تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,504,756 |
تعداد دریافت فایل اصل مقاله | 98,768,810 |
شناسایی مکان، زمان فعالیت و شدت منبع آلایندۀ نامشخص در رودخانه | ||
مدیریت مخاطرات محیطی | ||
مقاله 4، دوره 5، شماره 1، فروردین 1397، صفحه 35-52 اصل مقاله (873.09 K) | ||
نوع مقاله: پژوهشی کاربردی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2018.248316.310 | ||
نویسندگان | ||
اکرم دهمردان1؛ مهدی مظاهری* 2؛ جمال محمدولی سامانی3 | ||
1دانشجوی کارشناسی ارشد سازههای آبی، دانشگاه تربیت مدرس | ||
2استادیار گروه سازههای آبی، دانشگاه تربیت مدرس | ||
3استاد گروه سازههای آبی، دانشگاه تربیت مدرس | ||
چکیده | ||
در سالهای اخیر، با افزایش جمعیت و توسعۀ روزافزون صنعت، بیشتر منابع آب جهان، اعم از رودخانهها، دریاچهها و آبهای زیرزمینی آلوده شدهاند؛ این امر سبب ایجاد مسائل و مشکلات بهداشتی چشمگیری برای انسان و سایر موجودات زنده شده است. در صورت ادامۀ این وضعیت، بشر با بحران کمبود آب و مخاطرات جبرانناپذیر مواجه خواهد شد. کنترل پیوستۀ منبع آلاینده، سبب جلوگیری از آلودگی آب میشود. با اجرای اقداماتی پیش از وقوع با هدف کاهش مخاطرات محیطی، میتوان هزینههای تحمیلشده را بهشدت کاهش داد و بحران را مدیریت کرد. مهمترین راه حفظ کیفیت منابع آب و کنترل آن، تدوین قوانین و استانداردهای مناسب و سختگیرانه و برنامهریزی برای اجرای صحیح آن است. کیفیت آب رودخانهها باید بهصورت مستمر پایش شود، چراکه برخی صنایع بهدلیل وجود محدودیتها، اغلب بهصورت نامحسوس و ناگهانی آلایندهای با غلظت زیاد را وارد رودخانه میکنند. تعیین زمان و مکان آلایندهای که در گذشته رها شده است، میتواند در محافظت از رودخانهها بسیار کمککننده باشد. هدف اصلی این تحقیق، شناسایی مکان منبع آلاینده در رودخانه بدون داشتن هیچگونه اطلاعات پیشینی از منبع در چارچوب کاملاً ریاضی است. مزیت مدل بازگشتی ارائهشده آن است که تنها با برداشت منحنی غلظت-زمان از دو نقطۀ بالادست و پاییندست منبع آلاینده، میتوان مکان منبع را با بیشترین دقت بهدست آورد. پس از بهدست آوردن مکان منبع، شدت منبع آلاینده بازیابی میشود. این تحقیق، ضریبهای جریان خطا را بررسی کرده است تا خطای حاصل در نتایج شناسایی مکان و بازیابی شدت منبع آلاینده مشاهده شود. نتیجه نشان داد که این مدل به خطای ضریبها حساس نیست. صحتسنجی بین حالت دقیق و نتایج حاصل از مدل معکوس با دقت مناسبی قابل قبول بود. | ||
کلیدواژهها | ||
بازیابی شدت منبع آلایندۀ نقطهای؛ حل معکوس؛ شناسایی مکان منبع آلایندۀ نقطهای؛ کنترل منبع آلاینده | ||
عنوان مقاله [English] | ||
Identification of Location, Activity Time and Intensity of the Unknown Pollutant Source in River | ||
نویسندگان [English] | ||
Akram Dahmardan1؛ Mehdi Mazaheri2؛ Jamal Mohammad Vali Samani3 | ||
1Master of Science, Department of Water Structures, Tarbiat Modares University | ||
2Assistant Professor, Department of Water Structures, Tarbiat Modares University | ||
3Professor, Department of Water Structures, Tarbiat Modares University | ||
چکیده [English] | ||
Abstract In recent years, with increasing population and growing industry, most of the world's water sources, including rivers, lakes and ground water, have been infected. This has caused health problems for humans and other living organisms. If this situation continues, Humans face water shortage and irreparable risks. Pollutant source control continuously prevents water contamination by implementing pre-occurrence measures aimed at reducing environmental hazards, it can drastically reduce the costs imposed and manage the crisis. The most important way to maintain the quality of water resources and control it, is to editing rules, and appropriate and rigorous standards, and plan for its proper implementation. The water quality of rivers should be monitored continuously, because some industries often enter the river suddenly due to its limitations. Determine the time and place of the pollutant that has been abandoned in the past, can be of great help in protecting rivers. The main objective of this research is to identify the location of the pollutant in the river without any prior information from the source in the entire mathematical framework. The strength point of the proposed inverse model is that only by taking the concentration-time curve from two upstream and downstream points of pollution can the source location be obtained with highest accuracy. After obtaining the source location, the intensity of the source of the pollutant is restored. In this study, the error was entered into the flow parameters to observe the error in the location identification, and recovery of the source pollution intensity. The result showed that this model is not sensitive to parameter error. Verification between the exact state and the results of the inverse model with acceptable accuracy was acceptable. Introduction In several areas of applied sciences, inverse problems are playing a crucial role in estimating unknown causes using some observed consequences. Estimations of inaccessible parameters are usually the missing bits of information that may lead to a better understanding of the occurring phenomena, and even prevent worse consequences. In this paper, we are interested in studying an inverse source problem. A motivation of our study is an environmental application that consists of the identification of pollution sources in surface water. In fact, when toxic