تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,668 |
تعداد دریافت فایل اصل مقاله | 97,206,324 |
مقایسۀ سه روش مختلف برآورد تلفات بارش در مدل HEC-HMS در شبیهسازی رواناب (مطالعۀ موردی: حوضۀ قرهسو در کرمانشاه) | ||
اکوهیدرولوژی | ||
مقاله 7، دوره 5، شماره 2، تیر 1397، صفحه 433-447 اصل مقاله (1.2 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.232808.591 | ||
نویسندگان | ||
میلاد مرادی1؛ یعقوب دین پژوه* 2؛ سمیه عزیزی3 | ||
1دانش آموختۀ کارشناسی ارشد مهندسی منابع آب، دانشگاه شهید باهنر، کرمان، ایران | ||
2دانشیار گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران | ||
3دانشجوی کارشناسی ارشد سازه های آبی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
مدلسازی بارش- رواناب یکی از راهحلهای کلیدی در هیدرولوژی برای دستیابی به خصوصیات سیلاب، مانند میزان دبی اوج و زمان رسیدن به اوج بهشمار میرود. یکی از مشکلات اساسی در اجرای HEC-HMS در ایران و سایر کشورهای جهان، که اساساً مدل در آن توسعه داده نشده، انتخاب مناسبترین روش برای تخمین مقدار نفوذ است. در این پژوهش، عملکرد مدل HEC-HMS با استفاده از سه روش مختلف تخمین شامل نفوذ شمارۀ منحنی (CN)، گرین- آمپت و اولیه- ثابت در پیشبینی حجم رواناب، جریان اوج و زمان رسیدن به اوج سیلاب ارزیابی شد، و آبنمود رخدادهای بارش- رواناب در حوضۀ قرهسو واقع در استان کرمانشاه شبیهسازی شد. هشت رخداد بارش- رواناب، توسط مدل HEC-HMS شبیهسازی شد و با رخدادهای نظیر مشاهداتی مقایسه شد. نتایج نشان داد روش شمارۀ منحنی در پیشبینی حجم رواناب (پس از واسنجی) دقت قابل قبولی (84/0=R2، 81/0=E و 06/0=CRM) دارد. با اینحال، روش اولیه- ثابت، میزان دبی اوج را با دقت زیادی (96/0=R2، 95/0=E و 01/0=CRM) برآورد کرد. همچنین، شکل آبنمودهای واسنجیشده، بسیار شبیه به آبنمودهای مشاهداتی در روشهای شمارۀ منحنی و اولیه- ثابت بود. با اینحال، بهکارگیری روش گرین- آمپت اعتمادپذیری کمی را در برآورد حجم رواناب کل و دبی اوج از خود نشان میدهد. دقت مدل در برآورد زمان اوج سیلابهای مدلسازیشده، با مقایسۀ مقادیر مشاهداتی و شبیهسازیشده توسط روشهای منتخب ارزیابی شد که نتایج ارزیابی زمان اوج سیلاب، بیشترین اطمینانپذیری را در روش شمارۀ منحنی (36/6 درصد) نشان میدهند. | ||
کلیدواژهها | ||
آمپت؛ تلفات اولیه- ثابت؛ دبی اوج؛ شمارۀ منحنی؛ گرین- HEC-HMS | ||
عنوان مقاله [English] | ||
Comparison of the Three Different Abstraction Estimation Methods of Rainfall in HEC-HMS Model in Runoff Simulation (Case study: Kermanshah Gharasoo watershed) | ||
نویسندگان [English] | ||
Milad Moradi1؛ Yaghoub Dinpazhouh2؛ Somayeh Azizi3 | ||
1M. Sc. Graduate of Water Resources Engineering, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University, Kerman, Iran | ||
2Department of Water Engineering, University of Tabriz, Tabriz, Iran | ||
3M. Sc. Hydraulic Structures, Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz | ||
چکیده [English] | ||
Rainfall-runoff modeling is one of the key items that considered in hydrology to achieve flood characteristics. In this study, HEC-HMS model performance was evaluated using the SCS-CN, Green-Ampt and Initial and Constant infiltration methods in predicting runoff volume, peak flow and time to peak, in simulation of rainfall- runoff hydrograph at Gharasoo watershed, located in Kermanshah province. Eight rainfall–runoff events were simulated by HEC-HMS model and compared with the corresponding observations events. Results shown a well accuracy in predicting runoff volume (R2=0.84, E=0.81 and CRM=0.06) was achieved using the SCS-CN method (after calibration). However, Peak flow was better estimated using the Initial and Constant method (R2=0.96, E=0.95 and CRM=0.01). Furthermore, shape of the calibrated hydrographs were very similar to the observations hydrographs for both SCS-CN and Initial and Constant methods. However, adopting the Green-Ampt method, showed low reliability in total runoff volume and peak flow estimating. Model accuracy in estimates of modeled the time to floods peak, were evaluated by comparing observed and simulated values through the selected approaches, so that the results of time to floods peak showed the highest reliability in SCS-CN method (6.36%). | ||
کلیدواژهها [English] | ||
Green-Ampt, HEC-HMS, Initial & Constant losses, Peak flow, SCS-CN | ||
مراجع | ||
