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Abstract 
A late Cenomanian-early Turonian interval (Hamam-ghaleh section) adjusted with the transition of Aitamir and Abderaz formations 
has been investigated in the east of Koppeh-Dagh Basin to examine geochemical anomalies and environmental perturbations related to 
the oceanic anoxic event 2 (OAE2). The study succession is composed of dark gray shale and glauconitic sandstone of Aitamir 
Formation, which is conformably overlain by cream marl and marly limestones of Abderaz Formation. The dark shale of the upper 
Aitamir Formation indicate higher organic matter concentrations especially in the two intervals at the end of Rotalipora cushmani 
biozone and at the middle part of Whiteinella archaeocretacea biozone. These intervals are characterized by higher detrital input 
(quartz and feldspar) and chemical alteration (high kaolinite/illite ratios), which suggest a warm-humid condition coeval with high 
productivity during the OAE2. The Aitamir Formation also shows higher total sulfur (TS) values associated with deposition of 
framboidal pyrite reflecting an oxygen deficiency, which provided favorable condition for reduction of sulfate. The warm and humid 
periods in the study section were followed by the cooler and drier intervals associated with decreased TOC values and chemical 
weathering. These cooling periods might be caused by falling of atmospheric CO2 due to large amount of carbon burial in sediments 
and high silicate weathering. The δ13Corg positive excursions of around 1‰ are other characteristics of these cooler-drier intervals, 
which were result of high burial of light carbon (12C) in the organic matter and lower isotopic differentiation in low atmospheric pCO2. 
At the top of study section, decrease of TOC and TS contents, low detrital input, decreased chemical weathering, and recovery of 
carbon isotope profile to the lower values indicate that the environmental conditions had returned to the normal oxygenated sea water 
after the OAE2.  
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Introduction 
Global changes in climate, environment and 
oceanography leave the signatures in geochemical 
proxies of marine or terrestrial sedimentary records 
(Weissert et al., 2008). Characterization of 
depositional units and their correlation based on 
stratigraphic and geochemical variations initiated 
usage of the term “chemostratigraphy” that have 
been more frequent from the 1980s (Ramkumar, 
2015). 

The mid-cretaceous represents one of the most 
extensive geochemical anomalies in the 
Phanerozoic Eon, which has been largely studied 
based on chemostratigraphic analysis (Schlanger 
and Jenkyns, 1976; Arthur et al., 1985; Leckie et 
al., 2002; Jarvis et al., 2006; Voigt et al., 2006; 
Jenkyns, 2010; Jarvis et al., 2011, 2015 among 
others). During this episode dysoxia and anoxia 
referring to Oceanic Anoxic Events (OAEs; 
Schlanger and Jenkyns, 1976) occurred episodically 
across the marine basins (e.g., Schlanger and 
Jenkyns, 1976; Arthur et al., 1985; Takashima et 
al., 2009; Jenkyns, 2010). OAE2 at the 
Cenomanian/Turonian boundary (CTB; 93.6 Ma, 

Ogg et al., 2008) is one of the most prominent 
OAEs, which is characterized by the widespread 
organic rich sediments (Takashima et al., 2009) 
(Fig. 1-A), worldwide documented positive carbon 
isotope excursion in both carbonate (δ13Ccarb) and 
organic matter (δ13Corg) (e.g., Scholle and Arthur, 
1980; Arthur et al., 1988; Jarvis et al., 2006, 2011; 
Voigt et al., 2006; Jenkyns, 2010; Gavrilov et al., 
2013), negative excursion in nitrogen isotope ratio 
(δ15N) (e.g., Junium and Arthur, 2007; Meyers et 
al., 2009; Baroni et al., 2015), and concentration of 
redox sensitive elements (e. g., Turgeon and 
Brumsak, 2006; Gavlilov et al., 2013). 