substances enter lakes, streams, rivers, oceans, and other water bodies, they get dissolved or lie suspended in the water or get deposited on the bed. In the field of reverse solving, the research projects that have been done so far are mostly associated with underground water environment and less attention has been given to surface water. In this research, using the techniques in the science of the inverse problem, it is attempted to identify the source of contamination quickly. The proposed model can identify the location, and the intensity of the source of the pollutant quickly and accurately. Materials and methods In this paper, the river is considered to have only one source of pollutants in it, the location and intensity of the pollutant source in this river is unknown, and no prior information from the source of contamination in the river is available. Two observation points should be selected so that one is located upstream () of the pollutant source, and another is downstream () of the pollutant source. Given that in the inverse solution of the advection-dispersion equation, a forward solution is needed, forward solving is done at the end. The river of the length of is shown below. Fig. 1. Hypothetical river, and locating the polluting source, and measuring stations of concentration-time curves The advection-dispersion equation in the above river is shown below: (1) (2) (3) (4) In the above equations, is the pollutant concentration, is the dispersion coefficient, is the stream velocity, is the pollution source intensity function, is the Dirac delta function and is the source location. Inverse model in the river The application of the inverse model is to identify the location, and intensity of the pollutant source by measuring the spatial distribution, and the time of concentration in the solution range. In this research, concentrations are measured by concentration measurement at two points upstream and downstream of the river. Then, the proposed model provides the location and intensity of the source of the pollutant. In the next step, the location and intensity of the source of the pollutant are obtained. a. Identification of the location of the pollutant source in the river At this stage, after providing numerous mathematical formulas, the source location formula has been extracted. b. Identification of the intensity of the pollutant source in the river Once the location is identified, the source intensity can be extracted. Forward model in the river Concentration-time curves must be specified on the river in order to identify the source of the unknown pollutants in the river. This is done by solving a direct dispersion equation. For this purpose, the advection-dispersion equation, forward can be solved. Results and discussion This section verifies the reversal of the location and intensity of the pollutant source, and examines the results of the model. The method of verification is initially considered to be a hypothetical function in a specific river location. By implementing the direct model, the concentration-time curves are extracted in the upstream and downstream of the pollutant source, the extraction curves of the direct model apply errors, this data is then returned to the inverse model with different error values, and the results of the inverse model are evaluated with a precise state. This model is done for two hypothetical examples. Then the proposed model is implemented for the actual conditions of the Karun River. In this section, the coefficients of flow, which include the coefficient of speed and dispersion, add different values of the error and reduce the effect of these errors in the results. Conclusion In the present study, using the concentration-time curve measurement at two points of the river, location, activity time and intensity function of the unknown source of contamination in the river are obtained. This is done in the river without any prior information from the source. This model was evaluated by two hypothetical examples and a real example in the Karun River. In this study, an error has been found in the flow coefficients to observe the resulting error in the results. The result showed that this model is not sensitive to coefficient error. According to the results, it can be concluded that this model is capable of well identifying the source of the unknown pollutant in the river. It also works well in real river conditions. | ||
کلیدواژهها [English] | ||
Recovery of intensity of a point pollutant source, Solve the inverse, Identification of location of a point pollutant source, Pollution source control | ||
مراجع | ||
