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ABSTRACT 

L1norm adjustment is a powerful technique to detect gross errors in geodetic observations. This paper 

investigates the results of two formulations that provide the L1 norm adjustment of a linear functional model. 

The usual method for implementation of the L1 norm adjustment leads to solving a linear programming (LP) 

problem. The formulation of the L1 norm minimization is presented based on the LP problem for a rank 

deficient linear(ized) system of equations. Then, an alternative technique is explained based on the least 

squares residuals. The results are tested on both linear and non-linear functional models, which confirm the 

efficiency of both formulations. The results also indicate that the L1 norm minimization, compared to the 

weighted least squares method, is a robust technique for the detection of blunders in geodetic observations. 

Finally, this contribution presents a data snooping procedure to the residuals obtained by the L1 norm 

minimization method.  
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1. Introduction 

The method of least squares is the standard method used 

to obtain the unique estimates for the unknown parameters 

from a set of redundant measurements. Because of the 

the observationofinherent stochastic properties s, the 

redundant observations are not usually compatible 

(consistent) in the functional model. In other words, due to 

the random behavior of observations, any sufficient subset of 

functionally independent observations would yield a 

different result. Therefore, there is no unique solution that 

simultaneously satisfies all equations. In this situation, it is 

the basic principle of the adjustment that gives a unique 

estimate for all of the model parameters with certain 

optimum properties. The original set of observations, which 

is denoted by the   vector   and includes redundant 

observations, is replaced by another set of estimates   which 

satisfies the model. The difference between these two sets is 

  yye  ˆ   (1) 

 

which is termed in the classical theory as ‘residuals’. The 

residual vector   converts the system of observation equations 

into an underdetermined model that has an infinite number 

of solutions. Amongst all of the possibilities, there exists one 

set of estimates that satisfies a certain criterion referred to as 

the least squares principle. The least squares principle states 

that (Mikhail,1976)   

min
1

2 


m

i

iiewWee
T

 (2) 

where the   matrix   is the weight matrix. The above criterion, 

as an objective function, states that the sum of the squares of 

the weighted residuals should be as small as possible. This 

criterion is referred to as L2 norm minimization of the 

residuals, as well. To formulate the least squares solution, 

consider the   vector of the unknown parameters   in a 

linear(ized) parametric model as  
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where the   vector  , as before, is the vector of residuals, the   

vector   is the vector of observations, the   matrix   is the 

design matrix, the   matrix   is the datum matrix of the 

network, and the   matrix   is the covariance matrix of 

observations. The least squares solution of Eq. (3) is given as 

(Chen,1983): 

 

WyADDWAAx
TTT 1)(ˆ   (4) 

     And correspondingly, the least squares residuals   are 

obtained as 

yxAe  ˆˆ  (5) 

 The covariance matrix of the estimated residuals can be 

obtained as follows: 

 

TTT

ye ADDWAAAQQ
1

ˆ )(   (6) 

The above equations are derived by solving the famous 

normal equations. Such equations can be obtained, for 

example, from differentiating the objective function  (2) .The 

advantage of the least squares algorithm is mainly based on 

the simple use of matrix notations and electronic computers 

for performing the computations. It is important to note that 

the application of the least squares does not require a priori 

knowledge of the distribution associated with the 

observations. This may be another advantage of the least 

squares technique. It can be shown that the least squares 

estimate is unbiased and of minimum variance. This means 

that the least squares estimator is the most efficient estimator 

of unknown parameters. It can also be proved that when the 

observations are normally distributed, the least squares 

estimates will give identical results to those obtained from 

the method of maximum likelihood. 

 

2. Principles of L1 norm minimization 

The least squares adjustment is a standard and powerful 

method to estimate the unique and optimum solution for 

unknown parameters. It should be assumed, for better 

statistical interpretation of the results, that the observation 

errors are random and normally distributed. If these 

assumptions are violated, e.g., in cases where the 

observations are affected by gross errors in addition to 

random ones, the robust estimation techniques produce 

superior results. Such robust techniques may be useful for 

data screening and gross error detection before a final 

adjustment is made by the least squares. One such robust 

technique involves minimization of the L1 norm of the 

residuals, namely  

 

min
1




m

i

iee1
T

 (7) 

where 1  is an 1m  vector of ones (summation vector). For 

uncorrelated weighted observations, one can either enforce 

the weights by multiplying each equation by iw , where iw  

is the weight associated with each observation, or modify the 

objective function as 

1

min
m

i i

i

w e


 T
w e  (8) 

where w  is an 1m  vector that contains the diagonal 

elements of the weight matrix W . This is known as the 

objective function of the L1 norm adjustment. It should be 

noted that the L1 norm gives unbiased estimates like the least 

squares but they are not of minimum variance. This may 

destroy the statistical interpretation of the results.  

