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ABSTRACT 

Filtering of airborne LiDAR point clouds has broad applications, such as Digital Terrain Model (DTM) 

generation and three-dimensional urban modeling. Although several methods have been developed to 

separate the point clouds into ground and non-ground points, there are some challenges to identify the 

complex objects such as bridge and eccentric roofs. In this study, a new algorithm based on the Slope and 

Progressive Window Thresholding (SPWT) is proposed for ground filtering of LiDAR data. This algorithm 

is based on both multi-scale and slope methods that have strong effects on filtering the LiDAR data. The 

proposed algorithm utilizes the slope between adjacent points and the elevation information of points in a 

local window to detect non-ground objects. Therefore, not only it benefits from vertical information in each 

local window to detect the non-ground points, but it also uses the neighbor information in directional 

scanning, and it prevents the errors introduced by the sensitivity to direction. According to the physical 

characteristics of the ground surface and the size of objects, the best threshold values are considered. In 

order to evaluate the performance of the SPWT method, both low and high resolution datasets were applied 

that their average overall accuracy were reported to be 94.21% and 93.08%, respectively. These results 

proved that, irrespective of data resolution, the SPWT method could effectively remove the non-ground 

points from airborne LiDAR data.    
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1. Introduction 

    Airborne light detection and ranging (LiDAR) is one of the 

most popular technologies to rapidly gather the three-

dimensional coordinates of ground and non-ground objects, 

such as buildings, trees, vehicles, and so on. LiDAR has 

several advantages over the traditional field surveying and 

photogrammetric mapping, e.g., cost-effective coverage of a 

large area for acquisition of vertical information, higher 

accuracy, gathering information in all types of weather, 

season and it does not depend on time in data collection 

(Meng et al., 2009; Shan & Aparajithan, 2005; Li et al., 2014; 

Zhang & Whitman, 2005). 

    Digital Terrain Model (DTM) generation is one of the 

most popular applications of the LiDAR data (Bretar & 

Chehata 2010; Zhang & Lin, 2013; White & Wang, 2003), 

which is a three-dimensional model indicating the spatial 

distribution of the earth’s surface (Quan et al., 2016). In 

DTM generation from the LiDAR data, the first step is 

separating the ground and non-ground points, a process 

referred to as filtering (Li, 2013; Li et al., 2013), and the non-

ground points should be removed from LiDAR’s 

measurements (Vosselman, 2000). 

    There are many challenges for filtering the LiDAR data. 

The most important features that have confused some ground 

filtering algorithms involve shrubs, bridges, short walls and 

complex mixed covering (Meng et al., 2010). Ground 

filtering should be able to determine the ground surfaces 

based on physical characteristics. These characteristics can 

be divided into four categories: a. the lowest elevations, b. 

the ground surface steepness, c. the ground surface elevation 

difference, d. the ground surface homogeneity (Meng et al., 

2010).  
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In order to identify the ground points, some approaches 

work on the raw LiDAR point clouds. Although these 

methods have certain advantages, e.g., they require less 

preprocessing, finding the neighboring points in an 

irregularly distributed space can be a time-consuming 

process, especially for large areas. Therefore, in many 

filtering methods, the point clouds are resampled into a 

gridded elevation model to resolve this problem, however 

interpolation may introduce some errors (Sithole & 

Vosselman, 2004; Meng et al., 2009). For resampling the 

point clouds into a regular grid data, multiple interpolation 

techniques have been introduced, which can be divided into 

three categories: fitting a 1.morphology function (Chen et al., 

2007) 2.linear function (Andersonet al., 2005) 3.surface 

function (Okagawa, 2001). 

There are different types of methods for filtering the 

LiDAR data that the most important of which are based on a. 

Triangulated Irregular Network (TIN) b. Slope c. 

Morphological approaches d. Multi-scale comparison.  

Some algorithms are based on triangulated irregular 

network, and search for neighboring points by creating a TIN 

with certain constraints of angle and distance (Axelsson, 

2000; Uysal & Polat, 2014). (Quan et al., 2016) utilized the 

adjacent triangle of a triangulated irregular network to detect 

the building edge points, and get the building points by the 

region growth. Afterward, the isolated points were detected 

through the morphological filtering algorithm. This 

algorithm was tested only on urban areas and no results have 

been reported for rural areas. 

Most of ground filters are based on the slope between the 

neighboring points. In these approaches, the points are 

labeled as ground and non-ground based on a pre-defined 

threshold value (Sithole, 2001; Wang & Tseng 2010). 