The CTB in the Koppeh-Dagh Basin have spread 
out between Aitamir and Abderaz formations. This 
boundary have been studied for biostratigraphy and 
palaeoecology of planktonic and benthic 
foraminifera (Abdoshahi et al., 2010; Ghoorchaei et 
al., 2011; Kalanat et al., 2016, 2017b, 2018b) and 
palaeoenvironmental changes based on nitrogen 
isotope variations (Kalanat et al., 2017a). The main 
objective of our study is to evaluate the 
environmental perturbation across OAE2 on the 
Hamam-ghaleh section in the east of Koppeh-Dagh 
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Basin. Organic-carbon isotope (δ13Corg), total 
organic carbon (TOC) and total sulfur contents (TS) 
are combined with mineralogy data to provide an 
integrated chemostratigraphic correlation between 
the study section and other CTB successions in the 
koppeh-Dagh Basin and present a regional model to 
describe palaeoenvironmental condition in the 
basin. 
 
Geological setting and study area  
Koppeh-Dagh Basin 
The formation and evolution of numerous 
continental blocks of Iran and surrounding area 
have been mainly controlled by the extensive 
orogenic activities during the opening and closure 
of Palaeotethys and Neotethys oceans (Bagheri and 
Stampfili, 2008). Palaeotethys was the ocean that 
separated Eurasian plate from the Gondwana 
(Muttoni et al., 2009). The northward subduction of 
this ocean generated the slab-pull forces on the 
Gondwana plate that led to detachment of 
Cimmerian blocks (including Iran, central 
Afghanistan, Karakoram, Pamir, etc.) and opening 
of Neotethys ocean (Bagheri and Stampfili, 2008). 
Continuing subduction of Palaeotethys ocean and 
northward drifting of the Cimmerian blocks finally 
led to collision of Iranian plate and Turan plate 
(Eurasia) around the middle-late Triassic resulting 
in the early Cimmerian orogeny (Bagheri and 
Stampfili, 2008; Robert et al., 2014). After this 
collision the deposition of Koppeh-Dagh Basin 
started on the southern margin of Eurasian plate in a 
narrow shelf and continental slope environments. 
This basin covers an area of over 500 km2 in the 
northeast of Iran (Fig. 1B) with more than 7000 m-
thick sediments including carbonate, siliciclastic 
and evaporate from Jurassic to Neogene (Afshar-
Harb, 1979; Robert et al., 2014). 

The Aitamir (Albian-Cenomanian) and Abderaz 
(Turonian to early Campanian) are two widespread 
upper Cretaceous formations in the Koppeh-Dagh 
Basin (Fig. 2). There is a conformable transition 
between the two formations based on planktonic 
foraminiferal studies and lithostratigraphic data in 
the east of Koppeh-Dagh Basin (Mokhtari et al., 
1999; Abdoshahi et al., 2010; Goorchaei et al., 
2011; Kalanat et al., 2016).  
Hamam-ghaleh section 
The Hamam-ghaleh section is located in the east of 
Koppeh-Dagh Basin, 7km south to Kalate-Nader 
City, near the Hamam-ghaleh village (Fig. 1B and 
1C). The studied succession is composed of 26 m-

thick dark gray shale and glauconitic silty sandstone 
of Aitamir Formation with low abundance of 
benthic and planktonic foraminifera and high 
concentration of framboidal pyrite. It is 
conformably overlain by 22 m-thick cream marl 
and marly limestones of Abderaz Formation, which 
are characterized by high diversity of foraminifera 
and lack of framboidal pyrite.  

The section has been previously studied based on 
planktonic foraminifera (Goorchaei et al., 2011), 
and three biozones, namely, Roralipora cushmani, 
Whiteinella archaeocretacea and 
Helvetoglobotruncana helvetica (Premoli-Silva and 
Verga, 2004) have been reported, spanning from 
late Cenomanian to early Turonian. The CTB lies in 
the W. archaeocretacea biozone, but the exact 
horizon of the boundary cannot be specified by 
planktonic foraminifera.  
 