     The advantage of the L1 norm minimization, compared to 

the least squares, is that it is less sensitive to gross errors. 

Therefore, the L1 norm adjusted residuals may illustrate the 

blunders more straightforward than the least squares. For 

example, in repeated measurements of an unknown quantity, 

in order to estimate the population mean, the least squares 

yield the sample mean, whereas the L1 norm minimization 

yields the sample median. It goes without saying that a gross 

error will affect the sample mean more than the sample 

median. 

      The L1 norm minimization technique uses a special 

sufficient (and not redundant) subset of functionally 

independent observations, which minimizes the sum of the 

weighted absolute value of the other residuals. Accordingly, 

the technique would not result in an optimum estimation 

since all of the observations have not been used in this 

method. Regardless of the minimization of the objective 

functions (2) and (8), the parametric model and the datum 

constraints in Eq. (3) remain the same. The presence of an 

absolute sign in the criterion (8) precludes one from 

differentiating, which is customary in the least squares 

formulation. To convert Eq. (8) into something applicable, 

the usual strategy is based on the use of the ‘linear 

programming’. For this purpose, the slack variables (vectors) 

should be introduced to guarantee non-negativity and 

therefore write the objective function without absolute signs 

(see section 4).  

3. Linear programming problem 

     Linear programming (LP) is a branch of operations 

research that deals with the problem of minimizing a linear 

function in the presence of linear equality and/or inequality 

constraints. It is a well-known and fast developing technique 

in mathematics, with multiple scientific applications.  The 

subject of linear programming, sometimes called linear 

optimization, in standard form, concerns with the following 

problem: For p  independent variables pzz z,...,, 21  

minimize the function 

1 1 2 2 p pz c z c z ... c z     (9) 
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Subject to the primary constraints 

1 20 0, ..., 0pz , z  z    (10) 

and simultaneously subject to q additional constraints of the 

form 

1 1 2 2 1 2i i ip p ih z h z ... h z b , i , ,...,q      (11) 

where z  in Eq. (9) is the objective function to be minimized. 

The constraints in Eq. (10) are the non-negativity constraints. 

A set of variables pzz z,...,, 21  satisfying all constraints is 

called a feasible point or a feasible vector. The set of all such 

points constitutes the feasible region or the feasible space. 

Using this terminology, the linear programming problem can 

be stated as follows: Among all feasible vectors, find one that 

minimizes the objective function (9). A linear programming 

problem can be stated in a more convenient form using 

matrix notations. Considering the column vectors cz  , , and 

b  and the q p  matrix H , the ‘standard form’ of the LP 

problem can be written as 

 

minimize   z   T
c z  (12) 

subject to   Hz b,  z 0  (13) 

 

     Another form of the LP problem is called the ‘canonical 

form’. A minimization problem is in the canonical form if all 

variables are non-negative and all constraints in Eqs. (11) and 

(13) are of the type  . By simple manipulations, this 

problem can be transformed to the standard form. There are 

different methods to obtain the solution of a linear 

programming problem. The simplex method which was first 

recommended by Dantzig is a smart procedure that moves 

from an extreme point to another one with a better (at least 

not worse) objective (Dantzig, 1963). It also discovers 

whether the feasible region is empty and whether the optimal 

solution is unbounded. In practice, the method only 

enumerates a small portion of the extreme points of a feasible 

region. The reader is referred to (Bazaraa et al.,1990). There 

are, however, new methods for solving an LP problem, 

among which we can mention the interior point methods. The 

reader is referred to (Roos et al.,1997) in which they present 

an interior point method (IPM) to both the theory of LP and 

its algorithms. 