Usually, selecting the best threshold value is a significant and 

challenging parameter. (Susaki, 2012) used the slope 

threshold that was dynamically tuned according to the 

terrain. In this method, the ground points could be extracted 

with a good accuracy in urban areas, but the computation 

time is long.       

     The morphological algorithms have been applied for 

filtering the LiDAR data by many researchers. They have 

simple concepts and are able to eliminate the non-ground 

objects (Arefi & Hahn, 2005; Kobler et al., 2007). (Zhang et 

al., 2003) compared the height differences of original and 

morphologically opened surfaces with an appropriate 

threshold, and determined the non-ground objects 

progressively with increasing the window size. (Li et al., 

2014) improved the top-hat morphological filter with a 

sloped brim. The intensity of change elevation of transitions 

between the obtained top-hats and outer brims were assessed 

to suppress the omission error caused by protruding terrain 

features, and finally, the non-ground objects were identified 

by the brim filter, that was extended outward.   

Several algorithms are based on multi-scale comparison. 

These methods produce some preliminary trend surfaces and 

each point is examined at different scales by comparing the 

elevation difference between the point and different trend 

surfaces (Chen et al., 2017; Zhang & Whitman, 2005). These 

methods provide practical and reliable solutions for 

integrating merits of DTM generated using different methods 

(Chen et al., 2017). (Chen et al., 2012) proposed an upward-

fusion DTM generation method. In their technique, some 

preliminary DTMs of different grid sizes are produced using 

the local minimum method. Then, an upward fusion is 

conducted between these DTMs. This algorithm begins with 

a DTM of the largest grid size and a finer scale DTM is 

compared with that. 

From the aforementioned studies, it can be concluded that 

although several methods have been proposed for filtering 

the LiDAR point clouds, a powerful method has not yet been 

developed to be able to eliminate all objects from the LiDAR 

data. Therefore, filtering the LiDAR point clouds can be 

known as an open problem in photogrammetry and remote 

sensing. In this study, we have proposed a novel method 

based on the slope and progressive window thresholding for 

filtering the LiDAR point clouds. Progressive windows 

include two windows, the first one removes the small non-

ground objects such as shrubs, and the second window 

eliminates the large objects such as buildings. In addition, the 

slope between two neighbor pixels can remove high outliers 

and the edge of the buildings. According to the physical 

characteristics of the ground surface and the size of objects, 

the best threshold value is considered. In the following, the 

paper explains the basic procedure of this algorithm and 

presents results and analyses obtained from its 

implementation.  

 

2. Proposed Method 

     In this paper, a new method for filtering the LiDAR data 

is proposed based on the slope and progressive window 

thresholding (SPWT). The flowchart of the SPWT method is 

shown in Figure 1. As shown, the non-ground points are 

eliminated through four main steps: preprocessing, small 

window thresholding, slope thresholding, and large window 

thresholding. 

     The algorithm was designed to work on a grid form of the 

LiDAR data. Therefore, in the preprocessing step, low 

outliers are removed in addition to resampling the LiDAR 

point clouds into a regular grid data. Afterward, in a small 

window, the elevation difference between the candidate pixel 

and the minimum elevation of the local window is calculated 

to detect the non-ground pixels. Next, by considering a 

predefined threshold value of the slope between each pixel 
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and its neighbor pixels, the non-ground pixels are detected, 

which have not been previously recognized. The last step is 

the same as the aforementioned step, but it is in a larger 

window size. Actually, the elevation difference between the 

candidate pixel and the minimum elevation of the local 

window is calculated. If the difference value exceeds from a 

predefined threshold, the candidate pixel is labeled as non-

ground point. 

The window sizes are specified from the smallest to the 

largest objects in the area. In addition, according to the 

physical characteristics of the ground surface and the size of 

objects, the best height threshold is selected manually.  

Furthermore, the slope threshold should be assigned based 

on the topographical condition of the area.  

The SPWT method selects the pixels in order from the 

first to the last scan line, and after finding the ground seed, 

the algorithm iterates repeatedly through the following steps 

to the label points as ground or non-ground. The main steps 

of the proposed method are described in more details in the 

following sections. 

 

2.1 Preprocessing 

In this study, two preprocessing steps are necessary 

before applying the SPWT algorithm: resampling the LiDAR 

point clouds and outlier removal. The aim of resampling is to 

convert the irregular point clouds into a regular distributed 

grid through an interpolation technique. Here, the nearest 

neighbor technique that considers the elevation of the nearest 

point in a specified distance to the output pixel is performed. 

