
 

 
* Corresponding author Tel: +989124756725, Fax: +982332395509, E-mail address:  h.inanloo@shahroodut.ac.ir (H. Inanloo Arabi Shad). 

 
Journal Homepage: ijmge.ut.ac.ir 

 
 

 

Investigation of rock blast fragmentation based on specific explosive 
energy and in-situ block size 

Hossein Inanloo Arabi Shad a, *, Farhang Sereshki a, Mohammad Ataei a, Mohammad Karamoozian a 

a Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran 

 
 

A B S T R A C T 

 

In order to control and optimize a mining operation, it is important to assess the fragmentation caused by blasting and subsequent crushing 
and grinding stages. Prediction of the mean size of a fragmented rock through the rock mass characteristics, the blasting geometry, the 
technical parameters and the explosive properties is an important challenge for the blasting engineers. Some of the effective parameters on 
rock fragmentation have been investigated in several empirical models. A model for fragmentation in bench blasting was developed using the 
effective parameters on the existing empirical models to propose a simple applicable model for predicting the X50 value. The proposed model 
was calibrated by nonlinear fits to 35 bench blasts in different sites from the Sungun copper mine, the Akdaglar quarry, the and Mrica quarry. 
In order to validate the proposed model, the results were compared to the data obtained from six blast sites in the Chadormalu iron ore mine 
and the Porgera gold mine. The results indicated a small variance in X50, which was calculated by the proposed model through the image 
processing approach. The Comparison of the powers between the proposed and the Kuz-Ram models showed that the specific explosive 
energy and the powder factor are almost the same. The advantage of the proposed model over the Kuz-Ram model is the specific explosive 
energy, since this parameter includes the powder factor and the weight strength of an explosive. In addition, a sensitivity analysis was 
conducted based on the artificial neural network. The results showed that the burden and the specific explosive energy were the most effective 
parameters in the proposed model. 
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1. Introduction 

Rock blasting is the most commonly used method for rock breakage 
in mining. Controling the blast fragmentation after blasting is always an 
important subject for the mining industry. Blasting has a significant 
impact on downstream processes of mining such as the mucking 
productivity through the rock diggability, the excavator efficiency, the 
oversize problems and secondary blasting, the crusher throughput and 
the energy consumption, the plant efficiency, yield, and recovery. 
Moreover, many investigations has indicated that blasting influences the 
overall cost of a mining operation. Blasting has been proven to be the 
most energy-efficient stage in the comminution process. Optimizing the 
fragmentation by blasting can achieve an energy efficiency between 15% 
and 30%, in contrast to grinding in which the efficiency is approximately 
2%. Over the past decades, the optimization of the whole mining system 
has been taken into account from drilling to grinding or even the 
subsequent steps. The so called “mine to mill optimization” concept 
defines the system and its subsystems, determines the objective(s) of the 
system, searches the different solutions and alternatives to reach the 
objective(s), and finally, evaluates and chooses the best existing 
alternative. Therefore, prediction of rock fragmentation in open-pit 
mines is one of the important keys in the mine to mill optimization [1, 
2, 3, 4, 5, 6, 7, 8, 9]. Several studies have been conducted on blastability 
and prediction of fragmentation. The parameters that determine 
fragmentation by blasting is divided into four groups: (a) Blast design 
parameters; (b) explosive parameters; (c) rock mass structure 
parameters; and (d) intact rock and discontinuity physical and 