[1]. Zhang Y, Wei H, Nearing MA. Effects of antecedent soil moisture on runoff modelling in small semiarid watersheds of southeastern Arizona. Hydrology and Earth System Sciences, 2011; 15:3171–3179. [2]. Gessesse B, Bewket W, Bräuning A. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development, 2015; 26:711–724. [3]. Shokri S, Behnia AA, Radmanesh F, Akhond Ali AM. Watershed flood hydrograph estimation using HEC-HMS and geographic information system (Case study: Idanak watershed). Journal of Watershed Management Research. 2012; 3(5): 63-80 (In Persian). [4]. Gumindoga W, Rwasoka DT, Nhapi I, Dube T. Ungauged runoff simulation in Upper Manyame catchment, Zimbabwe: Application of the HEC-HMS model. Physics and Chemistry of the Earth, 2016; Parts A/B/C. [5]. Gao Y, Yuan Y, Wang H, Arthur R, Schmidt R, Wang K, Liu Y. Examining the effects of urban agglomeration polders on flood events in Qinhuai River basin, China with HEC –HMS model. Water Science & Technology, 2017; in press. [6]. Rahman KU, Balkhair KS, Almazroui M Masood A. Sub-catchments flow losses computation using Muskingum–Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi Arabia. Modeling Earth Systems and Environment, 2017; 3(1):p4. [7]. Garmei R, Faridhosseini, AR, Hasheminia, SM, Hojjati, A. Comparing PSO Algorithm Automatic Calibration and Nelder&Mead Algorithm on the HEC-HMS Hydrologic Model (Case Study: Kardeh Watershed). Journal of Water and Soil Conservation. 2016; 22(5): 247-260 (In Persian). [8]. Kaboosi K, Jelini R. Investigation of performance indices and the rule of detention reservoir on flood control (case study: Jafarabad watershed in Golestan province). 2016; 5(4):35-46 (In Persian). [9]. Taheri Tizro A, Pakdel Khasmakhi H, Marofi S, Vazifedoust, M. Integrated HEC-HMS and GLDAS models to runoff estimate of ungauged area. Journal of Water and Soil Conservation. 2016; 23(4):101-118 (In Persian). [10]. Dariane AB, Javadianzadeh MM, James LD. Developing an efficient auto-calibration algorithm for HEC-HMS program. Water Resources Management, 2016; 30(6):1923-1937. [11]. Oleyiblo JO, Li ZJ. Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China. Water Science and Engineering, 2010; 3(1):14-22. [12]. Feldman AD. Hydrologic modelling system HEC-HMS, technical reference manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC, 2000; Davis, CA, USA. [13]. Verma AK, Jha MK, Mahana RK. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy and Water Environment, 2010; 8:131–144. [14]. Song XM, Kong FZ, Zhu ZX. Application of Muskingum routing method with variable parameters in ungauged basin. Water Science and Engineering, 2011; 4(1):1-12. [15]. Wischmeier WH, Smith DD. Prediction rainfall erosion losses. 1978; Handbook No. 537 USDA:Washington D.C. [16]. Jin H, Liang R, Wang Y, Tumula P. Flood–runoff in semi-arid and sub-humid regions, a case study: a simulation of Jianghe watershed in Northern China. Journal of Water, 2015; 7:5155–5172. [17]. USDA-SCS. National engineering handbook Section 4: Hydrology. US Government Printing Office: 1972; Washington, DC, USA. [18]. Tukey JW. The problem of multiple comparisons. Unpublished manuscript. In The Collected Works of John W. Tukey VIII. Multiple Comparisons, 1953; 1948–1983. [19]. Kamali B, Jamshidi SM, Abbaspour KC. Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrological Processes, 2013; 27:4028–4042. [20]. Shrestha S, Mukand SB, Das Gupta A, Kazama F. Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environmental Modelling and Software, 2006; 21:961–975. [21]. Baginska B Milne-Home W, Cornish PS. Modelling nutrient transport in Currency Creek, NSW, with Ann-AGNPS and PEST. Environmental Modelling and Software, 2003; 18:801–808. [22]. Van Liew MW, Garbrecht J. Hydrologic simulation of the little Washita torrent experimental watershed using SWAT. Journal of the American Water Resources Association, 2003; 39:413–426. [23]. El Hassan AA, Sharif HO, Jackson T, Chintalapudi S. Performance of a conceptual and physically based model in simulating the response of a semi-urbanized watershed in San Antonio, Texas. Hydrological Processes, 2013; 27:3394–3408. [24]. Cydzik K, Hogue TS. Modelling postfire response and recovery using the Hydrologic Engineering Center Hydrologic Modelling System (HEC-HMS). Journal of the American Water Resources Association, 2009; 45:702–714.Ficklin DL, Zhang M. A comparison of the curve number and GreenAmpt models in an agricultural watershed. Transactions of the ASABE, 2013; 56: 61–69. [25]. Lane LJ, Diskin MH, Wallace DE, Dixon RM. Partial area response on small semiarid watersheds. Water Resources Bulletin, 1978; 14:1143–1158. [26]. Saxton KE, Rawls WJ, Romberger JS, Papendick RI. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 1986; 50:1031–1036. [27]. Halwatura D, Najim M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling and Software, 2013; 46:155–162.
| ||
آمار تعداد مشاهده مقاله: 742 تعداد دریافت فایل اصل مقاله: 531 |