تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,107,697 |
تعداد دریافت فایل اصل مقاله | 97,212,474 |
اثر باکتریهای محرک رشد مقاوم به شوری جدا شده از ریزوسفر گیاهان شورپسند بر رشد و مقاومت گندم تحت تنش شوری | ||
علوم گیاهان زراعی ایران | ||
مقاله 4، دوره 49، شماره 1، خرداد 1397، صفحه 45-56 اصل مقاله (638.75 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijfcs.2017.227071.654274 | ||
نویسندگان | ||
مریم صفدریان1؛ حسین عسکری2؛ مسعود سلطانی نجف آبادی* 3؛ قربانعلی نعمت زاده4 | ||
1دانشجوی دکتری فیزیولوژی مولکولی پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری. | ||
2- استادیارگروه بیوتکنولوژی، دانشکده مهندسی انرژی و فناوری های نوین دانشگاه شهید بهشتی، تهران. | ||
3هیات علمی- موسسه تحقیقت اصلاح و تهیه نهال و بذر- سازمات تحقیقات آموزش و ترویج کشاورزی | ||
4- Professor, Biotechnologyand Genetics Research Institute of Tabarestan Sari University of Agricultural Sciences and Natural Resources, Sari, Iran | ||
چکیده | ||
به منظور بررسی اثر ریزوباکتری های محرک رشد گیاه بر مقاومت به شوری گندم در مرحله رشد رویشی، تعدادی جدایه از خاکهای ریزوسفری گیاهان شورپسند، منطقه بیابانی اصفهان و گلستان با شوری بیش از 100 میلی مولار جداسازی و از نظر تحمل به تنش شوری، صفات حل کنندگی فسفات، تولید اکسین، سیدروفور و سیانید هیدروژن غربالگری شدند. از بین 50 جدایه بدست آمده،10 جدایه متحمل به شوری بین20-5 درصد بوده و تعداد 8 جدایه قادر به انحلال فسفات نامحلول (2012-188) میکرو گرم بر میلی لیتر و 6 جدایه هم مولد اسید ایندول-3-استیک (1/4-7/121) میکرو گرم بر میلی لیتر بودند. دو جدایه سیدروفور تولید نموده و هیچ یک از جدایه ها توان تولید سیانید هیدروژن را نداشتند. اثر 10 جدایه باکتری متحمل به شوری و دو سطح صفر و 100 میلی مولار شوری بر روی رشد گندم تحت تنش شوری 100 میلی مولار در مراحل اولیه رشد رویشی رشد انجام شد. نتایج تاثیر باکتریهای محرک رشد بر وزن خشک ریشه و ساقه، وزن خشک کل، میزان اتیلن در شرایط تنش شوری روی رقم قدس گندم نشان داد که تلقیح با باکتریهای منتخب در تعدیل اثرات مضر شوری در دوره رشد رویشی گندم موثر بود. در تلقیح با جدایه 88 (بهترین جدایه از نظر افزایش رشد در تنش شوری) وزن خشک کل (261درصد)، وزن خشک ساقه (390 درصد) و ریشه (270 درصد) در مقایسه با تیمار شاهد افزایش و میزان اتیلن (24درصد) کاهش یافت. | ||
کلیدواژهها | ||
اتیلن؛ اکسین؛ باکتری محرک رشد؛ شوری؛ گندم | ||
عنوان مقاله [English] | ||
Effect of salt-tolerant plant growth-promoting rhizobacteria isolated from rhizosphere of halophyte plants on growth wheat (Triticum aestivum L.) in saline environment | ||
چکیده [English] | ||
To study the efficiency of salt-tolerant plant growth-promoting rhizobacteria, on salt resistance of wheat plant (Triticum aestivum L) at growth stage, some strains isolated from the rhizosphere of halophyte plant rhizosphere which were collected from the deserts of four provinces (Isfahan, Yazd, Golestan and Hormozgan) of Iran. All strains were screened on their ability as salt tolerant, phosphate solubility, Auxin, siderophore and hydrogen cyanide (HCN) production. 10 isolates from a total of 50 isolates were salt tolerant to 5-20 percent salinity and have plant growth promoting (8 isolates isolates were able to solubilize insoluble phosphate and 6 isolates produced Indole-3-acetic acid (IAA). Only two isolates produced siderophore and none of the isolates had the ability to produce cyanide hydrogen. Effects of 10 salt tolerant bacteria and two salt treatments (zero and 100 mM) on growth of A pot experiment as a factorial experiment in a completely randomized design with three replications with two factors including bacteria (10 salt tolerant bacteria) and salinity in salinity levels (zero and 100 mM). The effect of PGPR on root and shoot dry weight, total dry weight, the amount of ethylene on Ghods wheat in saline conditions showed that the inoculation with selected bacteria in modulating the negative effects of salinity on growth period of wheat has been effective. Total dry weight (261%), shoot (390%) and root dry weight (270%) increased compared with control treatment and decreased levels of ethylene (24%) in salinity. | ||
کلیدواژهها [English] | ||
Auxin, Ethylene, Plant growth promoting, salt, Wheat | ||
مراجع | ||
10. Ji, Y. X., & Huang, X. D. (2008). Amelioration of salt stress on annual Ryegrass by ACC deaminase-containing plant growth-promoting rhizobacteria. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 16-18 May 2008. Shanghai. Pp: 4104-4107.
