تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,536 |
تعداد دریافت فایل اصل مقاله | 97,225,945 |
اثرات زیستمحیطی و مزایای اقتصادی چرخه مدیریت کود دامی با تولید بیوگاز در مزارع صنعتی پرورش گاو شیری | ||
مهندسی بیوسیستم ایران | ||
مقاله 11، دوره 49، شماره 2، تیر 1397، صفحه 269-284 اصل مقاله (1.55 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2017.239897.664979 | ||
نویسندگان | ||
پریا سفیدپری1؛ شاهین رفیعی* 2؛ محمد شریفی2؛ بشیر عباسی دشتکی3؛ تیون ولینگا4 | ||
1دانشجو | ||
2دانشگاه تهران | ||
3کارشناس ماشین الات --بنیاد مستضعفان | ||
4محقق ارشد، گروه علوم دامی و محیط زیست، دانشگاه و مرکز تحقیقاتی وخنینگن، هلند | ||
چکیده | ||
چرخه مدیریت کود دامی از مرحله جمعآوری تا کاربرد در مزرعه در پرورش گاو شیری برای سناریوهای مختلف از نظر زیستمحیطی و اقتصادی مورد بررسی قرار گرفت. به همین منظور ترکیب کود در این چرخه با توجه به جیره مصرفی دام تعیین گردید. اثرات زیستمحیطی به کمک استانداردها و سودمندی اقتصادی هر سناریو با نرمافزار کامفار محاسبه شد. نتایج این تحقیق حاکی از سودمند بودن احداث نیروگاه بیوگاز علیرغم نیاز آن به سرمایهگذاری اولیه بالا در حدود 125 میلیارد ریال میباشد که دارای دوره برگشت سرمایه در حدود 4-3 سال است. میانگین نرخ بازده داخلی این پروژه 24% با نرخ تنزیل 20% محاسبه شد. نرخ بازده داخلی نشان میدهد این سرمایهگذاری ریسکپذیر بوده اما از درآمد مناسبی برخوردار خواهد بود. در سناریوی 4 با فرآوری لجن هاضم به کمک جداکننده مکانیکی و کمپوست بیشترین میزان کاهش در انتشار متان ( kg CO2eq m-3261-) مشاهده شد. سناریو 2 و 4 به ترتیب 36% و 17% کاهش در تولید آلایندهها داشتند. جداسازی بخش مایع و جامد و ماسه از کود تأثیر ناچیزی در کاهش آلایندهها داشته اما دارای مزایای اقتصادی میباشد. با توجه به نتایج این تحقیق، تولید سوخت بیوگاز باعث کاهش مقادیر زیادی گازهای گلخانهای و آلایندههای آب و خاک میگردد. | ||
کلیدواژهها | ||
بیوگاز؛ اثرات زیست محیطی؛ مزایای اقتصادی؛ دامپروری؛ مدیریت کود دامی | ||
عنوان مقاله [English] | ||
Environmental impacts and economic benefits of manure management chain with biogas production in a large scale dairy farm | ||
نویسندگان [English] | ||
Paria Sefeedpari1؛ shahin rafiee2؛ Mohammad Sharifi2؛ Bashir Abasi Dashtaki3؛ Theun Vellinga4 | ||
1Ph.D. student of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran. | ||
2Professor in Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran. | ||
4Senior researcher, Department of Livestock and Environment, Wageningen University and Research, The Netherlands | ||
چکیده [English] | ||
The manure management cycle from collection to application in dairy farming was evaluated from environmental and economic aspects for different scenarios including biogas production. For this purpose, manure characteristic is determined regarding the real feed ration composition. Environmental impacts and economic profitability of each scenario was calculated using standards and COMFAR program, respectively. The results showed although biogas production is costly but it is profitable with initial investment of 125 billion Rials (2,777,778 €) and a payback period of about 3 to 4 years. The internal rate of return was calculated as 24% considering a discount rate of 20%. The internal rate of return shows that although this investment is risky, the amount of income is acceptable. Scenario 4 including digestate processing using a mechanical separator followed by composting has the maximum avoided methane emission (-261 kg CO2eq m-3). Emissions mitigation was calculated to be 36% and 17% in scenario 2 and 4, respectively. Solid/liquid separation and sand separation have less impact on emission reduction withy different economic advantages. Regarding the results of this study, a large amount of greenhouse gases and emissions to water and soil has mitigated thank to biogas production. | ||