Materials and Methods 
36 powdered and de-carbonated samples (8 shale, 4 
sandstone, 25 marl and marly limestone) were 
analyzed for TOC, TS and δ13Corg at Department of 
Earth and Planetary Science, University of Tokyo 
(Table 1). For C and S analysis, ca. 20 mg of each 
samples were measured using a Thermo Finnigan 
Flash EA 1112 series CNS analyzer using a 
retention time of 720 s. The analytical error was less 
than 0.2 wt% for TOC, and <0.1 wt% for TS, using 
sulfamethazine standard.  

Ca. 1.5 mg of samples were analyzed for δ13Corg  
by a combination system of Thermo Finnigan Flash 
EA 1112 series analyzers, CONFLO III, and Delta 
Plus mass spectrometer. The values were expressed 
in per mil (‰) relative to the Vienna Pee Dee 
Belemnite (VPDB) with the analytical error of 
<0.1% using standard IAEA-C6 sucrose. 
Bulk rock mineralogy was determined using an 
Ultima ІѴ X-Ray Diffractometer at Department of 
Earth and Planetary Science, University of Tokyo.  
 
Results 
Total organic carbon and total sulfur (TOC and TS) 
TOC values in the Hamam-ghaleh section range 
between 0.083% and 0.83%. Two organic-rich 
intervals occur at the end of R. cushmani and the 
middle part of W.archaeocretacea biozones. 
Generally, the Aitamir Formation shows relatively-
higher organic matter contents with the average 
value of 0.5%, whereas TOC values in the Abderaz 
Formation are low and oscillate around a mean of 
0.13%. The Aitamir Formation also shows mean 
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sulfur content of 0.07% and two outliners of 0.32% 
and 0.24% occur at samples HM5 and HM10 
respectively, while the TS contents in the most 

samples of the Abderaz Formation are almost 0% 
(Table 1, Fig. 3). 

 

 
Figure 1. a- Distribution of black shales and organic-rich sediments around the Cenomanian/Turonian boundary (Modified after 
Takashima et al., 2009). The position of Hamam-ghaleh section is specified by H. b- Map of Iran and surrounding areas. Neotethys 
and Paleotethys sutures zones, Koppeh-Dagh Basin and study area are indicated (modified after Angiolini et al., 2007). c- Locality 
map of Hamam-ghaleh section in 7 km south of Kalate-Nader city. 

 
Figure 2. A part of 1/100000 geological map of Kalate-Nader in the east of Koppeh-Dagh Basin (Nabavieh, 1998). The location of 
Hamam-ghaleh section laying in the Aitamir-Abderaz formations transition is indicated by star. 
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Table 1. TOC, TS and δ13 Corg of the late Cenomanian-early Turonian sequence in Hamam-ghaleh section, Koppeh-Dagh Basin. 

Sample No. Height (m) 
TOC 
(%) 