mechanical properties. Since a large number of parameters influence the 
blast fragmentation, it is obvious that the fragmentation process is 
extremely complex and thus it is an extremely challenging task to 
develop the models to predict the blast fragmentation. In such states, 
empirical approaches are used incorporating case history data (from 
either full-scale blasting in one or more than one production sites, or 
from small experimental scale shots) along with statistically based 
procedures in developing the prediction equations. Generally, 
multivariate regression analysis are used to develop the fragmentation 
prediction models. Each model uses different blasting plans and rock 
mass parameters. The empirical models should be seen as rough 
indications of how the effective parameters may contribute to rock 
fragmentation. In order to generalize these models as general 
engineering models, they should be tested on different rock types rather 
than only one. This can be conducted by proposing some parameters to 
be fitted to the actual rock fragmentation parameters [10, 11, 12, 13, 14]. 
The purpose model in this research is to consider such effective 
parameters to propose a simpler model for predicting the mean 
fragment size of a bench blasting based on available accurate 
parameters. The mean fragment size (X50) is an indicator for the 
fragment size distribution of muckpiles. When the mean fragment size 
of the muckpile is determined, the fragment size distribution of the 
muckpile can be calculated using the size distribution curves. 

2. Review of blast fragmentation models 

Kuznetsov [15] proposed a blasting formula between mean fragment 
size and specific charge. Cunningham [16, 17] developed a new model 

Article History: 
Received: 05 October 2016, 
Revised: 29 March 2017, 
Accepted: 25 February 2018. 
 

http://dx.doi.org/10.22059/ijmge.2018.65613


2 H. Inanloo Arabi Shad et al. / Int. J. Min. & Geo-Eng. (IJMGE), 52-1 (2018) 1-6 

 

to predict the rock fragmentation based on the Kuznetsov model and 
the Rosin–Rammler’s formula. Further, Hjelmberg [18] developed the 
SveDeFo model based on including the rock mass type and the blast 
pattern for prediction of the mean fragment size. Otterness et al. [19] 
performed an extensive study to correlate the shot design parameters to 
fragmentation. Kou and Rustan [20] proposed an empirical model to 
predict the mean fragment size. Lownds [21] used the distribution of 
explosives energy to predict the fragmentation by blasting. Aler et al. 
[22] evaluated the blasting efficiency through a comparison between 
the block size of the rock mass resulting from existing fractures and the 
fragmentation size distribution resulting from blasting. In addition, they 
carried out a research work to predict the blast fragmentation through 
multivariate analysis procedures. 

The crushed zone model (CZM) [23] and the two-component model 
(TCM) [24] are two empirical models of the extended Kuz-Ram models 
to improve the prediction of fine particles. In the CZM model, the 
fragments size distribution in the fine and coarse regions is modeled by 
two separate functions. These two functions are based on the well-
established Rosin-Rammler distribution. Tensile fracturing produces 
the coarse part, and the Kuz ̶Ram model predicts the size distribution of 
this part. Compressive fracturing in the crushed zone, for which the 
Rosin ̶Rammler function gets a different value of n and XC, produces 
the fine part. In the TCM model, two Rosin ̶Rammler functions are used 
to predict the run of the mine size distribution. The sum of the two 
distribution functions, multiplied by the respective fraction of the total 
mass, represents the fragment size distribution of the entire mass of 
fragmented rock. TCM is a five-parameter model that two of the 
parameters are related to the coarse fraction, one is related to the fines 
fraction, and the other two are related to the fine part of the distribution. 
Morin and Ficarazzo [7] applied the Monte Carlo simulation as a tool 
for prediction of fragmentation based on the Kuz–Ram model. In 2010, 
Ouchterlony proposed a new fragment size distribution function [23]. 
Also, Gheibie et al. [25], [26] tried to enhance the fragmentation 
prediction  through modifying the Kuznetsov and Kuz–Ram models. 
Monjezi et al. [27] developed a fuzzy logic model for prediction of rock 
fragmentation by blasting. Kulatilake et al. [28] presented a piece of 
work, predicting the mean particle size in rock blast fragmentation using 
neural networks. Also, Monjezi et al. [29] used neural networks to 
predict the rock blasting fragmentation. Chakraborty et al. and 
Hudaverdi et al. [30], [31] applied multivariate analytical procedures to 
predict the rock fragmentation by blasting. Faramarzi et al., [32] 
presented a new model for prediction of rock fragmentation by blasting 
based on the basic concepts of the rock engineering systems (RES). 

