Effect of fuel content on structural and magnetic properties of solution combusted \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) powders

Mohammad Naserifar, Seyyed Morteza Masoudpanah*, Somaye Alamolhoda

School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.

Received: 29 December 2017; Accepted: 17 February 2018
* Corresponding author email: masoodpanah@iust.ac.ir

ABSTRACT

Single phase \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) powders were synthesized by solution combustion method. The solution combustion method relies on the exothermic self-sustained reactions in reactive solution containing of oxidizers and organic fuels. In this work, the effects of various amounts of glycine as fuel on the powder characteristics were investigated. The structure, cation distribution, microstructure and magnetic properties were characterized by X-ray diffraction, electron microscopy and vibrating sample magnetometry techniques. The cation distributions determined by Bertaut method in which the observed reflection intensities compared with the calculated ones for supposed crystal structures. The \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) exhibited partially inverse structure in which Zn preferentially occupied tetrahedral (A) sites. The as-combusted \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) powders showed spongy structure due to the liberation a large amount of gaseous products. However, the porosity decrease with the increase of fuel content due to the increase of adiabatic combustion temperature. The saturation magnetization of the as-combusted \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) powders increased from 43 to 69 emu/g with the increase of \(f \) from 0.5 to 1 and then slightly decreases to 67 emu/g for \(f=1.5 \). The highest saturation magnetization (69 emu/g) for \(f=1 \) was attributed to the highest crystallite size and crystallinity. The coercivity also increased from 27 to 67 Oe with fuel content.

Keywords: \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \); Solution combustion synthesis; Fuel; Magnetic properties.

1. Introduction

Spinel magnetic ferrite nanoparticles have been found many applications in magnetic fluids, drug delivery, microwave devices, sensors, catalysis, etc., due to their unique physical properties and excellent chemical stability [1, 2]. The spinel ferrites have cubic structure of 32 closely packed oxygen atoms with 64 tetrahedral sites and 32 octahedral sites from which only 8 tetrahedral (A) and 16 octahedral [B] sites are occupied for electrical neutrality [3]. Among the spinel ferrites, MnZn ferrites \((\text{Mn}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4) \) have attracted much attention for their high saturation magnetization, high electrical resistivity and low power loss [4, 5]. However, the various structural, electrical and magnetic properties of spinel ferrites strongly depend on phase, cation distribution, size and morphology of particles, etc. via composition, nature of substituent(s) and preparation methods [6].

MnZn ferrite nanoparticles have been synthesized by various synthesis methods such as ball milling [7], coprecipitation [8], solvothermal [9], sol–gel [10] and solution combustion synthesis (SCS) [11]. Among these methods, SCS is a simple, energy- and time-efficient method...
for mass production of nanomaterials [12]. SCS relies on the exothermic self-sustained reactions in reactive solution including of oxidizers such as nitrates, sulfates and carbonates and organic fuels such as urea, glycine, citric acid, sucrose, etc. [13]. The released thermal energy by combustion reaction along with molecular level mixing is enough for direct synthesis of well crystalline multicomponent complicated structures as spinels, garnets, perovskites, superconductors, etc. [12, 14, 15]. Furthermore, a rapid decrease of temperature after combustion reaction by exhausting of gaseous products results in the porous nanostructures [10, 16]. The fuel nature and content mainly control the as-combusted powder characteristics such as phase, morphology, particle size and surface area [17]. The organic fuels are source of carbon and hydrogen for burning and can form complexes with metal cations, thus facilitating homogeneous mixing of cations in solutions or gels [18]. The urea, glycine, citric acid and glucose are the most commonly used fuels in combustion reactions, due to their high solubility in water, low decomposition temperature (below 400 °C), compatibility with metal nitrates and availability [19]. Lazarova et al. [17] showed the NH2-contained fuels (e.g. urea and glycine) lead to the as-combusted powders with the larger particle size and higher aggregation ability in comparison with pure carbohydrate fuels (e.g. glucose and sucrose). Shafiu et al. [20] investigated the magnetic properties of MnFe2O4-PVA nanocomposites prepared by solution combustion method using ethylene glycol as fuel. Yu and Yang also synthesized MnFe2O4 powders with the saturation magnetization of 50.1 emu/g and coercivity of 56.1 Oe by using citric acid fuel [21].

In this work, the effects of fuel to oxidant ratios (ϕ=0.5, 1 and 1.5) on the structure, cation distribution, microstructure and magnetic properties of MnZn ferrite powders were investigated. Single phase Mn_{0.8}Zn_{0.2}Fe_{2}O_{4} powders were directly synthesized by solution combustion using glycine as fuel at all ϕ values. However, the highest saturation magnetization of 69 emu/g was achieved for ϕ=1 on account of its highest particle size and highest crystallinity.

