تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,103,531 |
تعداد دریافت فایل اصل مقاله | 97,209,743 |
بررسی واکنشهای فیزیولوژیکی و بیوشیمیایی برخی ارقام زینتی مرکبات تحت تنش دمای پایین | ||
به زراعی کشاورزی | ||
مقاله 12، دوره 19، شماره 4، اسفند 1396، صفحه 979-994 اصل مقاله (571.84 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2018.226180.1655 | ||
نویسندگان | ||
سیده مرضیه حسینی ولشکلایی1؛ یحیی تاجور2؛ مسعود آزادبخت3؛ زینب رفیعی راد* 4 | ||
1کارشناسیارشد، گروه فضای سبز، مؤسسة آموزش عالی سنا، ساری، ایران | ||
2استادیار، مؤسسة تحقیقات علوم باغبانی، پژوهشکدة مرکبات و میوههای نیمهگرمسیری، سازمان، تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران | ||
3استادیار، گروه فضای سبز، مؤسسة آموزش عالی سنا، ساری، ایران | ||
4دانشجوی دکتری، گروه علوم خاک، دانشکدة کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
چکیده | ||
تنش دمای پایین یکی از مهمترین تنشهای محیطی غیرزنده است که رشد و عملکرد گیاهان زینتی را تحت تأثیر قرار میدهد. بهمنظور بررسی برخی شاخصهای فیزیولوژیک و بیوشیمیایی چهار رقم مرکبات زینتی مورد استفاده در فضای سبز شهری در شرایط تنش دمای پایین، آزمایشی بهصورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در پژوهشکدة مرکبات و میوههای نیمهگرمسیری کشور (رامسر) در سال 1394 اجرا شد. تیمارها شامل دما در چهار سطح (3، 0، 3- و 6- درجة سانتیگراد) و چهار رقم مرکبات زینتی شامل (کامکوات، انگشت بودا، کالاموندین و لایمکوات) بودند. نتایج نشان داد که با کاهش دما میزان نشت یونی، آبگزیدگی، محتوای پرولین، ظرفیت آنتیاکسیدانی، پراکسیداسیون لیپیدها و فعالیت آنزیم سوپراکسید دیسموتاز بهطور معناداری افزایش یافتند، در صورتیکه مقدار کلروفیل a و کل کاهش یافت. بر این اساس کمترین میزان آبگزیدگی برگ (92/20 درصد) و نشت یونی (81/30 درصد) که شاخصهای تخریبی هستند، در کامکوآت مشاهده شد. همچنین، مقدار کلروفیل کل (21/2 میلیگرم برگرم وزن تر برگ)، ظرفیت آنتیاکسیدانی (61/60 درصد) و میزان فعالیت سوپراکساید دیسموتاز (53/26 واحد آنزیمی برگرم وزن تر برگ) که از صفات تحملپذیری محسوب میشوند، در این رقم مشهودتر بود. بهطورکلی، کامکوات از طریق افزایش برخی شاخصها مانند پرولین، قندهای محلول، ظرفیت آنتیاکسیدانی و فعالیت سوپراکسید دیسموتاز قادر به تحمل تنش یخبندان تا دمای 3- درجة سانتیگراد است. | ||
کلیدواژهها | ||
پرولین؛ ظرفیت آنتیاکسیدانی؛ فضای سبز؛ کلروفیل؛ نشت یونی | ||
عنوان مقاله [English] | ||
Evaluation of physiological and biochemical responses of some ornamental Citrus varieties under low temperature stress | ||
نویسندگان [English] | ||
Seyed marziyeh Hosseini valashkolaee1؛ Yahya Tajvar2؛ Masoud Azadbakht3؛ Zeinab Rafie-rad4 | ||
4Zanjan university | ||
چکیده [English] | ||
Low temperature stress is one of the most important abiotic environmental stresses that affects the growth and yield of ornamental plants. In order to investigate of some physiological and biochemical indices of four varieties of ornamental Citrus used in urban landscapes under low temperature stress conditions, a factorial experiment in a completely randomized design with three replications was conducted in the Citrus and Subtropical Fruits Research Center of Ramsar in 2015. Treatments were included the temperature with four levels (3, 0, -3 and -6˚C) and four varieties of ornamental Citrus including (Kumquat, Fingered citron, Calamondin and Limequat). Results showed that amounts of electrolyte leakage, water soaking, prolin content, antioxidant capacity, lipid peroxidation and superoxide dismutase activity were increased significantly by reducing of temperature, while chlorophyll and total chlorophyll contents were decreased. Accordingly, the lowest leaf water soaking (20.92%) and electrolyte leakage (30.81%) amount, which are destructive indices, were showed in Kamquate. Total chlorophyll amount (2.21 mg/gFW), antioxidant capacity (60.61%) and superoxide dismutase activity (26.53 IU/gFW), that are tolerability indices, were more relevant at Kamquate. In general, Kumquat could tolerate the freezing stress up to -3°C by increasing of some indices such as proline, soluble sugars, antioxidant capacity and superoxide dismutase activity. | ||
