تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,107,843 |
تعداد دریافت فایل اصل مقاله | 97,212,555 |
Modeling of Air Pollutants’ Dispersion by Means of CALMET/CALPUFF (Case Study: District 7 in Tehran city). | ||
Pollution | ||
مقاله 14، دوره 4، شماره 2، تیر 2018، صفحه 349-357 اصل مقاله (1.04 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2018.243144.328 | ||
نویسندگان | ||
Neda Joneidi1؛ Yousef Rashidi* 2؛ Farideh Atabi3؛ parya broomandi3 | ||
1Faculty of Environment and Energy, Islamic Azad University, Science and Research Branch of Tehran, Iran. | ||
2Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran. | ||
3Department of Chemical Engineering, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran. | ||
چکیده | ||
The current study aims at modelling the dispersion of two pollutants, namely CO (carbon monoxide) and SO2 (sulfur dioxide) released from District 7 of Tehran Municiaplity, from 20 main line sources, by means of CALPUFF modeling system. CALPUFF is a non-steady state puff modeling software which employs meteorological, terrain, and land-use data to effectively simulate air pollutants' dispersion from a given source. CALMET software has been applied to provide meteorological conditions within the study domain. The study has been carried out on September 30, 2012 and shows that the modeled concentrations have been below both Iranian air ambient standard and NAAQS standard for CO and SO2. It also compares the measurements from the monitoring station of Setad Bohran, showing that the simulated hourly mean concentrations of the SO2 and CO do not follow similar temporal patterns for measurement values. For the absolute value, model results seem to be highly underestimated, compared to the monitored data (R2 = -0.41). | ||
کلیدواژهها | ||
Air pollution concentration؛ Iranian Ambient Air Quality Standard؛ Temporal pattern؛ CO؛ SO2 | ||
مراجع | ||
Affum, H.A., Akaho, E.H.K., Niemela, J.J., Armenio, V. and Danso, K.A. (2016). Validating the California Puff (CALPUFF) Modelling System Using an Industrial Area in Accra, Ghana as a Case Study. Open J. Air Pollut., 5; 27-36. Abdul-Wahab S.A., Chan K., Elkamel A. and Ahmadi L. (2014). Effects of meteorological conditions on the concentration and dispersion of an accidental release of H2S in Canada. Atmos. Environ., 82; 316–326. Abdul-Wahab S.A., Ikhile, E., En, S.C.F., Elkamel, A., Ahmadi, L. and Yetilmezsoy, K. (2016). Modeling the dispersion of NOx and SO2 emissions from a proposed biogas producing facility. Global NEST J., 18(4); 674-689. Affum, H.A., Brunetti, A., Niemela, J.J., Armenio, V., Akaho, E.H.K. and Danso, K.A. (2015). Preliminary Simulation of Dispersion and Deposition of Refinery Emissions over an Industrial Area in Ghana. African Rev. Phys., 10; 209-218. Bandyopadhyay, A. (2009). Prediction of ground level concentration of SO2 using ISCST3 model in Bangalore industrial region of India. Clean Technol. Environ.,11; 173-188. Busini, V., Capelli, L., Sironi, S., Nano, G., Rossi, A.N., and Bonati, S. (2012). Comparison of CALPUFF and AERMOD Models for Odour Dispersion Simulation. Chem. Eng. Trans., 30; 205- 210. Cohen, J., Cook, R., Bailey, C. R., and Carr, E. (2005). Relationship between motor vehicle emissions of hazardous pollutants, roadway proximity, and ambient concentrations in Portland, Oregon. Environ. Modelling & Software, 20;7-12. Demirarslan, K.O. and Doğruparmak, Ş.