2. Experimental procedure

The required amounts of glycine (C_{2}H_{5}NO_{2}), ferric nitrate (Fe(NO_{3})_{3}·9H_{2}O), manganese nitrate (Mn(NO_{3})_{2}·4H_{2}O) and zinc nitrate (Zn(NO_{3})_{2}·6H_{2}O) obtained from Merck Co. were dissolved in the distilled water in which the different fuel to oxidant molar ratios (ϕ) of 0.5, 1 and 1.5 were used without adjusting of pH. The dark brown homogeneous solution was poured into a dish and heated till to transform into a gel while by further heating up to 250 °C, ignition reaction started from a point and propagated spontaneously towards the walls of the dish. The combusted powders were hand-crushed with a pestle.

Phase evolution was analyzed by PANalytical X-ray diffractometer (XRD) using monochromatic CuKa radiation. The average crystallite size was also calculated from the width (311) peak using Scherrer’s equation. The cation distributions were calculated by analysis of XRD patterns using Bertaut method.

The morphology and microstructure of the powders were observed by TESCAN Vega II field emission scanning electron microscopy.

A vibrating sample magnetometer (Meghnatis Daghigh Kavir Co., Iran) was also employed to measure the magnetic properties of the powders at room temperature.

3. Results and discussion

It is known that the fuel nature and fuel to oxidant ratio effect on the combustion behavior, phase constituents, morphology and electrical and magnetic properties of the as-combusted products [12, 22, 23]. Considering the typical combustion reaction byproducts as CO_{2}, N_{2} and H_{2}O, the redox processes that are taking place during combustion reactions using glycine fuel can be written according to eq. 1:

\begin{equation}
0.8 \text{Mn}(\text{NO}_3)_2 + 0.2\text{Zn}(\text{NO}_3)_2 + 2\text{Fe}(\text{NO}_3)_3 + \frac{2}{3}\chi\text{C}_2\text{H}_5\text{H}_2\text{O}_4 + 10(\phi - 1)\text{O}_2
\rightarrow
\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 + \frac{18}{\phi}\text{CO}_2 + \frac{10}{\phi}\text{H}_2\text{O} + (4 + \frac{20}{\phi})\text{N}_2
\end{equation}

(eq. 1)

The maximum temperature reached during combustion under no energy loss condition, known as adiabatic combustion temperature, is maximum for stoichiometric mixture (ϕ=1) and decreased for ϕ≠1, due to the need to heat up the excess reactants or products [19].

Fig. 1 shows the XRD patterns of the as-combusted Mn_{0.8}Zn_{0.2}Fe_{2}O_{4} powders at the different ϕ values. The indexed peaks as (220), (311), (222), (400), (422), (511) and (440) related to cubic spinel structure (JCPDS card no. 74-2402) show the as-combusted powders are single phase MnZn
ferrite. Without need of further heat treatment, the MnZn ferrites are directly formed following solution combustion. Table 1 compares the cation distribution, lattice parameter and crystallite size of Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ powders. The cation distribution can be obtained from the analysis of XRD patterns by Bertaut method in which the observed intensity ratios is comparing with the calculated intensity ratios scattering factor of oxygen atom and FA and FB are described for 220, 400 and 422 planes as follows [26]:

$$F_{220} = -8F_A + 16f_O(csc\theta - 1)$$
$$F_{400} = 8(F_A - F_B + 4f_Ocsc\theta)$$
$$F_{422} = -8F_A + 8f_O(csc\theta - 2csc\theta + 1)$$

which u is oxygen positional parameter, f$_O$ is scattering factor of oxygen atom and F$_A$ and F$_B$ are the total scattering factor of atoms in A- and B-sites, respectively. For (Zn$_{0.20}$Mn$_{1.8}$Fe$_{2}$)$_4$O$_8$, F_A

$$I_{RLI} = |F_{RLI}|^2PL_p$$

(eq. 2)

which P is the multiplicity factor, Lp is the Lorentz-polarization factor which depends only on Bragg’s diffraction angle θ, described as follows [25]:

$$L_p = \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos 2\theta}$$

(eq. 3)

and F_{cal} is the structure factor which can be described for 220, 400 and 422 planes as follows [26]:

$$F_{220} = -8F_A + 16f_O(csc\theta - 1)$$
$$F_{400} = 8(F_A - F_B + 4f_Ocsc\theta)$$
$$F_{422} = -8F_A + 8f_O(csc\theta - 2csc\theta + 1)$$

which u is oxygen positional parameter, f$_O$ is scattering factor of oxygen atom and F_A and F_B are the total scattering factor of atoms in A- and B-sites, respectively. For (Zn$_{0.20}$Mn$_{1.8}$Fe$_{2}$)$_4$O$_8$, F_A