Akbari et al. [33] investigated the influence of rock mass properties, 
blast design parameters and explosive properties on blast fragmentation. 
They stated that increasing the spacing, persistence, opening, roughness, 
waviness of discontinuities, and Vp and the uniaxial compressive 
strength (UCS) of intact rock as well as increasing the discontinuities 
angle with the bench face of the blasting block will increase the size 
distribution of the blasted rocks. 

3. Methods and Materials 

A total of 35 datasets were used in this research that are presented in 
Table 1. All blasting tests in the Sungun copper mine were collected by 
the authors and are listed in the table with a Sun abbreviation. The 
Sungun copper mine is located 120 km of the Tabriz City in 
northwestern Iran, and it hosts about 740 million tons of copper ore. In 
this mine, multiple images were captured from different locations of the 
muckpile after each blast. The images were analyzed separately and the 
results were combined. Discontinuity properties of the rock and the 
apparent in-situ block size of the benches were measured through 
surveying the joint parameters. 

The blasts shown by symbol ‘Akd’ were performed at the Akdaglar 
quarry by Hüdaverdi et al. [34]. The Akdaglar quarry is located in 
northern Istanbul, Turkey. The research was conducted to investigate 
the application of heavy ANFO explosives in quarries. The quarry’s rock 
is sandstone. The production capacity of the quarry is 5000 ton/day. In 
the Akdaglar quarry, Wipjoint and Wipfrag image processing software 

was applied on each blast and gathered the block size distributions 
before and after the blasts.  

The blasts shown by symbol ‘Mr’ were obtained from the research of 
Ouchterlony et al. [35] performed in the Mrica quarry in Indonesia. The 
research was part of SveDeFo’s investigations on the fragmentation 
prediction models. 

Generally, the blast design parameters and the rock mass parameters 
are considered together to create a mean fragment size prediction 
model. Most of the existing models that are used to predict the rock 
fragmentation consider the intact rock and rock mass properties on one 
side with the other side being the intact mean fragment size along with 
the associated energy. Three theories are concerned with the required 
energy for fragmentation. However, Bond’s theory is generally 
recognized to be the best model for describing blasting operations 
compared to the others [36]. Kuznetsov showed that the mean fragment 
size of a muckpile is a function of powder factor and the geological 
structure. He suggested that, for a particular rock type, the mean 
fragment size is related to the quantity of used explosives [15, 16]. Based 
on the researches by Ouchterlony and Cunnigham, the joint spacing, the 
specific gravity of rock and the specific charge are highly correlated with 
rock fragmentation [37-38, 39, 40, 41]. Also, the contribution of the 
specific charge is seen to be higher in the proposed model by Chung & 
Katsabanis rather than the Kuz-Ram model [42]. Another important 
parameter on fragmentation is the in-situ block size. The in-situ block 
size plays a major role in creating the mean fragment size of a muckpile. 
Kim and Kemeny developed a model for rock fragmentation in which 
they demonstrated the in-situ block size to be the most effective 
parameter on fragmentation [8]. 

The proposed equation (Eq. 1) has the intact rock and the rock mass 
properties on one side with the other side being the specific explosives 
energy and the mean fragment size. 

Xi × ρr = Se × F (1) 
Where Xi is the average apparent in-situ block size (meter), ρr is the 

specific gravity of the rock (g/cm3), Se is the specific explosive energy 
(Kcal/t), and F is the mean fragment size (cm). One may rearrange the 
above equation to obtain a better-arranged equation as below: 

(2)       ci×X b(rρ/Se )a ×= F 

In this study, SPSS V.16 software was used for statistical and 
regression analyses. The values of a, b and c coefficients were 579.354, -
0.822 and -0.137, respectively, with the corresponding determination 
coefficient being R2=0.470.  

The burden parameter is one of the most important and critical 
variables in designing the blast pattern in open pit mines to which other 
blasting variables are associated. Its value depends upon the blast hole 
diameter, rock characteristics, and the type of utilized explosives [12, 
43]. In the Kou-Rustan and SveDeFo models, spacing and burden have 
the highest weights [35, 20]. Therefore, we introduced a spacing to 
burden ratio and burden into the above equation. 