 

 

4. LP formulation of L1 norm adjustment 

     As mentioned earlier, the L1 norm minimization is an 

estimation method that minimizes the weighted sum of 

absolute residuals. To modify the objective function (8) and 

the constraints (3), the usual derivation of the least squares 

(L2) estimates will not work for L1 estimates. In other words, 

an analog way to the well-known normal equations is not 

possible for L1 estimation. To transform Eqs. (3) and (8) into 

something applicable, the usual strategy is to borrow a trick 

from linear programming and introduce slack variables, 

which guarantee non-negativity. This allows one to rewrite 

the objective function without absolute value signs. 

     To set up the L1 estimation problem by a linear 

programming solution, we need to formulate a mathematical 

model where all variables, both parameters and residuals, are 

non-negative. The development begins with the familiar 

parametric Eq. (3), and is then transformed into an L1 

estimation problem by adding slack variables. To convert 

these equations into a form of non-negative parameters and 

non-negative residuals, we introduce one slack vector α  and 

one slack variable   for the parameters, and two slack 

vectors u  and v  for the residuals. The parameters as well 

as the residuals, in general, can become either positive or 

negative. Therefore, we can replace the unknown parameters 

and the residuals by (Marshall & Bethel ,1996 ; Amiri-

Simkooei,2003) 

1 1

2 2

1 1 1

2 2 2

    ,  where ,

     ,  where  ,
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x
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x
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     
     

x α β  α β 0

e u v u v 0

 

(14) 

As can be seen, the number of unknown parameters and 

residuals is increased from n  to 1n , and from m  to 

m2 , respectively. These will cause some singularities on the 

problem, i.e., the LP problem will give an infinite number of 

solutions (alternative optimal solutions). That is, if 

jjj vue   is a solution to the above system, then 

)()( cvcue jjj   with 0c  will be a solution 

as well. To overcome the singularity induced by the re-

parameterization and to obtain a unique optimal solution for 

the residuals, the objective function (8) can be rewritten in 

terms of slack variables as 

 

i

( ) min   

 where   0  or  0i

z

u v

     

 

T T T
w e w u v w u v  

(15) 

  

which is valid when we minimize the residuals. In this case, 

one of the components of ie , either iu  or iv , becomes zero. 

To obtain a unique solution for the slack variable of the 

unknown parameters, one can minimize .min  

Because of the above objective functions are both positive, 

they can be lumped together to one objective function as 
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z ( ) min   T
w u v  (16) 

 

     If we closely, not exactly, follow (Amiri-Simkooei, 

2003), the original parametric equation and datum 

constraints (3) can be rewritten, in terms of the slack vectors  

u , v , and α  as well as the slack variable  , as 

0zbHzzc
T    ,  subject to  ,minz  (17) 

 

where 

 

 ,     

1
   ,     

β
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(18) 

 

 where O  is a zero matrix and the 1m  vector a  and the 

1d  vector d  are the sum of columns of  matrices A  and 

D , respectively 
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1
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j

n

i ij
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


 (19) 

 

     The preceding equations are in fact of smaller size than 

those presented by (Amiri-Simkooei,2003). They are in the 

form of Eqs. (12) and (13), and therefore, a special problem 

of the operations research that can be solved by linear 

programming. Solving for vector z  will yield vectors α , u

, v  and variable  . Consequently, the solution vector 

1αx   and the residual vector vue   can simply 

be obtained. When the functional model )(xA  is non-

linear, one can rely on the Taylor series expansion to 

linearize the model. In a similar manner to what we have in 

the standard least-squares, the procedure should be solved 

through iterations until the corrections to the solution vector 

x  become zeros. 

 

norm adjustment 15. Alternative method for L 

     We believe that the lack of attention paid to the L1 norm 

adjustment in geodetic networks has been mainly due to the 

relative complexity of its implementation compared to the 

least squares. Although this complexity should not be of 

great importance in the presence of modern computing 

systems, in the present paper a simple technique will be 

reintroduced. The method was originally introduced by 

(Krarup et al.,1980) into geodetic applications. (Chen,1983 ; 

Secord,1985) used a similar technique by minimizing the L1 

norm of the displacement vector to detect the stable reference 

points. For the L1 norm adjustment, we have used the least 

squares residuals in an iterative procedure to reweight the 

observations. In this method, the weight matrix W  in Eq. 

