
تعداد نشریات | 161 |
تعداد شمارهها | 6,575 |
تعداد مقالات | 71,045 |
تعداد مشاهده مقاله | 125,565,693 |
تعداد دریافت فایل اصل مقاله | 98,830,301 |
تهیة نقشۀ پیشبینی خطرپذیری ایران در برابر بیماری آنفلوانزای پرندگان با استفاده از منطق فازی | ||
مدیریت مخاطرات محیطی | ||
مقاله 8، دوره 4، شماره 3، مهر 1396، صفحه 303-317 اصل مقاله (764.06 K) | ||
نوع مقاله: پژوهشی کاربردی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2018.245241.293 | ||
نویسندگان | ||
مصطفی عزیزخانی1؛ میثم ارگانی* 2؛ فاطمه مافی1 | ||
1کارشناس ارشد سیستمهای اطلاعات مکانی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفتۀ کرمان | ||
2استادیار گروه سنجش از دور و GIS، دانشکدۀ جغرافیا، دانشگاه تهران | ||
چکیده | ||
بیماری آنفلوانزای پرندگان [Influenza Avian] یکی از بیماریهای مهم تنفسی و واگیردار پرندگان است که دارای قدرت انتشار سریع است. در حال حاضر حدود 33 پاندمی از آنفلوانزای پرندگان از نوع فوق حاد H5 و H7 از دهة 1950 تا 2017 در جهان پدید آمده است. بزرگترین پاندمی نسبت به بقیه تا حال حاضر پاندمی H5N1 در 63 کشور و در حال حاضر H5N8 بوده است. همانند پاندمی H5N8 در سال 2016 در 1996 سویة فوقحاد در گواندونگ چین به معدوم شدن حدود 250 میلیون قطعه طیور یا پرنده وحشی در 63 کشور منجر شد. بیشتر کشورها در این شرایط، سیایت معدومسازی را در صنعت طیور بهکار میگیرند تا به ریشهکنی سویههای فوقحاد آنفلوانزا دست یابند. هرچند کشورهایی نیز از راهبرد برنامة واکسیناسیون برای کنترل بیماری استفاده میکنند. ویروس آنفلوانزای پرندگان و انتقال آن به انسان یکی از دغدغههای اصلی پژوهشگران در سالهای اخیر بوده است. شناخت مناطقی از کشور که از شیوع ویروس آسیبپذیرترند به کنترل و پیشگیری از شیوع ویروس در مراحل مختلف کمک زیادی خواهد کرد. براساس مطالعات انجامگرفته عوامل مؤثر اصلی بر شیوع ویروس مذکور عبارتاند از نزدیکی به رودها، دریاچهها، باتلاقها، جمعیت، مراکز پرورش طیور، روستاها، بارندگی، دما و میزان باد شناسایی شدند. در نهایت بهترتیب استانهای تهران، البرز، قم، اصفهان، قزوین، گلستان، گیلان بیشترین خطرپذیری را دارند. پژوهش حاضر از نوع تحلیلی در سال 1395 برای کل کشور ایران انجام گرفت.ابتدا عوامل مؤثر شناسایی و با نظر خبرگان وزندهی شده و به چهار دسته تقسیم شدند؛ سپس دادهها با استفاده از منطق فازی تحلیل شدند؛ توابع عضویت فازی برای هر دسته تعریف شد؛ با تعریف 36 قانون مختلف تمامی حالتهای موجود با روش ممدانی بررسی شد. هدف این پژوهش، شناسایی مناطق خطرپذیر ایران در برابر شیوع ویروس N5H8 با توجه به عوامل مؤثر، بود. نقشة پهنهبندی خطر بهدستآمده با نمونههای گزارش شیوع ویروس آنفلوانزای پرندگان مطابقت مناسبی دارد. | ||
کلیدواژهها | ||
آنفلوانزا در پرندگان؛ سیستم اطلاعات جغرافیایی؛ منطق فازی؛ همهگیرشناسی | ||
عنوان مقاله [English] | ||
Preparing a Map of Iran's Predictability of Avian Influenza Using Fuzzy Logic | ||
نویسندگان [English] | ||
Mostafa Azizkhani1؛ Meysam Argani2؛ Fatemeh Mafi1 | ||
1Master Degree in Spatial Information Systems, Kerman Advanced Industrial and Advanced Technology University | ||
2Assistant Professor of Remote Sensing and GIS, Faculty of Geography, University of Tehran | ||
چکیده [English] | ||
AI (Avian Influenza) is one of the most important respiratory, and contagious pathogens in poultry that has fast release power. At present, around 33 pandemics of H5 and H7 over-the-counter influenza have emerged from the 1950s to 2017. The largest pandemic is H5N1 pandemic in 63 countries, and now it turnes to H5N8. Like the H5N8 pandemic in the year 2016, the Severe strain in Guandong, China, resulted in the extinction of about 250 million poultry or wild birds in 63 countries. Most countries, in this context, use deforestation policy in the poultry industry to achieve the eradication of the extra-influenza strains. However, countries also use the vaccination strategy to control the disease. The prevalence of Avian Influenza virus and its transmission to