11. Habib S. H., Kausar H., & Saud H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed. Res. Int. 2016:6284547.
12. Hmaeid, N., Metoui, O., Wali, M., Zorrig, W. & Abdelly, C. (2014). Comparative effects of Rhizobacteria in promoting growth of Hordeum maritimum L. plants under salt stress. Journal of Plant Biology Research 3(1):37-50.
13. Hamdi, M. A., Shaddad, M. A. K. & Doa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul, 44: 165–174.
14. Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminae –containing plant growth promoting bacteria. Plant Physiology and Biochemistry. 39:11-17.
15. Kaushal, M.S. & Wani. P. (2015). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annual Microbiology. pp. 1–8.
16. Kaye, J. Z. & Baross, A. J. (2004). Synchronous effects of temperapture, hydrostatic pressure and salinity on growth, phospholipids profiles, and protein patterns of four Halomonas species isolated from deep see hydrothermal -vent and sea surface environments. Applied and Environmental Microbiology, 56: 6220-6229.
17. Kumar K., Kumar M., Kim S. R., Ryu H. & Cho Y. G. (2013). Insights into genomics of salt stress response in rice. Rice 6:27
18. Lim, J. H. & Kim, S. D. (2009). Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry, 52(5):531–8.
19. Mayak, S., Tirosh, T. & Glick, B. R. (2004). Plant growth promoting bacteria confer resistance in tomato plants salt stress. Plant Physiology and Biochemistry, 42:565-572.
20. Madani, H., Naderi Borojerdi, GH., Aghajani, H. & Pazaki, A. (2004). Comparing the effects of using phosphorus fertilizers and phosphate solubilizing bacteria in the performance of seed, biology and relative content of phosphorus of tissues in autumn Brassica Napus, Journal of Plant Molecular Breeding, 6(4): 47-53.
21. Nabti, E., Bensidhoum, L., Tabli, N., Dahel, D., Weiss, A., Rothballer, M., Schmid, M. & Hartmann, A. (2014). Growth stimulation of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. European Journal of Soil Biology. 61, 20–26.
22. Nadege, A., Pacôme, A., Adolphe Adjanohoun, N., Agbessi, L. & Baba-Moussa, L. (2016).Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L). Biotechnology Research International. Article ID 7830182, 11 pages.
23. Nadeem, S. M., Zahir, Z. A., Naveed, M. & Nawaz, S. (2013). Mitigation of salinity- induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annal Microbiology, 63:225–232.
24. Payne, S. M. (1994). Detection, Isolation and characterization of siderophores. Methods in Enzymology. 235:329–44.
25. Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologyal, 17:362–370.
26. Patten, C.L. & Glick, B.R. (2002).The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol, 68:3795–801.
27. Prasad, K. (2014). Low levels of serum soluble receptors for advanced glycation end products, biomarkers for disease state: myth or reality. International Journal of Angiology: Official Publication of the International College of Angiology, Inc. 23, 11-16.
28. Rajput, L., Imran, A., Mubeen, F. & Hafeez, F. Y. (2013). Salt-tolerant pgpr strain planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum l.) Cultivated in saline soil. Pakistan journal of botany, 45(6):1955-1962.
29. Rehman, A. & Nautiyal, C. S. (2002). “Effect of drought on the growth and survival of the stress-tolerant bacterium Rhizobium sp. NBRI2505 sesbania and its drought-sensitive transposon Tn5 mutant,” Current Microbiology, 45(5): 368–377.
30. Sandeep I. S., Kuanar A., Akbar A., Kar B., Das S. & Mishra A. (2016). Agroclimatic zone based metabolic profiling of turmeric (Curcuma Longa L.) for phytochemical yield optimization. Ind. Crops Prod. 85, 229–240.
31. Sadeghi, A., Karimi, E., Dahaji, P. A., Javid, M. G., Dalvand, Y. & Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol, 28, 1503–1509.
32. Siddikee, M. A., Glick, B. R., Chauhan, P. S., Yim & WJSa, T. (2011). Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1- aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry, 49, 427–434.
33. Suareza, C., Cardinalea, M ., Rateringa, S., Steffensb, D., Jungb, S.,. Zapata, A M., Rita, M., Plauma, G & Schnella, S. (2015). Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Applied Soil Ecology. 95: 23–30.
34. Suarez, C., Ratering, S., Geissler-Plaum, R. & Schnell, S. (2014). Hartmannibacter diazotrophicus gen. nov. sp. nov., a novel phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt meadow plant. International Journal of Systematic and Evolutionary Microbiology. 64:3160–3167.
35. Ventosa, A., Nieto, J. J. & Oren, A. (1998). Biology of moderately holophilic aerobic bacteri. Microbiology and Molecular Biology Reviews. 24: 504-544.
36. Wang, C., Knill, E., Glick, B. R. & Defago, G. (2000). Effectc of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonase fluorescens strain CHAO and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities.Canadian Journal of Microbiology. 46:898-907.
37. Watanabe, F. & Olsen, S. (1965). Test of an ascorbic acid method for determining phosphorous in water and NaHCO3 extracts from soil. Soil Science Society of America, Proceedings, 29:677–678
38. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173:697–703.
39. Yildirim, E. & Taylor, A. G. (2005). Effect of biological treatments on growth of bean Plants under Salt Stress. Annual Report of the Bean Improvement Cooperative, 48: 176-177.
40. Yang, J., Kloepper, J. W. & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Science, 14, 1–4.
| ||
آمار تعداد مشاهده مقاله: 703 تعداد دریافت فایل اصل مقاله: 889 |