(3)    e(B)×  d(B/S )× ci×X b (rρ/Se )a ×=F 
Where a, b, c, d, and e are 73.533, -0.548, 0.266, 1.089 and 0.735, 

respectively, with the determination coefficient being R2=0.750. The 
associated determination coefficient with the Eq. 3 is seen to be 
increased by 0.280 compared to that of the Eq. 2; this shows the 
influences of spacing and burden on the fragmentation process. 

Bench height is another effective parameter on rock fragmentation. 
The higher bench height leads to the higher rock column in front of the 
blasthole. By increasing the height of rock column, its strength 
decreases. Therefore, the rock column should be better broken in such 
conditions [12, 43]. As an effective parameter, this parameter is also 
included into the Kou-Rustan and Chung–Katsabanis models. To 
further increase the accuracy of the model, one may introduce the 
expression (H/B) into Eq. 3.  

(4)   f (B/H)×  e(B)×  d (B/S )× ci×X b (rρ/Se )a ×=F 
Where a, b, c, d, e and f coefficients are 78.654, -0.556, 0.266, 1.090, 

0.772 and -0.017, respectively, with the determination coefficient being 
R2=0.750. It was observed that the determination coefficient did not 
change. As it can be seen from Table 1, the minimum and maximum 
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values of the H/B ratio are 2.5 and 6 respectively. Exponentiation of 
these numbers by -0.017 is 0.97 and 0.98, respectively, which are close to 
1, since H/B tends to be eliminated. 

The specific gravity of explosive is another effective parameter on 
rock fragmentation. With increasing this parameter, the detonation 
velocity and strength of explosive will increase as well, which lead to 

further rock fragmentation. Explosives generate two types of energy: gas 
and shock waves [12], the ratio of them is related to the specific gravity 
of explosive. In the next step, this parameter was introduced into Eq. 3. 

(5)   f(rρ/eρ)×  e(B)×  d (B/S )× ci×X b (Se)a ×=F 

Table 1. data collected to develop the fragmentation model. 
Mine B S D H ρr ρe Se Xi F 

Name (m) (m) (mm) (m) (g/cm3) (g/cm3) (kcal/t) (m) (cm) 
Sun  4.5 5.5 140 12.5 2.3 0.9 145.39 0.4 22 
Sun  4.5 5.5 140 12.5 2.4 0.9 139.33 0.4 22 
Sun  4.5 5.5 140 12.5 2,3 0.9 145.39 0.4 24 
Sun  4.5 5.5 140 12.5 2.4 0.9 139.33 0.5 24 
Sun  4.5 5.5 140 12.5 2.4 0.9 139.33 0.4 25.5 
Sun  4.5 5.5 140 12.5 2.43 0.9 137.61 0.5 26.5 
Sun  4.5 5.5 140 12.5 2.5 0.9 133.76 0.8 27 
Sun  4.5 5.5 140 12.5 2.49 0.9 134.33 0.8 28.5 
Sun  4.5 5.5 140 12.5 2.6 0.9 128.62 0.8 29 
Sun  4.5 5.5 140 12.5 2.65 0.9 126.19 1.2 32 
Sun  3.5 4,9 140 12.5 2.51 0.9 161.27 1 30 
Sun  1,2 3.3 76 12.5 2.51 0.9 94.66 0.8 30 
Sun  4 5 140 12.5 2.48 0.9 127.74 0.9 35 
Sun  4 5 140 12.5 2.51 0.9 122.71 0.9 33 
Sun  4 5 140 12.5 2.7 0.9 123.85 1.2 42 
Akd  2.2 2.5 89 7 2.7 0.8 224.89 0.93 16.45 
Akd 2.2 2.5 89 7 2.7 0.8 224.89 1.15 17.25 
Akd  2 2.5 89 6.5 2.7 0.8 231.41 1.32 21.12 
Akd 2.2 2.7 89 5.5 2.7 0.8 185.78 1.26 17.37 
Akd 2.2 2.5 89 7 2.7 1.27 204.44 2.01 19.65 
Akd  2.5 2.8 89 7 2.7 1.27 160.00 1.24 15.17 
Akd 2 2.5 89 7 2.7 1.27 222.22 1.13 14.43 
Akd  2.2 2.7 89 5.5 2.7 1.27 168.89 1.86 12.71 
Mr  2.5 3 76 15 2.5 0.98 168.09 1.67 17 
Mr  2.5 3 76 15 2.5 0.99 174.46 1.67 17 
Mr  2.5 3 76 10 2.5 1.06 189.59 1.03 17.5 
Mr  2.5 3 76 15 2.5 0.98 167.93 1.67 12.5 
Mr  2.5 3 76 15 2.5 1.15 173.22 1.67 6.5 
Mr  2.5 3 76 15 2.5 1.30 136.42 1.67 12.5 
Mr  2.5 3.5 76 10 2.5 1.39 96 1.03 19 
Mr  2.5 3.5 76 10 2.5 1.27 114.24 1.03 16 
Mr  2.5 3.5 76 15 2.5 1.39 115.20 1.67 15 
Mr  2.4 3 76 10 2.5 1.21 158.52 1.03 20 
Mr  3 3.5 76 10 2.5 1.23 128.17 1.03 16.5 
Mr  3 3.5 76 10 2.5 1.25 104.96 1.03 20.5 