human have been one of the main concerns of researchers in recent years. Identifying the country’s regions that are more vulnerable due to the prevalence of the virus will help control and prevent its prevalence at various stages. This study aimed to identify high-risk regions in Iran for the prevalence of N5H8 virus according to effective factors. This analytical study was conducted in 2016-2017 for IRAN. First, the affective factors were identified, using experts’ opinions, they were weighted, and classified into four categories. Then, the data were analyzed using fuzzy logic. The fuzzy membership functions were defined for each category. Defining 36 various rules, all the existing states were evaluated applying Mamdani's method. According to the conducted studies, the main factors affecting the prevalence of the mentioned virus included: proximity to rivers, lakes, and marshes, population, poultry farms, villages, rainfall, temperature, and wind. Finally, Tehran, Alborz, Qom, Isfahan, Qazvin, Golestan, and Gilan provinces had the greatest high-risk. The obtained zoning map of hazard had a good corresponding with the samples of report on the Avian Influenza virus. | ||
کلیدواژهها [English] | ||
Geographic Information System, influenza in birds, Fuzzy logic, Epidemiology | ||
مراجع | ||
[1]. Adegboye, O.; & Kotze, D. (2014). "Epidemiological analysis of spatially misaligned data: a case of highly pathogenic avian influenza virus outbreak in Nigeria". Epidemiology and infection. vol. 142. pp. 940-949 [2]. Azizkhani, M.; Vakili, A.; Noorollahi Y.; & Naseri, F. (2016). "Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran". Renewable and Sustainable Energy Reviews. [3]. Bridge, E. S.; Kelly, J. F.; Xiao, X.; Takekawa, J. Y.; Hill, N. J.; Yamage, M. et al. (2014). "Bird migration and avian influenza: A comparison of hydrogen stable isotopes and satellite tracking methods". Ecological indicators. vol. 45, pp. 266-273. [4]. Claas, E. C.; Osterhaus, A. D.; Van Beek, R.; De Jong, J. C.; Rimmelzwaan G. F.; Senne, D. A. et al. (1998). "Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus". The Lancet, vol. 351. pp. 472-477. [5]. Davis, H.A. (2016). Current and Future Challenges of Preventing Outbreaks of Highly Pathogenic Avian Influenza. Kansas State University. [6]. Fallah Mehrabadi, M.; Bahonar, A.; Zaynolabedini Tehrani, F.; Vasfi Marandi, M.; Sadrzadeh, A.; Ghafouri, S. et al. (2015). "Seroepidemiology of Avian Influenza (H9N2) in Rural Domestic Poultry of Iran: A Cross-Sectional Study." Iranian Journal of Epidemiology. vol. 10. pp. 1-9 [7]. Fan, S.; Hatta, M.; Kim, J.H.; Halfmann, P.; Imai, M.; Macken, C. A. et al. (2014). "Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts". Nature communications. vol. 5. [8]. Fang, L.-Q.; de Vlas, S. J.; Liang, S.; Looman, C. W.; Gong, P.; Xu, B. et al., (2008). "Environmental factors contributing to the spread of H5N1 avian influenza in mainland China". PloS one, vol. 3, p. e2268. [9]. Fang, L.-Q.; Li, X.-L.; Liu, K.; Li, Y.-J.; Yao, H.-W.; Liang, S. et al. (2013). "Mapping spread and risk of avian influenza A (H7N9) in China". Scientific reports, vol. 3. [10]. Flint, P. L.; Pearce, J. M.; Franson, J. C.; & Derksen, D. V. (2015). "Wild bird surveillance for highly pathogenic avian influenza H5 in North America". Virology journal. vol. 12, p. 1. [11]. Fouchier, R. A.; García-Sastre, A.; Kawaoka, Y.; Barclay, W. S.; Bouvier, N. M.; Brown, I. H. et al. (2013). "Transmission studies resume for avian flu". Science. vol. 339. pp. 520-521. [12]. Fuller, T. L.; Saatchi, S. S.; Curd, E. E.; Toffelmier, E.; Thomassen, H. A.; Buermann, W. et al. (2010). "Mapping