کلیدواژهها [English] | ||
antioxidant capacity, Chlorophyll, electrolyte leakage, landscape, proline | ||
مراجع | ||
تاجور ی. (1390) پاسخ دو رقم تجاری مرکبات (Citrus sp.) روی دو پایه تحت تنش دمای پایین. رسالۀ دکتری. دانشگاه گیلان. گیلان، ص104-120. تاجور ی.، قاسمی م. و فیفایی ر. (1392) سرمازدگی در مرکبات و راههای کنترل آن. نشریة فنی 43561 مرکز اطلاعات و مدارک علمی کشاورزی. انتشارات مؤسسه تحقیقات مرکبات کشور. رامسر. ص30-34. کریمی ن. و سوری ز. (1394) بررسی اثر متقابل آرسنیک و فسفر بر محتوی کلروفیل و میزان تجمع مالون دآلدهید در گیاه Isatis cappadocica. فرآیند و کارکرد گیاهی. 11(4): 80-83. گلوانی م. (1388) ارزیابی پروتئینهای آنتیفریز در دو گونة مرکبات کشتشده در شمال ایران. پایاننامة کارشناسی ارشد. گروه بیوشیمیایی دانشکدة علوم پایه، دانشگاه گیلان. قربانلی م.ل.، نوجوان م.، حیدری ر. و فربودنیا (1380) تغییرات قندهای محلول، نشاسته و پروتئینها در اثر تنش خشکی در دو رقم نخود ایرانی (Cicer arietnum L.). نشریة علوم دانشگاه تربیت معلم. 1 (1): 38-53. نجفزاده م. (1389) بررسی اثرات پلیآمین و کلسیم بر دانهالهای بذری مکزیکن لایم (Citrus aurantifolia) تحت تنش دمای پایین. پایاننامۀ کارشناسی ارشد. دانشکده کشاورزی دانشگاه گیلان. صص 42-45. نظامی الف. و ناقدینیا ن. (1389) اثر تنش یخزدگی بر نشت الکترولیتها در شش رقم گلرنگ. نشریه پژوهشهای زراعی ایران. 8 (6): 891-896. Akhondi M., Safarnejad E. and Lahooti M. (2006) Effect of drought stress on proline and accumulation of ions. Agricultural Science. 10: 165-173. Allen D.J. and Ort D.R. (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science. 6(1):36-41. Arora A., Sairam R.K. and Srivastava G.C. (2002) Oxidative stress and antioxidative system in plants. Current Science. India. 82: 1227-1238. Azzareollo E., Mugnai S. and Pandolfi C. (2009) Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees. 23:159–167. Bates L.S., Waldren R.P. and Tears I.D. (1973) Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207. Cakmak I. (2005) Role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science. 168: 521–530. Compose P.S., Quartin V., Ramalho J.C. and Nunes M.A. (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plant Physiology. 160: 283-292. El-Tayeb M.A. (2005) Response of barley grain to the interactive effect of salinity and glycinebetaine and proline against NaCl stress. Plant Physiology and Biochemistry. 36(10): 767-772. Fedine L.S. and Popova A.V. (1996) Photosynthesis, photorespiration and proline accumulation in water-stressed pea leaves. Crop Science. 32: 213-220. Fotouhi Ghazvini R., Baghbanha M.R. Hatamzadeh A. and Heidari M. (2008) Effect of water stress on freezing tolerance of Mexican lime (Citrus aurantifolia L.) seedling. Horticulture, Environment, and Biotechnology. 49 (5): 267-280. Ghafar M.F.A., Prasad K.N., Weng K.K. and Ismail A. (2010) Flavonoid, hesperidine, total phenolic contents and antioxidant activities from (Citrus species). African Journal of Biotechnology. 9: 330. Gusta L., Trischuk V. and Weiser, C.J. (2005) Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation. 24: 308-318. Heidarvand L. and Maali Amiri R. (2010) What’s happens in plant molecular responses to cold stress? Acta Physiologiae Plantarum 32: 419–431. Jithesh M.N., Prashanth S.R. Sivaprakash K.R. and Parida A.K. (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics. 85: 237-254. Kavi Kishor P.B., Sangam1 S., Amrutha R.N., Sri Laxmi P., Naidu K.R., Rao S.S., Rao S., Reddy K.J., Theriappan P. and Sreenivasulu N. (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science. 