TS (%)  orgC13δ
(‰) Sample No. Height (m) TOC (%) TS (%) (‰) orgC13δ 

HM 0 0 0.45 0 - HM18 30 0.17 0 -26.30 

HM1 1.5 0.73 3-7.6*10 -26.68 HM 19 30.5 0.17 0 -26.67 

HM2 3 0.83 0.07 -27.02 HM20 31 0.19 0 -26.63 

HM3 4.5 0.35 0.04 -27.13 HM21 31.5 0.11 0 -26.60 

HM4 5.5 0.36 0.02 -26.52 HM22 32.5 - 0 - 

HM5 8.5 0.40 0.32 - HM23 33.5 0.14 0 - 

HM6 11 0.34 0.07 -26.78 HM24 34.5 0.10 0 - 

HM7 13.5 0.54 0 -27.33 HM25 35.5 0.12 0 - 

HM8 17 0.43 0.05 -27.14 HM26 36.5 0.12 0 -26.39 

HM9 19 0.53 0.03 -27.35 HM27 37.5 0.20 0 -26.25 

HM10 21 0.55 0.24 -27.20 HM28 38.5 0.13 3-5.7*10 -26.85 

HM10b 23 0.60 0.03 -27.28 HM29 39.5 0.10 0 -26.58 

HM11 24.5 0.40 0 -27.19 HM30 40.5 0.11 0 -26.70 

HM12 26.5 0.15 0 -27.19 HM31 41.5 0.13 0 -27.27 

HM13 27 0.08 0 -26.21 HM32 42.5 0.08 0.02 -26.66 

HM14 27.5 0.12 0 -26.66 HM33 43.5 0.15 0 -27.07 

HM15 28 0.10 0 -26.48 HM34 44 0.08 0 -26.02 

HM16 28.5 0.13 0 -26.71 HM35 45.5 0.15 0 -26.83 

HM17 29.5 - - - HM36 48 0.15 0 -27.09 

 

 
Figure 3. Geochemical data from the Hamam-ghaleh section including total organic carbon (TOC), total sulfur (TS), carbon isotope in 
organic matter fraction (δ13Corg), kaolinite/illite ratio as chemical weathering proxy and bulk rock mineralogy. 
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Mineralogy 
The bulk rock compositions in the lower part of the 
studied section (Aitamir Formation) consist mostly 
of quartz (61-78%) and feldspar (plagioclase + 
Kfeldespar, 15-24%). Minor components include 
calcite (0.7- 11%) and clay minerals (3-10%). A 
marked increase in calcite (50-80%) and decrease in 
detrital components (quartz and feldspar) have been 
observed in the upper part of the section (Abderaz 
Formation). This change reflects the lithological 
transition from shale and sandstone of Aitamir 
Formation to marlstone and marly limestone of 
Abderaz Formation (Fig. 3). 
 
Carbon isotopes 
The δ13Corg values in the studied section varies 
between -25.85‰ and -27.35‰. The values show a 
positive excursion to -26.52‰ at the end of R. 
cushmani biozone (HM4), and then decrease down 
to -27.35‰ at the middle part of W. 
archaeocretacea biozone (HM9), followed by an 
increase to -26.21‰ at sample HM13. After that the 
δ13Corg curve shows a negative trend until the top of 
the studied succession (Tab.1, Fig.3).  
 
Discussion  
TOC and TS in the Hamam-ghaleh section 
Generally organic matter burial is mainly controlled 
by primary productivity and preservation. Organic 
carbon flux to the sea-floor is depended on such 
variable factors as enhanced runoff, intensified 
upwelling and fertilization of oceanic water by 
volcanically derived metals like Fe. On the other 
hand, preservation proposes reduced decomposition 
of organic matter as a result of decreased bottom 
water oxygen levels and/or high sedimentation rate 
(Demaison and Moore, 1980; Canfield, 1994; 
Meyers, 1997; Meyers et al., 2006). In reality, both 
productivity and preservation have a crucial role in 
forming black shale deposits, but the plankton 
productivity is commonly the most important 
(Pedersen and Calvert, 1990, Jenkyns et al., 2002).  

OAE2 is characterized by widespread deposition 
of black shale in the deep water, upwelling zones 
(e.g. Voigt et al., 2006; Junium & Arthur, 2007; 
Mort et al., 2008) and restricted areas (e.g. Leckie 
et al., 1998; Elderbak et al., 2014), however some 
shallow water and coastal areas are black shale-free 
(Keller et al., 2008; Gertsch et al., 2010). CTB 
interval is also characterized by high TS contents 
(Wortmann et al., 1999; Brumsack, 2006; Okano et 
al., 2007; Hetzel et al., 2009), because the oxygen 

deficiency increases sulfate reduction and sulfide 
formation like pyrite in the sediments (Dean et al., 
2013).  

The Hamam-ghaleh section contains two TOC-
enriched intervals (Fig. 3). The lower and larger 
one (up to 0.8 %) is at the base of section (end of R. 
cushmani biozone) and the second one covers the 
upper part of Aitamir Formation at the middle part 
of W. archaeocretacea biozone. The TOC-enriched 
intervals accompanied by higher TS contents and 
presence of framboidal pyrite, implying the effect 
of OAE2 and expansion of oxygen deficiency in the 
upper Aitamir Formation, whereas the total sulfur in 
the following interval (Abderaz Formation) decline 
to zero percent (except for the sample HM32) (Fig 
3). Beside the expansion of oxygen minimum zone, 
higher TOC contents in the Aitamir Formation 
could be result of higher accumulation rate and/or 
delivery of the terrestrial organic matter into the 
basin.  