If no points were observed in the specified distance, the pixel 

would be labeled as no data. Therefore, to avoid too many or 

no points in each grid cell, the size should be determined by 

the average point spacing of the point clouds (Li et al. 2014). 

After resampling the points into a regular distributed grid, 

the outliers should be removed from the data. In the LiDAR 

data, the outliers are points with abnormal elevation values, 
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Figure 1. Flowchart of the SPWT algorithm for filtering the LiDAR data 
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either higher or lower than the surrounded points. The 

outliers with high elevation values, which usually include 

random errors and result from birds or airplanes, are usually 

eliminated during the filtering process, because they can be 

assumed as non-ground objects. While, low outliers are 

below the surface and may be resulted from several times 

reflecting of laser returns. These outliers may seriously affect 

the filtering results. Therefore, they should be removed from 

the data in the preprocessing step (Li et al., 2013). In this 

study, we used a rank value to remove the low outliers 

(Eckstein & Muenkelt, 1995), which can be alternative low 

outliers with a median of gray value in a local window. We 

consider 𝐺𝑝 be the gray values of a local neighborhood of 

pixel p, and n=|Gp | be the number of pixels in the local 

window. The gray values Gi
p
 ∈ Gp  .i∈1…n  are sorted by a 

function s in Eq. (1). 

 

Gs(1)

p
 ≤… ≤ Gs(n)

p
 (1) 

After sorting the gray values, the points at the end of gray 

values with abnormal lower gray values could potentially be 

outliers and are replaced by the median of the sorted gray 

values. 

 

2.2 Small Window Thresholding 

After the preprocessing step, the small non-ground 

objects, such as shrubs, vehicles and small trees that have a 

further height compared with their neighbors range are 

removed in the small window thresholding step. To identify 

these types of non-ground pixels, the elevation difference 

between these pixels and the minimum elevation in a local 

window is calculated. Meanwhile, depending on the size and 

the height of the objects in the area, height difference 

threshold should be assigned. Also, the window size in this 

step is based on the smallest object in the area.     

This approach may not work on some pixels, and if the 

elevation difference is less than or equal to the height 

difference threshold, the pixel should be checked in the next 

steps. Therefore, more investigations are required to detect 

the non-ground pixels.    

 

2.3 Slope Thresholding 

In this step, the slope between each pixel and the previous 

pixel is calculated, and the candidate pixel would be labeled 

as a non-ground point if the slope were larger than a 

predefined threshold value. As well, it proceeds to the next 

step if the slope is less than or equal to the threshold value. 

The slope angle 𝜃 can be calculated according to the Eq. (2).  

 θ = tan-1 ( |z2- z1| /√(x2- x1)
2
+ (y

2
- y

1
)
2
  ) (2) 

where x1, y
1
, z1 and x2, y

2
, z2 are the coordinates for arbitrary 

points. In this case, the points that have vivid height 

differences in comparison with the previous point could be 

identified as non-grounds such as noises and the edge of the 

buildings. The slope threshold should be assigned based on 

the topographical condition of the area. Although, this step 

and the previous one are highly capable to eliminate the small 

objects, they will not be able to remove larger objects such 

as buildings and bridges. In these cases, the height and slope 

of the central points are not locally changed. Therefore, 

considering a larger window search is necessary to remove 

the central points.   

 

2.4 Large Window Thresholding 

In the last step, a large window is considered to remove 

the central points of the large non-ground objects such as 

buildings or bridges. The processes in this step are mostly 

similar to the small window thresholding step, but there are 

two main differences: 

1. The window size. The small window thresholding step 

cannot identify large objects, since the size of window is not 

large enough to cover them completely, and there is no 

ground seed for calculating the height difference between the 

ground and the object. Therefore, a larger window is needed 

to detect the large objects. 

2. The height difference threshold. In the small window, 

small objects with low height value can be removed, but it is 

not appropriate for objects with high elevation values such as 

buildings. Therefore, to remove these objects, the height 

difference threshold should be adjusted.   

Therefore, the window size and the height difference 

threshold should be adjusted in this step. Meanwhile, the 

window size is defined based on the largest object, so it may 

differ in each dataset. In addition, the height difference 

threshold value would be defined based on the height of large 

objects.    

 
3. Data 

In this study, in order to evaluate the performance of the 

SPWT algorithm, two datasets with different spatial 

resolution were tested. The details of these datasets are 

described in the following sections. 