 
Where a, b, c, d, e and f coefficients are 160.603, -0.701, 0.260, 0.748, 

0.596 and 0.750, respectively, with the determination coefficient being 
R2=0.799. Based on these coefficients, the equation is modified as below: 

(6) 0.750(rρ/eρ )× 0.596(B )× 0.748(B/S )× 0.260i×X 0.701- (Se )160.63 ×=F 
In order to consider the effect of the borehole diameter on 

fragmentation, and to compare it with the burden value, the expression 
(S/B) was substituted by (S/D) where D is expressed in meter. 

(7)   f(rρ/eρ )× e (B )× d (D/S )× ci×X b (Se )a ×=F 
Where a, b, c, d, e and f coefficients are 49.279, -0.883, 0.138, 0.569, 

0.363 and 0.205, respectively, with the determination coefficient being 
R2=0.712. It was observed that the determination coefficient was 
decreased, since S/D tends to be eliminated, hence one may have a final 
form as that represented by Eq. 6.  

In order to assess the statistical significance of Eq. 6, a regression 
analysis was conducted on the observed and model-predicted values. 
The multiple correlation coefficient (R) is the linear correlation 
between the observed and predicted values of the dependent variable. 
Its large value (close to 1) demonstrates a strong relation. The coefficient 
of determination R2, is the squared value of the multiple correlation 
coefficient and is the most popular criterion used to judge the model fit. 
R2 is the percent of the variance in the dependent variable and is 
explained collectively by all of the independent variables. An R2 value 
close to one, as well, indicates the significance of regression. For 
example, the regression model explains the R2 value given in Table 2 
showing 80% of the variation in the mean particle size (X50). The 
residuals are the difference between the observed and the model-

predicted values. The residuals are diagnostic of the soundness of the 
model and the residual analysis is a key part of judging its quality. The 
F test was applied to test the significance of the regression model. If the 
significance value of the F statistic was less than 0.05, meaning that the 
variation explained by the model was not incidental [44]. Table 2 shows 
a significance value of very close to zero based on the F value. It indicates 
the significance of the developed regression equation. All these values 
indicate that the regression is important and strong for Eq. 6. 

Table 2. Regression analysis obtained for Eq. 6. 
R R2 Adjusted R2 Standard error Observations 

0.894 0.799 0.793 0.034 35 

Analysis of variance (ANOVA)  
 df Sum of squares 

Mean 
square F 

Significance 
F 

Regression 1 0.157 0.157 131.035 0.000 
Residual 33 0.039 0.001   

Total 34 0.196    

The exponent of the specific explosive energy is negative for Eq. 6. The 
increase of the specific explosive energy results in the decrease of the 
mean particle size. In addition, the exponents associated with other 
expressions are positive. The increase of these expressions result in the 
increase of the mean particle size. 