![Fig. 1- XRD patterns of the as-combusted Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ powders at the various ϕ values.](image)

Table 1: The cation distribution, lattice parameter and crystallite size of Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ as a function of ϕ values

<table>
<thead>
<tr>
<th>ϕ</th>
<th>Cation distribution</th>
<th>a_{exp} (Å)</th>
<th>a_{ab} (Å)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>(Mn${0.19}$Zn${0.20}$Fe${0.61}$)4[Mn${0.61}$Fe${1.39}$]$_4$O$_4$</td>
<td>8.2457</td>
<td>8.2466</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>(Mn${0.12}$Zn${0.20}$Fe${0.68}$)4[Mn${0.68}$Fe${1.32}$]$_4$O$_4$</td>
<td>8.2425</td>
<td>8.2439</td>
<td>37</td>
</tr>
<tr>
<td>1.5</td>
<td>(Mn${0.13}$Zn${0.20}$Fe${0.67}$)4[Mn${0.67}$Fe${1.33}$]$_4$O$_4$</td>
<td>8.2436</td>
<td>8.2443</td>
<td>25</td>
</tr>
</tbody>
</table>
and \(F_B \) can be written as

\[
F_A = 0.2f_{Zn} + (1 - \delta)f_{Mn} + \delta f_{Fe} \quad (eq. 7)
\]

\[
F_B = \delta f_{Mn} + (2 - \delta)f_{Fe} \quad (eq. 8)
\]

which \(f_{Zn} \), \(f_{Mn} \) and \(f_{Fe} \) are scattering factors of zinc, iron and manganese atoms, respectively. The peaks' intensity ratios like \(I_{220}/I_{400} \), \(I_{400}/I_{440} \), and \(I_{440} \) as a function of \(\delta \) calculated and compared with the observed ratios for exploring the minimum of agreement factor \((R) \) [27]:

\[
R = \frac{(I_{hkl})_{obs} - (I_{hkl})_{calc}}{(I_{hkl})_{calc}} \quad (eq. 9)
\]

It should be noted that there is no need for the thermal correction because of the spinel's high melting point and hence very small thermovibration effect of spinel on XRD patterns. The cation site occupancy mainly depends on the ionic radius, crystal field, electronic configuration and ionic polarization of \(\text{M}^{2+} \) cations [27]. Cation distributions show that the \(\text{Mn}_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4 \) powders have a partially inverse structure in which the divalent cations (\(\text{Mn}^{2+} \)) are distributed in tetrahedral (A) and octahedral (B) sites. The \(\text{Zn}^{2+} \) cations occupy preferentially tetrahedral sites, due to the covalent bonding effects [3]. The inversion degree defined as the fraction of \(\text{Fe}^{3+} \) cations in tetrahedral sites (A-sites) depends on synthesis condition. The highest inversion coefficient of 0.68 was achieved for \(\varphi=1 \) due to the sufficient distribution of cations originated from the higher combustion temperature.

The theoretical lattice parameter can be calculated by utilizing of the following equation [26]:

\[
a_{th} = \frac{a}{2N^2/3} \left[(r_A + R_O) + \sqrt{3}(r_B + R_O) \right] \quad (eq. 10)
\]

which \(r_A \) and \(r_B \) are the radii of tetrahedral and octahedral sites and \(R_O \) is the radius of the oxygen ions (\(R_O = 1.32 \) \(\text{Å} \)). The mean ionic radius of the tetrahedral (A) and octahedral (B) sites (\(r_A \) and \(r_B \)) can be calculated by the following relations [26]:

\[
r_A = 0.2 r_{Zn}^{2\text{+}} + (0.8 - x)r_{Mn}^{2\text{+}} + x r_{Fe}^{3\text{+}} \quad (eq. 11)
\]

\[
r_B = \frac{1}{2} [x r_{Mn}^{2\text{+}} + (2 - x) r_{Fe}^{3\text{+}}] \quad (eq. 12)
\]

The theoretical \((a_{th}) \) and experimental \((a_{exp}) \) lattice parameters are given in Table 1. The agreement between \(a_{th} \) and \(a_{exp} \) indirectly verifies the cation distribution deduced from X-ray intensity calculations [28]. Table 1 also presents the crystallite size increases from 10 to 37 \(\text{nm} \) and then decreases to 25 \(\text{nm} \) with the increasing of fuel/oxidant molar ratio (\(\varphi \)) which is similar to the adiabatic combustion temperature.