88: 424-438. Kiara D.V. and Roy D.N. (1999) Oxidative stress and antioxidative defense with an emphasis on plants antioxidants. Environmental Reviews. 7: 31-51. Kr´ol A., Amarowicz R.S. and Weidner S. (2015) Effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant P13hysiology. 10: 176-193. Kushad M.M. and yelenosky G. (1987) Evaluation of Polyamine and proline levels during low temperature acclimation of citrus. Plant Physiology. 84: 692-695. Leng P. and J.X. Qi (2003) Effect of anthocyanin on David peach (Prunus davidiana Franch) under low temperature stress. Scientia Horticulture. 97: 27-39. Los D.A., Mironov K.S. and Allakhverdiev S.I. (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynthesis Research. 116:489–509. Mahajan S. and Tuteja N. (2005) Cold salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444:139–158. Miri H.R. (2009) Plant Stress Physiology. Kermanshah Islamic Azad University Press. 472p. Molla S.P., Villar-Salvador P., Garcia F. and Rubira J.L. (2006) Physiological and transplanting performance of Quercus ilex L. (holm oak) seedlings grown in nurseries with different winter conditions. Forest Ecology and Management. 237: 218-226. Molinari H.B.C., Marur C.J., Filho J.C.B., Kobayashi A.K., Pileggi M., Ju´nior R.P.L., Pereira L.F.P. and Vieira L.G.E. (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Science. 167: 1375–1381. Nayyar H., Bains T.S. and Kumar S. (2005) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environmental and Experimental Botany. 54: 275–285. Nicolosi E. (2007) Origin and Taxonomy. In Khan, I. A. (ed.) Citrus Genetics, Breeding and Biotechnology. CABI. pp. 370. Ozden M., Demirel U. and Kahraman A. (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci. Hortic-Amsterdam. 119: 168. Pietrini F., Chaudhuri D., Thapliyal A.P. and Massacci A. (2005) Analysis of chlorophyll fluorescents in mandarin leaves during photo-oxidative cold shock and recovery. Agriculture, Ecosysyems and Environment. 106:189-198. Penna S. and An R. (2013) Molecular evolution of plant P5CS gene involved in proline biosynthesis. Molecular Biology Reports. 40:6429–35. Ribeiro R.V., Machado E.C., Santos M.G. and Oliveira R.F. (2009) Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environment and Experimental Botany. 66: 203–211. Rivas F., Fornes F. and Agusti M. (2008) Girdling induces oxidative damage and triggers enzymatic and nonenzymatic antioxidative defences in Citrus leaves. Environmental and Experimental Botany. 64: 256–263. Santini J., Giannettini J., Pailly P., Herbette S., Ollitrault P., Berti L. and Luro F.O. (2013) Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress. Trees. 27:71–83. Shen Wu Q., Zou Y.N. and Xia R.X. (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology. 42:166–172. Tajvar Y., Fotouhi G.R., Hamidoghli Y. and Sajedi R.H. (2011) Antioxidant Changes of Thomson Navel Orange (Citrus sinensis) on Three Rootstocks under Low Temperature Stress. Horticulture, Environment, and Biotechnology. 52(6):576-580. Xavier M., Thierry A., Rein A., Cathy K., Vojtich L., Francois L., Franco M. and Isabelle C. (2007) Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiology. 27: 817-825. Yelenosky G. and Guy C.L. (1989) Freezing tolerance of Citrus, Spinach, and Petunia leaf tissue osmotic adjustment and sensitivity to freeze induced cellular dehydration. Plant Physiology. 89:444-451. Zhao-Shi X., Lan-Qin X., Ming C., Xian-Guo C.C., Rui-Yue Z., Lian-Cheng L., Yun- Xiang Z., Yan L., hi-Yong N., Li. L., Zhi-Gang Q. and You-Zhi M. (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology. 65: 719-732.
| ||
آمار تعداد مشاهده مقاله: 488 تعداد دریافت فایل اصل مقاله: 424 |