(4) has been modified in the (k+1)th iteration as follows: 

 

 ( 1) 0 ( )diag ( , )/ | |k k

ii i e W W  (20) 

 

where ),(0 iiW  is the initial weight of the ith observation, 

and 
)(k

ie  is the ith component of the estimated vector ê  

from Eq. (5) in the kth iteration. Modifying the weight matrix 

W  in accordance with Eq. (20) and substituting into Eq. (4) 

will give a modified x̂  and subsequently a modified residual 

vector ê . The iterative procedure continues until the 

absolute differences between the successive estimated 

residual components are smaller than a tolerance  . That is, 

the iteration will stop after convergence to a constant residual 

vector ê . During this procedure some 
)(k

ie  will approach 

zero causing numerical instabilities because 
)(/1 k

ie  

becomes very large. There is an approach to handle this 

problem. The expression can be replaced (20) by 

 

 ( 1) 0 ( )diag ( , ) / (| | )k k

ii i e   W W  (21) 

where   is a small positive number that precludes the 

problem from singularity. The above procedure provides a 

least squares adjustment on the observations where a set of 

the observations have very large weights compared to the 

others. In practice, this means that the adjustment has been 

conducted by only such minimum observations. This is the 

interpretation of the L1 norm adjustment. 

     Authors’ practical tests with this technique show that this 

process can be expected to converge to the L1 norm 

minimization (although the theoretical reason for this is 

unknown). However, sometimes the convergence speed of 

this method is very low. In order to increase the convergence 

speed, after applying Eq. (21) for a few iterations, it is 

recommended to substitute the term || )(k

ie  by 
2)( || k

ie  in 

Eq. (21). In section 7, two practical examples (both linear and 

non-linear models) have been used to test the efficiency of 

this technique. 

 

6. Tests of individual residuals of L1 and L2 

norms 

The least squares estimation of residual vector and its 

covariance matrix can be obtained from Eqs. (5) and (6), 
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respectively. For data snooping, the null hypothesis H0 for 

individual residuals is as follows (Baarda,1968): 

 

2 2
ˆ ˆ ˆ0 e e

ˆ:   e  ~   N (0 , ),  where  ( )
i ii e iiH    Q  (22) 

     The statistics chosen for testing the null hypothesis H0 is 

as follows: 

ˆ

ˆ

i

i
i

e

e
w


  (23) 

 

which under the null hypothesis H0 is normally distributed 

with a zero mean and unit variance. Therefore, the 

standardized residual is distributed as 

 

0 ~   N (0 , 1)iw H  (24) 

 

     According to the principle of two-tailed test approach, 

given the significance level 0 , H0 is rejected if the 

following condition holds: 

 

0 0/2 1 /2iw w w     (25) 

 

where 212 00
 and //  ww  are the upper and lower 

boundary values of the test statistics iw  calculated from the 

standard normal distribution under the given significance 

level 0 . 

     Data snooping can also be performed with the residuals 

from the L1 norm adjustment. For this purpose, the L1 norm 

residuals and the covariance matrix should be obtained. As 

mentioned before, the L1 norm adjustment divides the 

observations into two groups, namely 
1y  and 

2y , where 
1y  

is a special sufficient subset of functionally independent 

observations, which gives a unique solution, and 
2y  is the 

other part of y . After a few simple operations, for the L1 

estimator, the solution can be obtained as 

 

1ˆ ( )   and  ,  T T T

1 1 1 1 1x A A D D A y e 0  (26) 

 

where 
1A  is composed of the rows of A  corresponding to 

the observations in 
1y . The residuals of the second part of 

the observations can be obtained using the following 

equation: 

 
1ˆ ˆ ( )    T T T

2 2 2 2 1 1 1 1 2e A x y A A A D D A y y  (27) 

 

where 
2A  is the second part of matrix A  (other than 

1A ). 

Applying the covariance propagation law to the preceding 

equation gives the covariance matrix of the residuals 

1 1

ˆ 1 2( ) ( )    
2 2 1

T T T T T T

e y 2 1 1 1 y 1 1Q Q A A A D D A Q A A A D D A  

(28) 

where 
1y

Q  and 
2y

Q  are the covariance matrices of 
1

y  and 

2
y , respectively. For data snooping, the same tests as the 

least squares method can be used to detect the blunders in the 

observations. 