کلیدواژهها [English] | ||
Biogas, Environmental impacts, Economic benefits, Dairy farm, Manure management | ||
مراجع | ||
Aguirre-Villegas, H.A., Passos-Fonseca, T.H., Reinemann, D.J., Armentano, L.E., Wattiaux, M.A., Cabrera, V.E., Norman, J.M. & Larson, R. (2015). Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Journal of Dairy Science, 98, 1571-1592. http://dx.doi.org/10.3168/jds.2014-8850. Aguirre-Villegas, H.A. & Larson R,A. (2017). Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. Journal of Cleaner Production, 143, 169-179 Amon, B., Kryvoruchko, V., Amon, T. & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agricultural Ecosystem Environment, 112, 153-162. http://dx.doi.org/10.1016/j.agee.2005.08.030. Anonymous, Available at: https://en.wikipedia.org/wiki/Energy_density, [June 06, 2017]. Chianese, D.S., Rotz, C.A. & Richard, T.L. (2009). Simulation of carbon dioxide emissions from dairy farms to assess greenhouse gas reduction strategies. Trans ASABE 52(4), 1301–12. Clemens, J., Trimborn, M., Weiland, P., Amon, B., (2006). Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystem and Environment, 112, 171–177. http://dx.doi.org/10.1016/j.agee.2005.08.016. Daneshi, A., Esmaili-sari, A., Daneshi, M. & Baumann, H., (2014). Greenhouse gas emissions of packaged fluid milk production in Tehran. Journal of Cleaner Production, 80, 150-158. Dentener, F.& Raes, F. (2002). Greenhouse gases and atmospheric chemistry: towards integration of air pollution and climate change policies. In: Van Ham J., Baede A.P.M., Guicherit R. and Williams-Jacobse J.G.F.M. eds , Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects. Millpress, Rotterdam, the Netherlands, pp. 114. Dijkstra, J., Oenema, O., van Groenigen, J.W., Spek, J.W., van Vuuren, A.M. & Bannink, A. (2013). Diet effects on urine composition of cattle and N2O emissions, Animal, 7 (2), 292–302, doi:10.1017/S1751731113000578. Ecoinvent 3.3 Database, (2016). Ecoinvent® Swiss Center for Life Cycle Inventories. Available at http://www.ecoinvent.org/database/ecoinvent-33/ecoinvent-33.html. Feedipedia, Animal Feed Resources Information System, (2016). Available at: http://www.feedipedia.org/ FNR, (2006). Handreichung Biogasgewinnung und – Nutzung. – 3. überarbeitete Auflage; Fachagentur Nachwachsende Rohstoffe edt.; Germany; ISBN 3-00-014333-5 (In German). Hao, X., Chang, C., Larney, F.J., & Travis, G.R. (2001). Greenhouse Gas Emissions during Cattle Feedlot Manure Composting. Journal of Environmental Quality, 30,376–386. Hogan, K.B., Hoffman, J.S. & Thompson, A.M. (1991). Methane on the greenhouse agenda. Nature, 354, 181-182. Holm-Nielsen, J.B., Al Seadi, T. & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100, 5478–5484. Hou, Y. (2016). Towards improving the manure management chain, PhD thesis, Wageningen University, Wageningen, NL, 215 pages. Huhtanen, P., Nousiainen, J.I., Rinne, M., Kytӧlӓ, K. & Khalili, H. (2008). Utilization and partition of dietary N in dairy cows fed grass silage-based diets. Journal of Dairy Science, 92, 3222–3232. Iglinski, B., Buczkowski, R., Iglinska, A., Cichosz, M., Piechota, G. & Kujawski, W. (2012). Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renewable Sustainable Energy Reviews, 16, 4890–4900. IPCC, (2006a). Guidelines for National Greenhouse Gas Inventories Vol 4, Chapter 10. [Online]. Agriculture, forestry and other land use. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html [October 23, 2013]. IPCC, (2006b). Guidelines for National Greenhouse Gas Inventories, Vol. 5, Chapter 6. [Online]. Wastewater Treatment and Discharge. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf. Jafari Samimi, A., 1997. Principles of Engineering economic, Mazandaran University of Science and Technology Pub, Iran (In Persian). Jørgensen, P.J. (2009). Biogas – green energy, Process, Design, Energy supply, Environment. Faculty of Agricultural Sciences, Aarhus University, 2nd edition, ISBN 978-87-992243-2-1, pp. 36. Julian, F., Fabian, G., Hans-Joachim, N., & Hans, O. (2013). Cutting the Electric Power Consumption of Biogas Plants: the Impact of New Technologies. Landtechnik, 68(1), 58–63. Kebreab, E., Strathe, A.B., Dijkstra, J., Mills, J.A.N., Reynolds, C.K., Crompton, L.A., Yan, T. & France, J. (2010). Energy and protein interactions and their effect on nitrogen excretion in dairy cows. In 3rd EAAP international symposium on energy and protein metabolism and nutrition (ed. GM Crovetto), pp. 417–425. Wageningen Academic Publishers, Wageningen, The Netherlands. Lansche, J., & Müller, J. (2012). Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Engineering in life sciences (Eng. Life Sci.). 12, (3), 313–320. Leip, A., Achermann, B., Billen, G., Bleeker, A., Bouwman, A., de Vries, W., Dragosits, U., Döring, U., Fernall, D., Geupel, M., Herolstab, J., Johnes, P., Le Gall, A. C., Monni, S., Neveceř al, R., Orlandini, L., Prud’homme, M., Reuter, H. I., Simpson, D., Seufert, G., Spranger, T., Sutton, M., van Aardenne, J., Voß, M. & Winiwarter, W. (2011). Integrating nitrogen fluxes at the European scale. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Sutton, M. A., Howard, C. M., Erisman, J. W., Bleeker, A., Billen, G., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, U.K., Chapter 16, 345−376. Leip, A., Weiss, F., Lesschen, J.P. & Westhoek, H. (2014). The nitrogen footprint of food products in the European Union. Journal of Agricultural Science, 152 (S1), 20−33. Lelieveld, J., Crutzen, P.J. & Dentener, F.J. (1998). Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B: 128150. Li, H., Jin, C. & Mundree, S. (2017). Hybrid environmental and economic assessment of four approaches recovering energy from sludge with variant organic contents. Journal of Cleaner Production, 153, 131-138. Masters, G. M. 2004. Renewable and efficient electric power systems, Hoboken, NJ: Wiley. Misselbrook, T.H., Gilhespy, S. & Cardenas, L.M. (2014). Inventory of Ammonia Emissions from UK Agriculture, Inventory Submission Report, London, UK. Møller, H.B., Lund, I. & Sommer, S.G. (2000). Solid-liquid separation of livestock slurry- efficiency and cost. Bioresource Technology, 74, 223-229. Møller, H.B., Sommer, S.G. & Ahring, B.K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy, 26, 485-95. Nayyeri, M.A., Kianmehr, M.H., Arabhosseini, A. & Hassan-Beygi, S.R. (2009). Thermal properties of dairy cattle manure. International Agrophysics, 23, 359-366. NRC, (1989). Nutrient Requirements of Dairy Cattle, National Academy Press, Washington, D.C. U.S.A. Oenema, O., Oudendag, D. & Velthof, G. L. (2007). Nutrient losses from manure management in the European Union. Livestock Science, 112 (3), 261−272. Olesen, J.E., Weiske, A., Asman, W.A.H., Weisbjerg, M.R., Djurhuus, J. & Schelde, K. (2004). FarmGHG, A Model for Estimating Greenhouse Gas Emissions from Livestock Farms. Documentation. DJF Internal Report No. 202. Danish Institute of Agricultural Sciences, Tjele, Denmark, 54 pp. Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, B. & Steinfeld, H. (2013). Greenhouse gas emissions from ruminant supply chains – A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome. Oskounejad, M.M. 2016. Engineering economy: Economic evaluation of industrial projects. AmirKabir University Pub., Tehran, Iran, 628 pp. Pardo, G., Moral, R. & Prado, A. (2017). SIMS WASTE-AD- A modelling framework for the environmental assessment of agricultural waste management strategies: Anaerobic digestion. Science of the Total Environment, 574, 806–817. Petersen, S.O., Sommer S.G., Béline F., Burtonc C., Dach J., Dourmad J.Y., Leip A., Misselbrook T., Nicholson F., Poulsen H.D., Provolo G., Sørensen P., Vinnerås B., Weiske A., Bernal, M.-P., Böhm, R., Juhász, C., Mihelic, R. (2007). Recycling of livestock manure in a whole-farm perspective. Livestock Science, 112 (3), 180–191. Petersen, S.O., Lind, A.M. & Sommer S.G. (1998). Nitrogen and organic matter losses during storage of cattle and pig manure. Journal of Agricultural Science, Cambridge, 130, 69–79. Rotz, C.A. (2004). Management to reduce nitrogen losses in animal production. Journal of Animal Science. 82, 119-137. Rotz, C.A., Corson, M.S., Chianese, D.S., Montes, F., Hafner, S.D., Bonifacio, H.F., & Coiner, C.U. (2016). Integrated Farm System Model: Reference Manual. V. 4.3. Available at http://ars.usda.gov/SP2UserFiles/Place/19020000/ifsmreference.pdf (verified September 2016). Pasture systems and watershed management research unit, Agricultural Research Service, USDA. Sadeghi, H., Ghaemi, F., Ghazizadeh, M.S., 2014. Benefit-cost analysis of electricity production from biogas at large-scale dairy farms in Iran. Quarterly Journal of Energy Economic studies, 10(42), 55-80 (In Persian). Schils, R.L.M., de Haan, M.H.A., Hemmer, J.G.A. van den Pol-van Dasselaar, A., de Boer, J.A., Evers, A.G., Holshof, G., van Middelkoop, J.C. & Zom, R.L.G. (2007). DairyWise, a whole-farm dairy model. Journal of Dairy Science, 90. http://dx.doi.org/10.3168/jds.2006-842. Sommer, S.G. (2001). Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. European Journal of Agronomy, 14, 123-133. Sommer, S.G., Petersen, S.O. & Møller, H.B. (2004). Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems, 69, 143–154. Sommer, S.G., Zhang, G.Q., Bannink, A., Chadwick, D., Hutchings, N.J., Misselbrook, T., Menzi, H., Ni, J.-Q., Oenema, O., Webb, J. & Monteny, G.-J. (2006). Algorithms determining ammonia emission from livestock houses and manure stores, Advances in Agronomy, 89, 261–335. Torquati, B., Venanzi, S., Ciani, A., Diotallevi, F. & Tamburi, V. (2014). Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria. Sustainability, 6, 6696-6713, doi:10.3390/su6106696. Velthof, G.L., van Bruggen, C., Groenestein, C.M., de Haan, B.J., Hoogeveen, M.W. & Huijsmans, J.F.M. (2012). A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmospheric Environment, 46, 248-255. Vonk, J., Bannink, A., van Bruggen, C., Groenestein, C.M., Huijsmans, J.F.M., van der Kolk, J.W.H., Luesink, H.H., Oude Voshaar, S.V., van der Sluis, S.M. & Velthof, G.L. (2016). Methodology for estimating emissions from agriculture in the Netherlands. WOt-technical report 53, Wgeningen, May 2016. ISSN 2352-2739 http://dx.doi.org/10.18174/383679. Wedel, A. (2012). Sand-manure separation, in Proceedings of the Got Manure? Conference, March 27-29, Liverpool, NY, USA. WUM, (2009). Dierlijke mest en mineralen 1990–2008. CBS, IKC-Veehouderij, LAMI, LEI-DLO, RIVM en SLM. WUR, (2014). Manure: a valuable resource. A report published from Wageningen UR Livestock Research. Available at: http://edepot.wur.nl/294017. Yu, L., Wensel, P., Ma, J. & Chen, S. (2013). Mathematical modeling in anaerobic digestion (AD). Journal of Bioremediation & Biodegradation, S4, 003. | ||
آمار تعداد مشاهده مقاله: 643 تعداد دریافت فایل اصل مقاله: 1,824 |