      

3.1 Low Resolution Datasets   

The first dataset is the benchmark dataset provided by the 

International Society for Photogrammetry and Remote 

Sensing (ISPRS) Commission III/WG3 

(http://www.itc.nl/isprswgIII-3/filtertest/). This paper chose 

the sample datasets included the typical urban and rural areas 

with different complex features, which are sample_21, 

sample_22, sample_41 and sample_61. The characteristics 

of these samples are shown in Table 1. In addition, the 

reference datasets were provided by the ISPRS using semi-

automatic and manually filtering with recognition landscape 

and the aerial images (Chen et al., 2013). The LiDAR point 

clouds of these samples are depicted in Figure 2.   

  

filtertest%20_%20Filtertest.html
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Table 1. Characteristics of the selected samples from the ISPRS dataset (Pingel et al., 2013) 

ENVIRONMENT Sample Point Number Features 

URBAN 

21 12960 Large building, bridge, roads, vegetation 

22 32706 Irregularly shaped buildings, vegetation 

41 11231 Data gaps, irregularly shaped buildings 

RURAL 61 35060 Large gap in data, vegetation, steep slopes 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. LiDAR point clouds. (a) Sample 21, (b) Sample 22, (C) Sample 41, and (d) Sample 61  

 

 
Figure 3. LiDAR points cloud from IEEE with high 

resolution 

 
3.2 High Resolution Dataset 

     Today, due to the development of the LiDAR technology, 

the density of collected point clouds is arising (Zhang et al., 

2016). Thus, in this research, a high-resolution dataset was 

tested to have a better evaluation of the SPWT algorithm. 

This dataset was provided by (IEEE, 2015), and was cropped 

as part of the urban area in Zeebruges, Belgium with an 

average point density of 65 points/m2, which is related to a 

point spacing of approximately 10 cm. The LiDAR point 

clouds of this sample is shown in Figure 3. As shown, this 

dataset covers various terrain types including irregularly 

shaped buildings with eccentric roofs, roads, vehicles and 

vegetation. In addition, an expert manually generated the 

ground truth for this sample.  

 

4. Experiment and results  

In this study, the SPWT algorithm was implemented 

using MATLAB R2015b. In the following, the results are 

discussed and evaluated. 

 

4.1 Filtering validation 

The SPWT method was first tested by the ISPRS 

benchmark datasets. In the preprocessing, the LiDAR point 

clouds were resampled to a regular grid data. In order to do 

so, we considered 1 meter as the pixel size in urban area and 

2 meter in rural area. After resampling, low outliers were 

removed from the datasets. 
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Table 2. Parameter values in the SPWT algorithm for filtering the low resolution LiDAR dataset 

Datasets Size of small 

window 

Height difference 

threshold in small 

window 

The slope 

threshold 

Size of large 

window 

Height difference 

threshold in large 

window 

Sample 21  7×7 0.85m 30o 43×43 5m 

Sample 22 5×5 2.2m 45o 33×33 9.8m 

Sample 41 3×3 2.8m 45o 19×19 4.6m 

Sample 61 3×3 3m 60o 10×10 6.5m 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 Ground         Non-ground      Type I error        Type II error         No data 

Figure 4. Error distribution in filtering of the low resolution LiDAR datasets. (a) Sample 21, (b) Sample 22, (C) Sample 41 and 

(d) Sample 61 

In the next step, five parameters were used for testing the 

algorithm, including the window size and the height 

difference threshold values for both small and large 

windows, and a threshold value in the slope thresholding 

step. Table 2 summarizes the applied parameters in testing 

the algorithm using the ISPRS benchmark dataset. 

To evaluate the efficiency of the SPWT method, in this 

research, three indexes of error type I, error type II and total 

errors were used. If (a) is the total number of ground points, 

(b) is the total number of non-ground points, (c) is the count 

of ground points refer as non-ground and (d) is the count of 

non-ground points as ground, then the type I error, type II 

error and total error can be calculated as (c/a), (d/b) and 

((c+d)/(a+b)), respectively (Rashidi & Rastiveis, 2017). The 

results of the proposed filtering method are shown in Figure 

4. As it can be seen in Figure 4(a), the special features of 

sample 21, such as bridge, building and vegetation, are well 

filtered. Although bridge identification is one of the most 
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significant challenges in filtering the LiDAR data (Meng et 