the risk of avian influenza in wild birds in the US". BMC Infectious Diseases. vol. 10. p. 187. [13]. Ghafouri, S. A.; Langeroudi, A. G.; Maghsoudloo, H.; Tehrani, F.; Khaltabadifarahani, R.; Abdollahi, H. et al. (2016). "Phylogenetic study-based hemagglutinin (HA) gene of highly pathogenic avian influenza virus (H5N1) detected from backyard chickens in Iran. 2015," Virus Genes. pp. 1-4. [14]. Hatami, H. (2016). "History of Influenza: Pandemics in Iran and the World". International Journal of Infection, vol. 3. [15]. Hill, E. M.; House, T.; Dhingra, M. S.; Kalpravidh, W.; Morzaria, S.; Osmani, M. G. et al. (2017). "Modelling H5N1 in Bangladesh across spatial scales: model complexity and zoonotic transmission risk". Epidemics. 2017. [16]. http://www.oie.int/animal-health-in-the-world/update-on-avian-influenza/2017/. [17]. Iwami, S.; Takeuchi, Y.; & Liu, X. (2009). "Avian flu pandemic: Can we prevent it?". Journal of theoretical biology. vol. 257, pp. 181-190. [18]. Javid, N.; Moradi, A.; Tabarraei, A.; & Bazouri, M. (2017). "Clinical and Epidemiological Profile of Pandemic Influenza A H1N1, H3N2, and Type B in the Southeast of Caspian Sea, Iran". Jundishapur Journal of Microbiology. [19]. Li, K.; Guan, Y.; Wang, J.; Smith, G.; Xu, K.; Duan, L. et al. (2014) "Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia". Nature. vol. 430. pp. 209-213. [20]. Lu, L.; Brown, A. J. L.; & Lycett, S. J. (2017). "Quantifying predictors for the spatial diffusion of avian influenza virus in China". BMC Evolutionary Biology. vol. 17. p. 16. [21]. Madsen, J. M.; Zimmermann, N. G.; Timmons, J. & N. L. Tablante (2013). "Avian influenza seroprevalence and biosecurity risk factors in Maryland backyard poultry: a cross-sectional study". PloS one, vol. 8. p. e56851. [22]. Mehrabadi, M. F.; Bahonar, A.; Marandi, M. V.; Sadrzadeh, A.; Tehrani, F.; & Salman, M. (2016). "Sero-survey of Avian Influenza in backyard poultry and wild bird species in Iran-2014". Preventive veterinary medicine. vol. 128. pp. 1-5. [23]. Mu, J. E.; McCarl, B. A.; Wu, X.; & Ward M. P. (2014). "Climate change and the risk of highly pathogenic avian influenza outbreaks in birds". British Journal of Environment and Climate Change. vol. 4. p. 166. [24]. Osterhaus, A. D.; Fouchier, R. A.; Olsen, B.; Waldenström, J.; Latorre-Margalef, N.; Tolf, C. et al. (2014). "Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern europe". Prodeedings of the royal society B. [25]. Prosser, D. J.; Hungerford, L. L.; Erwin, R. M.; Ottinger M. A.; Takekawa, J. Y.; Newman, S. H. et al. (2015). "Spatial modeling of wild bird risk factors to investigate highly pathogenic A (H5N1) avian influenza virus transmission". Avian Diseases. [26]. Satkin, M.; Noorollahi, Y.; Abbaspour, M.; & Yousefi, H. (2014). "Multi criteria site selection model for wind-compressed air energy storage power plants in Iran". Renewable and Sustainable Energy Reviews. vol. 32. pp. 579-590. [27]. Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; & Kawaoka, Y. (2006). "Avian flu: influenza virus receptors in the human airway". Nature. vol. 440. pp. 435-436. [28]. Smith, G. J.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G. et al. (2009). "Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic". Nature. vol. 459, pp. 1122-1125. [29]. Spackman, E.; Senne, D.; Bulaga, L.; Myers, T.; Perdue, M.; Garber, L. et al. (2003). "Development of real-time RT-PCR for the detection of avian influenza virus". Avian diseases. vol. 47, pp. 1079-1082. [30]. Zadeh, L. A. (1965). "Fuzzy sets". Information and control. vol. 8, pp. 338-353. | ||
آمار تعداد مشاهده مقاله: 876 تعداد دریافت فایل اصل مقاله: 429 |