 

7. Numerical results and discussions 

For verification and comparison of the suggested formulation 

and the alternative technique, the results have been tested on 

a few simulated and real geodetic networks by the authors. 

Since presenting all of the examples are beyond the scope of 

the present study, we will consider only two examples. The 

first example is a linear model while the second one is a non-

linear model.  

 

7.1 Example 1 

     In the first example, a leveling network is assumed. The 

network consists of 6 points (P1, P2, P3, P4, P5 and P6) with 9 

height difference observations. The degree of freedom of the 

network is 4df . The datum of the network is provided 

by inner constraints. Therefore, [1 1 1 1 1 1]D . 

Table 1 gives the list of the observations (columns 1 to 3) and 

their observed values (column 4). The precision of these 

observations is 1 mm. The network is evaluated in the 

following three steps: 

     In the first step, the initial observations are adjusted by the 

L2 norm (least squares) adjustment. Columns 5 and 6 give 

the results of computations for the estimated residuals and 

the normalized residuals, respectively. If we use a 5% level 

of significance then the normalized residuals should fall 

within the range –1.96 to +1.96. As can be seen from column 

6, no normalized residual exceeds the critical value 1.96 

which means that no observation has a blunder. 

     In the second step, it is assumed that the observed height 

differences No. 1 and 9, marked with asterisks, are erroneous 

by 1 cm. The erroneous observations are adjusted by the L2 

norm (least squares) criterion. Columns 7 and 8 give the 

results of the estimated residuals and the normalized ones, 

respectively. As can be seen from column 8, seven 

normalized residuals exceed the critical value 1.96 that may 

mean these observations have blunders, whereas we know 

only two observations are erroneous by 1 cm. For correct 

detection of these blunders, one may use the data snooping 

technique that was proposed by (Baarda,1968 and Pope 

,1976, and Kok,1984). However, one of the goals of the 

present paper is the comparison of the L1 and L2 norms for 

outlier detection in their classical form. In the third step, the 

same observations as in the second step are assumed. The 

erroneous observations are adjusted by the L1 norm criterion 

using two techniques, namely the linear programming (LP) 

formulation and the simple technique based on the least 
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squares residuals (LS). Columns 9 and 10 give the results of 

the L1 norm residuals for the LS and the LP techniques, 

respectively. As can be seen, the results are neither exactly 

the same nor depart significantly from each other. This 

indicates that the solution is not unique as the absolute sum 

of the residuals is identical for both techniques (i.e., 20.66 

mm). This is not a surprise, since the solution of the L1 norm 

minimization is not guaranteed to be unique. Column 11 

gives the standardized L1 norm residuals (based on the LS). 

Only two normalized residuals (the first and ninth 

observations) exceed the critical value 1.96 that means these 

two observations have blunders. This means that the L1 norm 

illustrates the blunders more straightforward than the L2 

norm. We believe that the lack of uniqueness of the L1 norm 

solution seems not to destroy the efficiency of the technique 

for outlier detection. 

 

7.2 Example 2 

     In the second example, a trilateration network is assumed. 

The network consists of 8 points with 28 distance 

observations. The degree of freedom of the network is 

.15df   Columns 1, 2, and 3 of Table 2 give the list of 

observations. Column 4 gives the observations. The 

precision of observations is 1 mm. The datum of the network 

is provided by inner constraints. Again, the network is 

adjusted in three steps: In the first step, the initial 

observations are adjusted by the L2 norm (least squares) 

adjustment. Columns 5 and 6 give the estimated residuals and 

the normalized ones, respectively. Again, if we use a 5% 

level of significance, the normalized residuals should fall 

within the range –1.96 to +1.96. As can be seen, no 

normalized residual exceeds the critical value 1.96, which 

means that there is no blunder in the observations. In the 

second step, it is assumed that the observations No. 1 and 28 

are erroneous by 1 cm and the observations No. 14 and 23 

are erroneous by -1 cm. The erroneous observations are 

adjusted by L2 norm (least squares) criterion. Columns 7 and 

8 give the results. In this case, fifteen normalized residuals 

exceed the critical value 1.96 that might imply these 

observations have blunders. 