Comparison of TOC profile in the Hamam-
ghaleh section with two other sections in the east of 
Koppeh-Dagh basin (Gharesu and Taherabad 
sections; Fig. 4) reveals that black shale is not 
deposited in this part of basin. The TOC contents 
and position of organic-enriched intervals in the 
Aitamir Formation are almost similar (Kalanat et 
al., 2017b; Kalanat et al., 2018b).   
 
Mineralogy and palaeo-climate condition 
Kaolinite and illite are two major clay mineral 
components in the Hamam-ghaleh section. Kaolinite 
as a product of chemical weathering forms under 
humid condition (Parrish, 1998; Schnyder et al., 
2005; Gertsch et al., 2010), whereas illite is an 
indicative of moderate climate and low intensity of 
chemical alteration (Singer, 1984; Oliveira et al., 
2002). The concept of kaolinite/illite ratio, which is 
called “clay mineral index” can be used as palaeo-
climate proxy (Robert and Kennet, 1994, 1997; 
Mahmudy Gharaie et al., 2004) in chemostratigraphy. 

Kaolinite/illite ratio in the study succession 
indicates relatively higher values in the Aitamir 
Formation especially in the two organic matter-
enriched intervals. Higher clay mineral index 
accompanied with large values of detrital minerals 
in the Aitamir Formation reflect a warm and humid 
condition with higher chemical weathering and 
enhanced runoff into the basin in the late 
Cenomanian. A dramatic decrease in detrital input 
(deposition of carbonate dominant sediments) from 
Aitamir up to the Abderaz formations, and 
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relatively lower kaolinite/illite ratios can be 
interpreted as a cooler and drier climate with 
reduced chemical weathering and runoff into the 
basin.  
 
Carbon stratigraphy of the CTB 
Carbon isotopes are not so sensitive to diagenetic 
alterations, therefore potentially provide excellent 
information about changes in global carbon cycle, 
particularly variation in the burial rate of organic 
matter. It also can be used as palaeoenvironmental 
proxy for volcanogenic CO2 supply, weathering 
rate, changes in ocean circulation and release of 
methane from the clathrate in the sea floor (Pearce 
et al., 2009).  

The CTB interval is characterized by a major 
global positive excursion of δ13C that occurs in 
marine carbonate, and both marine and terrestrial 
organic matter (Arthur et al., 1988; Jarvis et al., 
2006, 2011; Caron et al., 2006). This is mainly 
attributed to the widespread removal of isotopically 
light carbon (12C) from the carbon cycle, due to 
increased biological production and/or increased 
preservation of organic matter (Schlanger and 
Jenkyns, 1976; Scholle and Arthur, 1980; Arthur et 
al., 1985, 1988). The δ13Corg values are also 
partially controlled by the isotope fractionation 

associated with photosynthesis (ɛp), whereas 
organic matter provided in lower atmospheric pCO2 

is relatively 12C-depleted (van Bentum et al., 2012).  
In the CTB, superimposed on the long‐term 

positive carbon excursion, some major features in 
δ13C pattern can be identified. Such general pattern 
in δ13C data has been first reported by Pratt and 
Threlkeld (1984) as an initial enrichment (“A”), a 
brief recovery (“B”), and a sustained plateau (“C”), 
which subsequently found in a globally correlation 
(e.g., Jarvis et al., 2006 ). The alternative view is 
that δ13C profile across the CTB includes three 
peaks, where the upper two peaks appear as two 
small projections on a broad peak (e. g., Caron et 
al., 2006; Takashima et al., 2009; Pearce et al., 
2009; Jarvis et al., 2011). 