Ç. (2016). Determination of performance and application of the steady-state models and the lagrangian puff model for environmental assessment of CO and NOX emissions. Pol. J. Environ. Stud., 25(1), 83-96. Demirarslan, K.O., Çetin Doğruparmak, Ş. and Karademir, A. (2017). Evaluation of three pollutant dispersion models for the environmental assessment of a district in Kocaeli, Turkey. Global NEST J., 19(1); 37-48. Dresser A.L. and Huizer R.D. (2011). CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. J. Air Waste Manag. Assoc., 61(6); 647–659. Environmental Protection Agency, 1998. National Air Quality and Emissions Trends Report, 1997. Washington, DC. Fishwick, S. and Scorgie, Y. (2011). Performance of CALPUFF in predicting time-resolved particulate matter concentrations from a large scale surface mining operation, Paper presented at the 20th CASANZ Conference, 30, July–2 August, Auckland, New Zealand. Ghannam, K. and EL-Fadel, M. (2013). Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach, Atmos. Environ., 69; 156–169. Gulia, S., Kumar, A. and Khare, M. (2015). Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J. Sci. Ind. Res., 74; 302- 307. Hernández-Garces, A., Souto, J. A., Rodríguez, Á., Saavedra, S., and Casares, J. J. (2015).Validation of CALMET/CALPUFF models simulations around a large power plant stack. Física de la Tierra, 27; 35- 55. Holnicki, P., Kałuszko, A. and Trapp, W. (2016). An urban scale application and validation of the CALPUFF model. Atmos. Pollut Res., 7; 393–402. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. and Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot., 43(1); 48–64. Jiang, G., Lamb, B. and Westberg, H. (2003). Using back trajectories and process analysis to investigate photochemical ozone production in the Puget Sound region. Atmos. Environ., 37; 1489-1502. Ketabi, M. (2004). Sustainable Development in Tehran, A Case Study of Traffic and Pollution Problems in Tajrish District. Annual Meeting of the world student community for sustainable development (WSC-SD), Goteborg, Sweden. Levy, J. I., Spengler, J. D., Hlinka, D., Sullivan, D. and Moon, D. (2002). Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: Model sensitivity and implications. Atmos. Environ., 36; 1063-1075. Levy, J.I., Wilson, A.M., Evans, J.S. and Spengler, J.D. (2003). Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Environ. Sci. Technol., 37(24); 5528-5536. Malakooti, H. (2011). Meteorology and air-quality in a mega-city: application to Tehran, Iran, PhD. Thesis, École des Ponts ParisTech / Universite Paris Est. Markandeya, P., Shukla1, S. P. and Kisku, G. C. (2016). A Clean Technology for Future Prospective: Emission Modeling of Gas Based Power Plant. Open J. Air Poll., 5;144-159. Pandey, P., Patel, D.K., Khan, A.H., Barman, S.C., Murthy, R.C. and Kisku, G.C. (2013). Temporal Distribution of Fine Particulates (PM2.5, PM10), Potentially Toxic Metals, PAHs and Metal-Bound Carcinogenic Risk in the Population of Lucknow City. Indian J. Environ. Sci. Health, 48; 730-745. Protonotariou, A., Bossioli, E., Athanasopoulou, E., Dandou, A., Tombrou, M., Assimakopoulos, V.D., Flocas, H.A. and Chelmis, C.G. (2005). Evaluation of CALPUFF modelling system performance over the greater Athens area, Greece. Int. J. Environ. Poll., 24(1–4); 22–35. Varna, M. G. and Gimsom, N. R. (2002). Dispersion modeling of a wintertime particulate pollution episode in Christchurch, New Zealand. Atmos. Environ., 36; 3531-3544. Varon, J., Marik, P.E., Fromm, R.E. and Gueler, A. (1999). Carbon Monoxide Poisoning: A Review for Clinicians. J. Emer. Med., 17; 87-93. Venkataram, A. (1996). An examination of the Pasquill-Gifford-Turner dispersion scheme. Atmos. Environ., 28 (3); 283- 290. Xing, Y., Guo, H., Feddes, J., Yu, Z., Shewchuck, S. and Predicala, B. (2007). Sensitivities of four air dispersion models to climatic parameters for Swine odor dispersion. Am. Soc. Agri. Bio. Engg. , 50 (3); 1007- 1017. Yau, K.H., Macdonald, R.W. and The, J.L. (2004). Inter-comparison of the AUSTAL2000 and CALPUFF dispersion models against the Kincaid data set. International Journal of Environment and Pollution, 40(1-3), 267-279. | ||
آمار تعداد مشاهده مقاله: 1,318 تعداد دریافت فایل اصل مقاله: 820 |