 

      

Table 1. Heights difference observations as well as L1 and L2 norm standardized residuals in example 1. 

Obs. 

No. 

Height 

Difference 

Observed 

Values 

(L2 Norm) 

Residuals 

(L2 Norm) 

Residuals 

(L1 Norm) 

Residuals 

 

(1) 

From 

(2) 

To 

(3) 

(m) 

(4) 

I. a 

(5) 

SR 
e
 

(6) 

E. b 

(7) 

SR 
e
 

(8) 

LS 
c 

(9) 

LP 
d 

(10) 

SR 
e 

(11) 

1 * 1 2 1.2484 0.690 1.03 -4.87 -7.30 -7.53 -8.06 -3.76 

2 2 3 3.8099 0.530 0.79 -3.92 -5.87 -0.56 0 -0.23 

3 3 4 -7.0507 0.720 1.08 1.83 2.75 0 0 0 

4 4 5 11.5890 0.750 1.12 2.97 4.46 2.40 1.84 1.20 

5 5 6 -2.6912 0.910 1.36 2.02 3.03 0 0.53 0 

6 6 1 -6.9097 0.710 1.07 -3.73 -5.59 0 0 0 

7 1 4 -1.9904 0.030 0.04 1.14 1.71 0 0.03 0 

8 2 5 8.3501 0.160 0.24 -0.95 -1.43 0 0 0 

9 * 3 6 1.8496 -0.19 -0.29 -5.75 -8.62 -10.17 -10.20 -5.09 

Absolute Sum: -- -- -- -- -- 20.66 20.66 -- 

 
a I.  = L2 norm residuals of initial observations (mm) 
b E. = L2 norm residuals of erroneous observations (mm) 
c LS = L1 norm residuals using the technique of least squares residuals (mm) 
d LP = L1 norm residuals using the technique of linear programming (mm)  
e SR = Standardized residuals 

However, we know that this is not the case because only four 

observations have blunders. In the third step, the same 

observations as in the second step are assumed. The 

erroneous observations are now adjusted by the L1 norm 

criterion using two techniques, namely the linear 

programming (LP) formulation and the simple technique 

based on the least squares residuals (LS). Columns 9 and 10 

give the estimated residuals of the LS and LP techniques, 

respectively. Here, the results are almost the same. The slight 

difference for the residuals is due to the use of the LS method 

in which we needed quite a large number of iterations before 

we could obtain acceptable results. This can be considered as 

a drawback of this simple method. Column 11 gives the 

standardized L1 norm residuals. It can be seen that only four 

normalized residuals (No. 1, 14, 23, and 28) exceed the 

critical value 1.96 that means these observations have gross 

errors. This implies that the L1 norm residuals are more 

robust than the L2 norm residuals. Therefore, the superior 
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method for the outlier detection is based on the L1 norm 

minimization. 

 

8. Concluding remarks 

     There are many procedures for adjusting the data and 

detecting the presence of blunders in geodetic observations. 

Most of such techniques involve minimizing the L2 norm of 

the residuals (least squares technique), which are referred to 

as ‘data snooping techniques’. There is a robust procedure 

called the L1 norm minimization, which minimizes the 

absolute sum of the weighted residuals. This is a powerful 

technique used in geodetic networks to detect the blunders in 

observations. In this paper, the formulation and  

 

  Table 2. Distance observations as well as L1 and L2 norm standardized residuals in example 2. 

Obs. 

No. 

Measured 

Distances 

Observed 

Values 

(L2 Norm) 

Residuals 

(L2 Norm) 

Residuals 

(L1 Norm) 

Residuals 

 

(1) 

From 

(2) 

To 

(3) 

(m) 

(4) 

I. 

(5) 

SR 

(6) 

E. 