4. Discussion 

4.1. Validation of model 

In order to validate the proposed model, six blasts were studied in the 
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Chadormalu iron ore mine (Table 3). The mine is located 180 km 
northeastern of Yazd in Central Iran. This mine contains 400 million 
tons of iron, of which 330 million tons is the mineable reserves. In this 
mine, multiple images were captured from different locations of the 
muckpile after each blast. The images were separately analyzed using 
the Goldsize program and the results were combined. The image 
processing steps for a blast at The Chadormalu iron ore mine and the 
corresponding muckpile distribution curve are shown in Figs. 1 and 2. 
Discontinuity properties of the rock and the apparent in-situ block size 
of the benches were measured through surveying the joint parameters. 
The proposed model was further verified using a blast performed in the 
Porgera gold mine [45]. Furthermore, in this mine, image analysis was 
used to estimate the size distribution of the mine run. The predicted 
values of X50 by the proposed model were in a good agreement with the 
measured X50 (Table 4). As it can be seen from Table 4, the proposed 
model succeeded to improve the accuracy of X50 predictions by 10%, on 
average. 

 
Fig. 1. Image processing for a blast, the Chadormalu iron ore mine. 

 
Fig. 2. Distribution curve for a blast, the Chadormalu iron ore mine. 

Table 3. Data collected from the Chadormalu iron deposit and the Porgera gold 
mines. 

Mine 
Name 

B 
(m) 

S 
(m) 

D 
(mm) 

H 
(m) 

ρr 

(g/cm3) 
ρe 

(g/cm3) 
Se 

(kcal/t) 
XI 

(m) 

Chad 3 3.5 165 10 4.5 0.9 297 0.5 

Chad 3 3.5 165 10 4.5 0.9 325 0.5 

Chad 3 3.5 165 10 4.5 0.9 327 0.5 

Chad 3 3.5 165 10 4.5 1.15 430 0.5 

Chad 3 3.5 165 10 4.5 1.15 430 0.5 

Chad 3 3.55 165 10 4.5 0.9 284 0.3 

Por 5.3 6.3 200 10 2.7 1.25 195 0.55 

had 3 3.5 165 10 4.5 0.9 297 0.5 

Table 4. Comparison of results of image processing and the proposed model. 

Mine Chad Chad Chad Chad Chad Chad Por 
Measured (cm) 17.53 16.86 16.13 12 12.35 12.55 15 
Predicted (cm) 17.85 16.78 16.71 11.46 11.46 16.16 18.62 

Difference (%) 1.83 0.48 3.60 4.5 7.2 28.77 24.13 

A sensitivity analysis was carried out to determine the effectiveness 
of each parameter in Eq. 6. The sensitivity analysis was performed using 
the artificial neural network method. The artificial neural network 
method employed the criterion proposed by Yang and Zhang [46] and 
was also used by Monjezi and Dehghani [47]. According to this 
technique, the relative strength of effects (RSE) can be calculated using 
the neural network trained by the back propagation algorithm with a 
given sample set. Using the RSE, the most important factors in the 
model performance can be recognized, hierarchically [46]. For a given 
input, larger absolute values of RSE mean the greater effect on the 
corresponding output. RSE is a dynamic parameter that changes with 

the variance of input factors (Fig. 3). It was observed that the burden 
and the specific explosive energy were the most effective parameters in 
the Eq. 6. 

 
Fig. 3. The importance of parameters in Eq. 8. 