[1]. قانع، علیرضا؛ مظاهری، مهدی؛ و محمدولی سامانی، جمال. (1395). «کاربرد مدل احتمال برگشتی در ردیابی منابع آلاینده در رودخانه در شرایط وجود جریان غیریکنواخت»، محیطشناسی،(42:2)، 410-397. 10.22059/JES.2016.58742 [2]. قانع، علیرضا؛ مظاهری، مهدی؛ و محمدولی سامانی، جمال. (1396). «ردیابی مکان و زمان رهاسازی آلاینده در رودخانه براساس مدل ترکیبی آنالیز الحاقی و بهینهسازی»، مهندسی عمران شریف، (33.2:3.2)، 104-95. 10.24200/J30.2017.20111 [3]. Aster, R.C.; Borchers, B.; & Thurber, C.H. (2005). Parameter Estimation and Inverse Problems. San Diego, Elsevier Academic Press. ISBN: 9780123850492. [4]. Atmadja, J.; & Bagtezoglou, A.C. (2001). “pollution source identification in heterogeneous porous media”, Water Resources Reasearch, 37(8): 2113-2125.doi: 10.1029/2001WR000223 . [5]. Bagtzoglou, A.C.; & Atmadja, J. (2003). “Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery”, Water Resources Research, 39(2). doi: 10.1029/2001WR001021 [6]. Chapra, S.C. (1997). Surface water-quality modeling, Vol. 1, McGraw-Hill New York. ISBN: 0070113645. [7]. Cheng, W.P. & Jia, Y. (2010). “Identification of contaminant point source in surface waters based on backward location probability density function method”, Advances in Water Resources, 33(4): 397-410. doi: 10.1016/j.advwatres.2010.01.004. [8]. Colaco, M.J.; Orlanda, H.R.B.; & Dulikravich, G.S. (2006). “Inverse and optimization problems in heat transfer”, Journal of Brazilian Society of Meachanical Sciences and Engineering, vol. 28, no .1, pp. 1-24. doi: 10.1590/S1678-58782006000100001. [9]. El Badia, A.; Ha-Duong, T.; & Hamdi, A. (2005). “Identification of a point source in a linear advection–dispersion–reaction equation: application to a pollution source problem”, Inverse Problems, 21 (2005) 1-17. doi: 10.1088/0266-5611/21/3/020. [10]. Ghane, A.; Mazaheri, M.; & Mohammad Vali Samani, J. (2016). Location and release time identification of pollution point source in river networks based on the Backward Probability Method. J Environ Manage, (180)164-171. doi: 10.1016/j.jenvman.2016.05.015. [11]. Hamdi, A. (2009). “The recovery of a time-dependent point source in a linear transport equation: application to surface water pollution”, Inverse Problems, 25(7): 075006. doi: 10.1088/0266-5611/25/7/075006. [12]. Hamdi, A.; & Mahfoudhi, I. (2013). “Inverse source problem in a one-dimensional evolution linear transport equation with spatially varying coefficients: application to surface water pollution”, Inverse Problems in Science and Engineering, 21(6): 1007-1031. doi: 10.1080/17415977.2013.764871. [13]. Hamdi, A.; Mahfoudhi, I.; & Rejaiba, A. (2015). “Identification of time active limit with lower and upper bounds of total amount loaded by unknown sources in 2D transport equations”, Journal of Engineering Mathematics, 97(1): 101-117. doi: 10.1007/s10665-015-9799-5. [14]. Hamdi, A. (2012). “Inverse source problem in a 2D linear evolution transport equation: detection of pollution source”, Inverse Problems in Science and Engineering, 20(3): 401-421. doi: 10.1080/17415977.2011.637207. [15]. Hansen, P.C., (1997). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Philadelphia: Siam. [16]. Ling, L.; Yamamoto, M.; Hon Y. C.; & Takeuchi, T. (2006). “Identification of source locations in two-dimensional heat equations”, Inverse Problems in Science and Engineering, 22(4): 591-608. doi: 10.1088/0266-5611/22/4/011. [17]. Michalak, A.M.; & Kitanidis, P.k. (2004). “Estimation ofhistorical groundwater contaminant distribution using the adjont state method applied to geostatistical inverse modeling”, Water Resources Research, Vol. 40, W08302. doi: 10.1029/2004WR003214. [18]. Milnes, E.; & perrochet, P. (2007). “Simultaneous identification of a single pollution point source location and contamination time under known flow field conditions”, Advances in Water Resources, 30(12): 2439-2446. doi: 10.1016/j.advwatres.2007.05.013. [19]. Mazaheri, M.; Mohammad Vali Samani, J.; & Samani, H.M.V. (2015). “Mathematical Model for Pollution Source Identification in Rivers”, Environmental Forensics, 16(4): 310-321. doi: 10.1080/15275922.2015.1059391. [20]. Neupauer, R.M .; Borchers, B.; & Wilson J.L. (2000). “Comparison of inverse methods for reconstructing the release history of a groundwater contamination source”, Water Resources Research, vol. 36, no. 9, pp. 2469-2475. doi: 10.1029/2000WR900176. [21]. Neupauer, R.M.; & Wilson J.L. (2005). “Backward probability model using multiple observations of contamination to identify groundwater contamination sources at the Massachusetts Military Reservation”, Water Resources Research, vol. 41, W02015.doi: 10.1029/2003WR002974. [22]. Polyanin, A.D. (2001). Handbook of Linear Partial Differential Equations for Engineers and Scientists. Florida: Chapman & Hall/CRC.ISBN: 9781466581456. [23]. Tikhonov, A.N.; & Arsenin, V.Y. (1977). Solutions of Ill-Posed Problem, Washington, D.C: Winston & Sons. doi: 10.1137/1021044. [24]. Wang, Z.; & Liu, J. (2008). Identification of the pollution source from one-dimensional parabolic equation models. Applied Mathamatics and Computation, In press. doi: 10.1016/j.amc.2008.03.014. [25]. Wang, Z.; & Liu, J. (2012). “Identification of the pollution source from one-dimensional parabolic equation models”, Applied Mathematics and Computation 219(8), 3403-3413. doi: [26]. Zhang, T.; & Chen, Q. (2007). “Identification of contaminant sources in enclosed spacey by a single sensor”, Indoor Air, 17(6), 439-449. doi: 10.1111/j.1600-0668.2007.00489.x. | ||
آمار تعداد مشاهده مقاله: 583 تعداد دریافت فایل اصل مقاله: 355 |