During the past decades, the carbon stratigraphic 
correlation has been examined using 
biostratigraphic datum levels (e.g., Bengtson, 1996; 
Caron, 2006; Jervis, 2011).  

These studies indicates that the last δ13C peak 
occurs around the CTB, but minor differences are 
attributed to preservation factors associated with 
facies changes and/or difficulties in precisely 
placing the datum levels (Caron et al., 2006). 

 

 
Figure 4. TOC and δ13Corg in the Hamam-ghaleh, Gharesu and Taherabad sections. Horizontal lines show correlation of major carbon 
isotope peaks. The geochemical data for Gharesu section are from Kalanat et al. (2018b) and for Taherabad section are based on 
Kalanat et al. (2018a). The green band indicates interval of higher TOC bearing deposits and positive δ13C excursion defining Oceanic 
Anoxic Event 2. 
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At the Hamam-ghaleh section the excursion 
begins at the top of R. cushmani biozone (sample 
HM4), followed by a brief recovery around the 
middle part of W. archaeocretacea biozone (HM7-
HM12), and a longer positive excursion at the top 
of this biozone (HM13-HM18). The excursion ends 
at the upper part of section in the H. helvetica 
biozone (Fig 3). The second and the last large peak 
in the study succession occurs after sandstone unit 
and is considering as position of CTB. 
 
Comparison of δ13Corg values to other sections 
the CTB δ13Corg excursion shows the amplitude as 
much as 4‰ in many localities such as Atlantic 
region (Arthur et al., 1988; Kuypers et al., 2002; 
Sinninghe Damsté et al., 2008) Boreal Sea (Tsikos 
et al., 2004) and Tethys Ocean (Jarvis et al., 2011). 

The δ13Corg excursion value in the study area is 
about 1‰, whereas the other CTB Koppeh-Dagh 
sections in the Gharesu and Taherabad (Kalanat et 
al., 2018a, b), also reveal greater positive shifts 
about 2.5‰ and 2‰, respectively (Fig. 4). These 
differences may be caused by varying 
sedimentation rate of terrestrial organic matter in 
the shallow environments, which were transported 
from continent into the basin.  

Apart from the larger δ13Corg positive shifts in the 
Gharesu and Taherabad sections than the study 
succession, the sharp excursion and stratigraphic 
position of major shifts in the upper part of R. 
cushmani and W. archaeocretacea biozones are 
comparable. The recovery phase after the first 
excursion seems too negative in these sections 
(even more negative than post OAE2 interval) in 
compare to other sections in the world (e.g. Caron, 
2006; Jervis, 2011), which can be explained by 
enhanced fluvial delivery of isotopically light 
inorganic carbon recycled from soil organic matter. 
Only some of these material would need to be 
oxidized and make the isotopic composition of 
photic zone carbon pool lighter (Meyers et al., 
2006). This hypothesis can be confirmed in the 
study area by correspondence of the intervals 
characterizing by enhanced run off and low δ13Corg 

values (Fig. 6).  
 
Palaeoenvironmental model 
Figure 5 is a simple diagram representing the factors 
controlling palaeoenvironmental perturbation and 
climate changes during the OAE2. It proposes that the 
event was triggered by emplacement of Caribbean 

Plateau providing CO2 out -gassing and consequence 
greenhouse condition (Arthur et al., 1985; Larson, 
1991; Leckie et al., 2002; Snow and Duncan, 2005; 
Seton et al., 2009), acceleration of hydrological cycle 
and enhanced chemical weathering (Fletcher et al., 
2008; Barclay et al., 2010; Pogge von Strandmann et 
al., 2013), high nutrient input, biological productivity 
and carbon flux to the sea floor (Jones and Jenkyns, 
2001), which finally led to fostering the organic 
matter-enriched sediments.  

