تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,318 |
تعداد دریافت فایل اصل مقاله | 97,205,990 |
شبیه سازی جریان سطحی از طریق کوچکمقیاس سازی آماری داده های اقلیمی: حوضۀ دریاچۀ ارومیه | ||
اکوهیدرولوژی | ||
مقاله 6، دوره 5، شماره 2، تیر 1397، صفحه 419-431 اصل مقاله (1017.79 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2017.232662.586 | ||
نویسندگان | ||
مهسا میردشتوان1؛ ارش ملکیان* 2؛ محسن محسنی ساروی3 | ||
1دانشجوی دکتری، دانشکدۀ مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان | ||
2دانشیار، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج | ||
3استاد، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج | ||
چکیده | ||
با توجه به اهمیت بررسی پدیدۀ تغییر اقلیم، حوضۀ دریاچۀ ارومیه به عنوان یکی از حوضههای مهم آبخیز کشور به لحاظ اهمیتی که از جنبههای گوناگون زیستمحیطی، اقتصادی، اجتماعی و غیره دارد، برای مطالعۀ تغییر اقلیم و آثار آن بر جریان سطحی انتخاب شد. در پژوهش حاضر بهمنظور شبیهسازی متغیرهای اقلیمی در دورههای آتی، خروجیهای مدل گردش عمومی جوّ HadCM3 تحت دو سناریوی A2 و B2 با استفاده از روش SDSM برای دورۀ 2041ـ 2070 میلادی کوچکمقیاس شد و سپس با استفاده از مدل هیدرولوژیکی IHACRES جریان سطحی در مقیاس محلی شبیهسازی شد. نتایج کوچکمقیاسسازی نشان داد بارندگی در دورۀ 2041ـ 2070 میلادی به میزان 1/0 میلیمتر در روز تحت سناریوی A2 کاهش خواهد یافت و تحت سناریوی B2 افزایشی معادل 03/0 میلیمتر خواهد داشت. کاربرد مدل HadCM3 در حوضه نشان داد دما در دورۀ 2041ـ 2070 میلادی به میزان 2/1 و 1/1 درجۀ سانتیگراد بهترتیب تحت سناریوهای A2 و B2 افزایش خواهد یافت. نتایج شبیهسازی جریان سطحی توسط مدل IHACRES نشان داد جریان سطحی در دورۀ آتی به میزان 6/24 درصد تحت سناریوی A2 افزایش و به میزان 6/4 درصد تحت سناریوی B2 کاهش مییابد. بر اساس ارزیابیهای سناریوهای اقلیمی، تغییر اقلیم آثار متفاوتی بر منابع آب حوضه خواهد داشت که مطالعۀ آثار با روشهای مختلف نتایج بهتری را برای تصمیمگیران بهمنظور مدیریت حوضه فراهم میکند. | ||
کلیدواژهها | ||
حوضۀ دریاچۀ ارومیه؛ کوچکمقیاسسازی؛ IHACRES؛ SDSM | ||
عنوان مقاله [English] | ||
Stream flow simulation using statistical downscaling of climatic data: Urmia Lake Basin | ||
نویسندگان [English] | ||
Mahsa Mirdashtovan1؛ Arash Malekian2؛ Mohsen Mohseni Saravi3 | ||
2Associate Professor, Faculty of Natural Resources, University of Tehran, Iran | ||
32professor, Dpt. of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran | ||
چکیده [English] | ||
Due to the importance of climate change phenomenon, “Urmia Lake Basin”, as one of the most important basins in Iran from environmental, economic, social, etc., aspects, was selected to study climate change and its effects on surface flow. In this study, the outputs of HadCM3 were downscaled by SDSM downscaling model, under A2 and B2 emission scenarios and then, the future stream flow data were simulated by the use of IHACRES model for the period of 2041-2070. The results showed that the amount of precipitation will decrease 0.1 mm under the A2 scenario and will increase 0.03 mm under the B2 scenario in future. Using HadCM3 model revealed that the mean temperature will increase 1.2 and 1.1 ° C under A2 and B2 scenarios, respectively. The results of stream flow simulation revealed that the surface flow will increase 24.6 % under the A2 scenario and will decrease 4.6 % under scenario B2 in future. Based on the climatic scenarios assessment, climate change will impact on water resources of the Basin and studying these effects by different methods will provide better results for decision-makers of the Basin. | ||
کلیدواژهها [English] | ||
Urmia Lake Basin, downscaling, IHACRES, SDSM | ||
مراجع | ||
[1]. Field CB, Barros VR, Dokken D, Mach K, Mastrandrea M, Bilir T, et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2014. [2]. Qin D, Chen Z, Averyt K, Miller H, Solomon S, Manning M, et al. IPCC, 2007: Summary for Policymakers. 2007. [3]. Kabiri R, Bai VR, Chan A. Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed, Malaysia. Environmental Earth Sciences. 2015;73(1):27-37. [4]. Afrooz A, Akbari H, Rakhshandehroo G, Pourtouiserkani A. Climate change impact on probable maximum precipitation in Chenar-Rahdar River Basin. Watershed Management 2015. 2015:36. [5]. Liu J, Yuan D, Zhang L, Zou X, Song X. Comparison of three statistical downscaling methods and ensemble downscaling method based on Bayesian Model averaging in upper Hanjiang River Basin, China. Advances in Meteorology. 2015;2016. [6]. Wilby RL, Dawson CW. The statistical downscaling model: insights from one decade of application. International Journal of Climatology. 2013;33(7):1707-19. [7]. Bozkurt D, Sen OL. Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. Journal of hydrology. 2013;480:149-61. [8]. Etemadi H, Samadi S, Sharifikia M. Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland. Climate dynamics. 2014;42(11-12):2899-920. [9]. Farzaneh MR, Eslamian S, Samadi SZ, Akbarpour A. An appropriate general circulation model (GCM) to investigate climate change impact. International Journal of Hydrology Science and Technology. 2012;2(1):34-47. [10]. Ficklin DL, Luo Y, Luedeling E, Zhang M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology. 2009;374(1):16-29. [11]. Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H. Assessing the impact of climate change on water resources in Iran. Water resources research. 2009;45(10). [12]. Samadi S, Carbone GJ, Mahdavi M, Sharifi F, Bihamta M. Statistical downscaling of river runoff in a semi arid catchment. Water resources management. 2013;27(1):117-36. [13]. Ashraf Vaghefi S, Mousavi S, Abbaspour K, Srinivasan R, Yang H. Analyses of the impact of [14]. Abbasnia M, Tavousi T, Khosravi M. Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models. Asia-Pacific Journal of Atmospheric Sciences. 2016;52(4):371-7. [15]. Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y, Kanani R. Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change. 2011;78(3):137-46. [16]. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate dynamics. 2000;16(2):147-68. [17]. Houghton JT, Albritton D, Meira Filho L, Cubasch U, Dai X, Ding Y, et al. Technical summary of working group 1: Cambridge University Press; 2001. [18]. Wilby R, Dawson C. Using SDSM Version 4.1 SDSM 4.2. 2—a decision support tool for the assessment of regional climate change impacts. User Manual, Leicestershire, UK. 2007. [19]. Croke B, Littlewood I. Comparison of alternative loss modules in the IHACRES model: an application to 7 catchments in Wales. 2005. [20]. Littlewood I. Down,. K, Parker, JR & Post, DA 1999. IHACRES V1 0 User Guide. [21]. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 2007;50(3):885-900. | ||
آمار تعداد مشاهده مقاله: 516 تعداد دریافت فایل اصل مقاله: 376 |