Fig. 2- SEM micrographs of the as-combusted \(\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) powders at (a and b) \(\varphi=0.5 \), (c and d) \(\varphi=1 \) and (e and f) \(\varphi=1.5 \).
SEM micrographs of the as-combusted Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ powders at the various ϕ values are compared in Fig. 2. The thermal energy and gases generated during the combustion reaction control the morphologies of as-combusted powders. The higher amounts of released gases increase the porosity and surface area, while the released thermal energy is the main factor for particle growth. The fuel type and fuel/oxidant ratio (ϕ) mainly effect on the released thermal energy and gases. The spongy structure and plenty of tiny pores are induced by escaping the large amount of gases. Although the amount of released gases increases with fuel content, the amount and size of porosity decreases. It is reasonable to consider the released gas to fuel ratio, decreasing with fuel content [29]. The low combustion temperature at ϕ=0.5 leads to small particles with low crystallinity. The sintered particles in pore walls at ϕ=1 can be attributed to its highest adiabatic temperature. However, the rather large particles with high crystallinity at ϕ=1.5 are due to the complete combustion together with exhausting a large amount of gases.

Fig. 3 shows the magnetization curves of the as-combusted powders at the various fuel to oxidant ratios (ϕ). The values of saturation magnetization (Ms) and coercivity (Hc) as a function of fuel content are presented in Table 2. The saturation magnetization was calculated by plotting the high-field region of the M versus 1/H and extrapolating the data as 1/H → 0 (extrapolation to infinite field). The magnetic properties of spinel magnetic ferrite strongly depend on the phase, cation distribution, particle size and morphology and so on [6]. The saturation magnetization increases from 43 to 69 emu/g with the increase of ϕ from 0.5 to 1 and then slightly decreases to 67 emu/g for ϕ=1.5. The high purity and crystallinity of the as-combusted Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ powders at ϕ=1 result in the maximum saturation magnetization. With the increase of ϕ values from 0.5 to 1, the coercivity of the as-combusted powders increases from 27 to 60 Oe, due to the increase of crystallinity. However, the Hc slightly increases to 67 Oe for ϕ=1.5, due to its reduction of crystallite size. The increasing of domain walls as pinning factors for movement of

<table>
<thead>
<tr>
<th>Method</th>
<th>ϕ values</th>
<th>Ms (emu/g)</th>
<th>Hc (Oe)</th>
<th>Particle size (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution combustion</td>
<td>0.5</td>
<td>43</td>
<td>27</td>
<td>10</td>
<td>This work</td>
</tr>
<tr>
<td>synthesis</td>
<td>1</td>
<td>69</td>
<td>60</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>66</td>
<td>67</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Coprecipitation</td>
<td>50</td>
<td>22</td>
<td></td>
<td></td>
<td>[20]</td>
</tr>
<tr>
<td>Hydrothermal</td>
<td>51</td>
<td>6</td>
<td></td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>Thermal decomposition</td>
<td>15</td>
<td>22</td>
<td></td>
<td></td>
<td>[29]</td>
</tr>
<tr>
<td>Spark plasma sintering</td>
<td>83</td>
<td>1200</td>
<td></td>
<td></td>
<td>[9]</td>
</tr>
<tr>
<td>Ball milling</td>
<td>60</td>
<td>50</td>
<td></td>
<td></td>
<td>[30]</td>
</tr>
</tbody>
</table>
magnetic domains is responsible for the increase of coercivity with the decrease of crystallite size [30].

The saturation magnetization and crystallite size of the MnZn ferrite powders synthesized by the various physical and chemical methods are also listed in Table 2. The difference in the magnetic properties of the MnZn ferrite powders were mainly assigned to the difference in particle sizes.

The larger particle size and higher crystallinity of solution combusted powders lead to the higher saturation magnetization [1, 9, 31-33].

4. Conclusions

Solution combustion synthesis has been used for preparation of single phase Mn$_x$Zn$_{1-x}$Fe$_2$O$_4$ powders. The Mn$_x$Zn$_{1-x}$Fe$_2$O$_4$ exhibited partially inverse structure in which Zn preferentially occupied tetrahedral (A) sites. The crystallite size increased from 10 to 37 nm and then decreased to 25 nm with the increase of fuel to oxidant ratio (φ values). The porosity of as-combusted powders decreased with fuel content. The highest saturation magnetization of 69 emu/g was achieved at φ=1 on account of the high purity and crystallinity.

References