(7) 

SR 

(8) 

LS 

(9) 

LP 

(10) 

SR 

(11) 

   1 * 1 2 837.5544 -0.81 -1.09 -6.50 -8.72 -9.97 -9.96 -4.76 

2 1 3 1880.0688 0.64 0.88 2.33 3.22 0.00 0.01 0.00 

3 1 4 1177.0744 -0.68 -1.14 -1.85 -3.11 -0.44 -0.45 -0.21 

4 1 5 1485.0330 0.87 1.17 2.03 2.73 0.21 0.21 0.07 

5 1 6 2250.6640 -0.60 -0.73 0.07 0.08 0.00 0.00 0.00 

6 1 7 688.6537 0.24 0.33 -0.85 -1.20 0.00 0.00 0.00 

7 1 8 1482.1634 0.14 0.18 3.57 4.59 0.68 0.69 0.40 

8 2 3 1043.2772 -0.29 -0.39 -2.80 -3.78 -1.74 -1.74 -0.85 

9 2 4 1350.9739 -0.35 -0.48 -0.64 -0.88 0.00 0.00 0.00 

10 2 5 1143.9659 -0.32 -0.46 -0.90 -1.32 0.00 0.00 0.00 

11 2 6 1537.8888 0.18 0.23 -1.18 -1.55 0.21 0.21 0.12 

12 2 7 794.9992 0.89 1.23 3.65 5.08 2.27 2.27 1.30 

13 2 8 707.8153 -0.28 -0.37 -0.78 -1.06 0.00 0.00 0.00 

   14 * 3 4 2047.7722 0.00 0.00 6.48 8.02 8.53 8.53 5.17 

15 3 5 1420.7470 -0.25 -0.34 -3.89 -5.30 0.00 0.00 0.00 

16 3 6 923.0041 0.30 0.58 1.28 2.55 0.00 0.00 0.00 

17 3 7 1648.1903 0.00 0.00 0.78 1.00 0.00 0.00 0.00 

18 3 8 553.9795 -0.17 -0.22 -3.69 -4.71 -0.58 -0.58 -0.30 

19 4 5 798.2518 -1.07 -1.47 -1.18 -1.62 -3.25 -3.25 -1.10 

20 4 6 1884.7847 0.16 0.23 -4.70 -6.61 0.00 0.00 0.00 

21 4 7 584.0447 0.50 0.69 -1.12 -1.56 0.00 0.00 0.00 

22 4 8 1495.0593 0.99 1.27 0.93 1.20 0.00 0.00 0.00 

   23 * 5 6 1089.7829 1.20 1.66 6.26 8.68 13.22 13.22 5.05 

24 5 7 823.3101 1.13 1.56 3.78 5.23 0.78 0.77 0.27 

25 5 8 890.9380 -1.31 -1.88 -1.35 -1.94 -1.15 -1.15 -0.55 

26 6 7 1744.3977 -1.38 -1.78 -1.03 -1.33 0.00 0.00 0.00 

27 6 8 837.4764 0.49 0.69 0.19 0.27 0.00 0.00 0.00 

   28 * 7 8 1128.5570 0.17 0.21 -5.82 -7.50 -8.98 -8.98 -5.21 

Absolute Sum: -- -- -- -- -- 52.08 52.07 -- 

 

implementation of the L1 norm minimization were presented 

for rank deficient Gauss-Markov models that leads to solving 

a linear programming problem. Then, a simple technique was 

also used based on the least squares residuals. For 

verification of the given formulation and the simple 

technique, two examples were presented on both linear and 

non-linear models. The results showed that the L1 norm 

minimization was more sensitive than the least squares for 

outlier detection. The L1 norm minimization was more 

efficient than the L2 norm when we had more blunders in the 

observations (or equivalently when the redundancy of the 

model was low). One disadvantage of the L1 norm 

adjustment is that the unique solution is not guaranteed. This, 

however, seems not to be a serious problem for outlier 

detection (see example 1). It seems that the lack of attention 

paid to the L1 norm minimization in geodetic applications is 

mainly due to the relative complexity of its implementation 

compared to the least squares. Although this complexity 
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should not be that important in the presence of modern 

computing techniques, in this paper, a simple technique was 

used, and its efficacy was tested on both linear and non-linear 

models. The method could give identical results to the 

standard linear programming (LP) formulation. However, 

this method can sometimes be time-consuming as it requires 

many numbers of iterations before obtaining a reasonable 

solution. On the other hand, for the LP formulation, there are 

standard procedures to solve a linear programming problem. 

This technique becomes more efficient if we rely on the new 

methods such as the interior point methods rather than the 

classical simplex method.  
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