The high burial rate of carbon in the organic-
enriched deposits of CTB was a powerful factor to 
draw down atmospheric CO2 and cause the 
consequent cooling of the global climate (Arthur et 
al., 1988; Freeman and Hayes, 1992; Kuypers et al., 
1999). Weathering of silicate minerals also can 
remove CO2 from the atmosphere (For example, 
2CO2 + 4H2O + CaA12Si2O8  Ca++ + 2Al (OH)3 + 
2SiO2

aq + 2HCO3
-; Brady, 1991) and reduce the 

temperature (Pogge von Strandmann et al., 2013). 
Therefore, it can be concluded that the warm and 
humid intervals with high burial of organic carbon 
and intensified chemical weathering during the 
CTB could subsequently turn into cold and drier 
intervals (Fig. 5). 

This process can be followed in our study 
succession (Fig. 6). Two high TOC intervals 
coincide with warm-humid conditions, high 
chemical weathering and high detrital input. We 
propose that surface runoff provide low-density 
fresh water cap, which led to water column 
stratification. These conditions coeval with high 
productivity due to high nutrient input and influx of 
organic matter to the sea floor resulted in low 
oxygen condition, better preservation of organic 
matter and favorite environment for deposition of 
framboidal pyrite (Fig. 6a). The subsequent 
intervals are characterized by lower TOC contents, 
decreased chemical weathering and increased 
δ13Corg values, which caused by cooler and drier 
condition (Fig. 6b). The δ13Corg values returned to 
lower values in upper part of the section indicating 
a normal marine conditions and generally well-
oxygenated seafloor after the OAE2. This model 
refers to the worldwide conditions for the basins 
during the CTB, which were not influenced by 
upwelling systems (e.g. Cuba section in the 
Western Interior Seaway, Elderbak et al., 2014) and 
can be well defined for the Gharesu and Taherabad 
sections in the east of Koppeh-Dagh Basin.
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Figure 5. Factors controlling palaeoenvironmental perturbation and climate changes during the OAE2. 

 
Figure 6. Palaeoenvironmental changes across late Cenomanian-early Turonian of Hamam-ghaleh section. A model proposed based on 
TOC content, chemical weathering index and δ13Corg. 
 

In these sections the intervals of warm-humid 
conditions are coeval with lower δ18O values and 
higher TOC. Inversely, the cooler and drier intervals 
are characterized by higher δ18O values and lower 

TOC contents, which can confirm this model (Fig. 4). 
 

Conclusion  
Global warming, accelerated hydrological cycle and 
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enhanced marine primary productivity all have been 
suggested as having contribution to the occurrence 
of widespread ocean anoxia during the OAE2, but 
recognizing these factors on a regional scale has 
remained problematic. In an attempt to separate 
these forcing factors, we generated geochemical 
record in a late Cenomanian-early Turonian 
succession in the east of Koppeh-Dagh Basin laying 
in the Aitamir-Abderaz formations transition.  

However TOC˂1% in the study section indicates 
that the extensive anoxia have not been occurred in 
the region but higher TOC and TS, increased 
detrital input and kaolinite/illite ratios (as chemical 
weathering proxy) in two intervals of the Aitamir 
Formation indicate that greenhouse condition 
during OAE2 accelerated chemical weathering and 
runoff in to the basin. This condition in turn would 
have led to enhanced nutrient supply and 
productivity in the basin and either water column 
stratification. 

Increased global burial of organic matter and 
CO2 consumption due to silicate weathering 
resulted in falling atmospheric CO2 and provide a 
relatively cooler and drier conditions, which are 
characterized by lower TOC values, decreased 
detrital input and chemical weathering. These cold 
intervals were also demonstrated by δ13Corg 
excursion because organisms preferentially take up 

light carbon12C to produce organic matter. Also, it 
has been proposed that the rate of isotopic 
fractionation during carbon fixation by 
phytoplankton decreases at lower pCO2 values, 
which led to positive δ13Corg excursion. 

The acquiesced data from Hamam-ghaleh section 
indicate that upper part of the Aitamir Forrmation 
was deposited under the OAE2 impressions, but 
toward the Abderaz Formation the environment 
returned into the normal marine condition, which 
provided favorite situation for carbonate production 
and deposition of marl and limestone of the 
Abderaz Formation.  
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