 

3 * 

 

* 

 

* 

 

* 

 

Delta 0.121 0.126 0.028 0.026 Delta 3135 

 

3276 

 

730 

 

646 Delta * 

 

* 

 

* 

 

* 

 

Rank 2 1 3 4 Rank 2 1 3 4 Rank 2.5

 

2.5 

 

2.5 

 

2.5 

 

 

 
Fig. 3. SN ratio from Taguchi design of experiments 

 
The results of solving the problems by branch and cut method on 

GAMS software package and the proposed LP embedded GA are 
given and compared in the last five columns of Table 12. As can be 
seen from this table, the GAMS software has only solved the small-
size problems in a reasonable time. However, problems 6-10 cannot 
be solved in an acceptable time using GAMS software, because of the 
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large number of constraints and variables. Therefore, we limit runtime 
to 50 hours for problems 6-7 and 100 hours for problems 8-10 to save 
computational work and report the best obtained solution. 

The relative difference between objective function values obtained 
by the two methods is represented as Gap in Table 12. In the case of 
Problem 1, the LP embedded GA has obtained the globally optimal 
solution. The solutions obtained by the LP embedded GA for test 
Problems 2-5 show that in the worst case, the solution gap between 
the proposed hybrid approach and the global optima obtained by 
GAMS software is about 1.49%. This result verifies the validity of our 
proposed GA-based method. 

However, because of the computational complexity, the proposed 
model cannot be optimally solved within 50 hours or even longer for 
problems 6-7 and 100 hours for problems 8-10. As seen in Table 12, 
even for unsolvable problems in a reasonable time by GAMS 
software, the gap between the objective function values of the 
proposed LP embedded GA heuristic approach and the best obtained 
by the branch and cut exact method in the worst case is around 4.01%. 
This shows the proposed approach is capable to find near-optimal 
solutions for large-scale problems. Moreover, a computational time 
obtained by LP embedded GA for these problems is largely better than 
those obtained by GAMS software and it can be concluded that the 
proposed hybrid approach is efficient from the amount of 
computational time point of view. 

Conclusions 

In traditional manufacturing systems, designing production facilities 
and selecting component suppliers are two separate decisions. In this 
paper, an integrated approach was adopted to analyze, since 
production and purchasing functions are interrelated and interact with 
each other in view of corporate overall operation. A novel mixed-
integer non-linear programming model was developed to make 
production and procurement decisions in generalized CFP and 
supplier selection process, simultaneously. Benhalla et al. (2011), 
Paydar et al. (2014), and Heydari et al. (2017) also focused on the 
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development of quantitative models for integrated supplier selection 
and CMS design. 

Table 12.Comparison of LP Embedded GA and GAMS Solutions 
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1 37 50 60 0.7 0.05 203404.1 203404.1 00:00:25 00:01:52 0 

2 50 50 60 0.7 0.05 219999.8 221444.9 00:02:09 00:02:24 0.66 

3 60 50 60 0.7 0.05 307635.8 309468 00:10:38 00:03:02 0.6 

4 60 50 60 0.7 0.05 271829.7 275876.9 01:01:20 00:04:49 1.49 

5 69 80 100 0.8 0.15 265407.9 269175.5 09:57::46 00:16:55 1.42 

6 81 80 100 0.8 0.15 302484.4 314262.9 50:00:00 00:17:58 3.89 

7 108 80 100 0.8 0.15 435344.4 445588.5 50:00:00 00:23:51 2.35 

8 144 125 150 0.9 0.1 580053.4 603291.2 100:00:00 01:06:04 4.01 

9 197 125 150 0.9 0.1 723399.6 730878.4 100:00:00 01:46:09 1.03 

10 201 125 150 0.9 0.1 683693.5 689722.6 100:00:00 02:09:30 0.88 

 
This paper contributes to the literature by incorporating various 

manufacturing design attributes such as alternative process routings, 
operation sequences, part demands, processing times, machine 
capacity, machine duplication, etcetera along with supplier selection 
and a subcontracting approach. To our knowledge, this is the first time 
that a single model addresses all these features simultaneously. 

We linearized the non-linear formulation of our proposed model by 
a special procedure. The validation of the model was illustrated by 
solving a comprehensive numerical example. The Generalized 
Algebraic Modeling Systems software package is able to solve the 
small-size problems efficiently. However, the proposed model is NP-
hard and for medium-size and large-size problems cannot be solved by 
off-the-shelf optimization software packages in a reasonable amount 
of computational time. Hence, we applied a hybrid heuristic based on 
combining GA and LP. As far as we know, this is the 
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first heuristic approach for real-world integrated cell configuration and 
supplier selection problems. A number of numerical experiments were 
performed to verify the good ability of the hybrid solution procedure. 
Computational results illustrated the efficiency of the proposed 
technique in obtaining effective solutions. 

The proposed mathematical model is still open for incorporating 
other features, such as machine layout, machine closeness, machine 
utilization, workload balancing, worker assignment and worker 
training, multi-plant location, considering additional tiers of the SC, 
introducing uncertainty in part demand, machine availability and cost 
coefficients, multi-objective optimization, that will be left for future 
research. As a solution method, we developed the LP embedded GA 
to cope with the complexity of the problem. In this direction, 
employing other solution approaches based on integrating an exact 
method with other meta-heuristics such as SA, TS, as well as different 
hybrid meta-heuristic algorithms so as to attain even better results can 
also be taken into account. 
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