4.2. Comparison between the proposed and the Kuz-Ram  models 

A popular blasting fragmentation prediction model is the Kuz-Ram 
empirical fragmentation model which has been used widely by many 
researchers and engineers [15, 48]. The original equation developed by 
Kuzentsov [15] and Cunningham [19, 20] modified the Kuznetsov's 
equation to estimate the mean fragment size and used the Rosin–
Rammler distribution to describe the entire size distribution. The 
uniformity exponent of the Rosin–Rammler distribution was estimated 
as a function of the blast design parameters. The final equation 
suggested by Cunningham, known as the Kuz–Ram model can be given 
as follows: 

(7)   0.633 (ANFOS/115 )× 0.167e×Q 0.8- (K )A ×=mX 
Where Xm is the mean fragment size (cm), A is the rock factor, K is 

the powder factor (kg of explosives/m3), Qe is the mass of explosive per 
blast hole (kg), SANFO is the relative weight strength of explosive 
(ANFO=100). 

The rock factor “A” in Kuznetsov's equation was estimated 
incorporating the blastability Index (BI) of Lilly [49]. 

(8)     0.06(RMD+JPS+JPO+RDI+HF)=A  
Where RMD is the rock mass description (powdery or friable=10, 

blocky=20 and massive=50), JPS is the joint plane spacing (close<0.1 
m=10, 0.1 ̶ 1.0=20, >1.0=50), JPO is the joint plane orientation 
(horizontal=10, dip out face=20, strike normal to face=30, dip into 
face=40), RDI is the rock density influence equal to 25d–50 where d is 
the density and HF is the hardness factor equal to E/3, if the modulus of 
elasticity (E) is <50 GPa; HF=UCS/5, if E is >50 GPa, where UCS is the 
uniaxial compressive strength. 

Comparing the power of the proposed and the Kuz-Ram models 
shows that the specific explosive energy and the powder factor as the 
energy part of these models are almost the same. The specific explosive 
energy in the proposed model includes the powder factor and the weight 
strength of explosive in the Kuz-Ram model. In addition, the burden 
parameter as the critical parameter in the fragmentation is considered 
in the proposed model. 

As such, the predicted mean fragmentation size was compared to the 
Kuz-Ram model using the actual data obtained from the Chadormalu 
iron ore mine (Fig. 2 and Table 5). The results suggested that the 
proposed model has successfully improved the accuracy of the 
predictions by 11.37 %, on average. 

Table 5. Comparison of the mean fragment size of image processing, the 
proposed and the Kuz-Ram models in the Chadormalu iron ore mine. 

Mine Chad Chad Chad Chad Chad Chad 
Measured 
(cm) 

17.53 16.86 16.13 12 12.35 12.55 

Predicted 
(cm) 

17.85 16.78 16.71 11.46 11.46 16.16 

Kuz-Ram 20.40 18.08 17.59 13.91 13.91 19.24 
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Fig. 4. Comparison of the mean fragment size of image processing, the proposed 

and the Kuz-Ram models in the Chadormalu iron ore mines. 

Fig. 4 shows that the predicted data by the proposed and the Kuz-
Ram models are parallel. This may show that the models have the same 
base. 

5. Conclusion 

A new well-applicable model for fragmentation by blasting was 
developed based on the investigation of the effective parameters in 
various empirical models. The proposed model was calibrated by 
nonlinear fits to 35 bench blasts in different sites from the Sungun 
copper mine, the Akdaglar quarry, and the Mrica quarry. The results 
were in a good agreement with the actual data collected from the 
Chadormalu iron deposit and the Porgera gold mine that were 
employed as the validation cases. The Comparison of the powers 
between the proposed and the Kuz-Ram models showed that the 
specific explosive energy and the powder factor are almost the same. 
Moreover, a comparison was carried out between the results of the Kuz-
Ram model and those of the proposed model, in terms of X50 
estimations. The results showed that the proposed model successfully 
improved the accuracy of X50 predictions by 11.37%, on average. In 
addition, the sensitivity analysis based on the artificial neural network 
showed that the burden and specific explosive energy were the most 
effective parameters in the proposed model. The advantage of the 
proposed model over the Kuz-Ram model is its specific explosive 
energy, because this parameter includes the powder factor and the 
weight strength of explosive. 
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