al., 2009), the SPWT method showed a high performance in 

bridge identification. In sample 22, Figure 4(b), the 

irregularly shaped buildings and vegetation are well filtered, 

but many errors of type II are distributed around the 

buildings, which it means some of the pixels were incorrectly 

labeled as ground pixels. The reason may be abrupt changes 

in the height of the building roof. As it is clear in Figure 4(c), 

the proposed algorithm shows a decent effect on the 

irregularly shaped buildings with eccentric roofs in sample 

41. However, a number of type I error points are observed in 

this sample. In sample 61, as it can be seen from Figure 4(d), 

there are a lot of type II errors distribute along steep slopes, 

because there are more dramatic ground surface changes in 

this area. Table 3 shows the calculated type I, type II, and the 

total errors for the test samples. As shown in this table, the 

minimum total error was observed in sample 21. Although 

this sample includes different objects, the SPWT algorithm 

successfully filtered these objects with low-level resulted 

type I, type II and total error rates. On the other hand, filtering 

sample 41 had the most significant total error, because this 

sample had many complex objects in comparison with other 

samples. Experimental results showed that the SPWT 

method can filter special features such as bridge, irregularly 

shaped buildings with eccentric roofs and low height 

vegetation, but it may have some errors in steep slopes. 

 

4.2. Comparison and Discussion 

      A large number of researchers have used the ISPRS 

dataset to evaluate their filtering algorithms. In this study, to 

quantitatively analyze the accuracy of the SPWT algorithm, 

the resulted of the total error from the proposed method was 

compared to eight other methods that were tested by the 

ISPRS (Sithole & Vosselman, 2003) dataset. The total errors 

of these samples are summarized in Table 4.  

As Table 4 provides, the accuracy of the SPWT method is 

close to the other top filtering algorithms, except sample 22. 

Type II error for sample 22 distributed the surrounding of the 

buildings and is relatively high. 

Moreover, the overall accuracy, which indicates the 

percentage of the properly classified points in all points (Hui 

et al., 2016), was calculated for the sample datasets. Figure 5 

shows the average overall accuracy of filtering the test 

samples through the SPWT algorithm and the other previous 

techniques. As can be seen from this Figure, the SPWT 

method shows the highest overall accuracy for these samples. 

In addition, there is a slight difference between the proposed 

method and the Axelsson algorithm, and a big difference in 

comparison with the Sithole algorithm. 

Some other novel methods have proposed their new 

filtering algorithms in recent years, which use the samples 

provided by the ISPRS to evaluate their performance. The 

average total errors for four samples of these algorithms are 

shown in Table 5. As it is clear in this table, the SPWT 

method shows a decent performance in the LiDAR point 

clouds filtering. The average total error of the proposed 

method was only 0.65% higher than the lowest one. 

 

Table3. Accuracy indexes for ISPRS dataset in the SPWT algorithm 

Sample 

Dataset  

TYPE I 

ERROR(%) 

TYPE II 

ERROR(%) 

TOTAL  

ERROR(%) 

Sample 21 3.49 5.12 3.71  

Sample 22 4.43 18.03 7.17 

Sample 41 12.78 3.38 8.41 

Sample 61  3.57 20.22 3.86 

 

 

 
Figure 5. Average overall accuracy of the SPWT algorithm and the 

previous technique  

 

 

Table 4. Total errors of the proposed method compared to other reported algorithms (%) 

Samples Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole SPWT 

Sample 21 8.53 8.8 4.25 2.57 9.3 9.84 4.55 7.76 3.71 

Sample 22 8.93 7.54 3.63 6.71 22.28 23.78 7.51 20.86 7.17 

Sample 41 8.76 11.27 13.91 10.75 17.03 12.21 9.01 23.67 8.41 

Sample 61 35.87 2.99 2.08 6.91 21.68 18.99 13.47 21.63 3.86 
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4.2 Testing the high resolution LiDAR data 

The SPWT method was also tested by a high-resolution 

dataset. Table 6 summarizes the applied parameters in testing 

the algorithm using the IEEE dataset. In resampling of this 

dataset, the pixel size was considered 0.2 meter. Moreover, 

this dataset contains types of objects in different sizes with 

low and high height. The applied parameters for removing 

the non-ground objects in this dataset are listed in Table 6. 

As shown in Figure 6, the special objects such as the 

irregularly shaped buildings with eccentric roofs, vehicles 

and vegetation can be well filtered, but some type I, and type 

II errors are scattered. Concerning the ground truth that was 

obtained manually for this sample, type I, type II and total 

errors were 7.89%, 5.48% and 6.92%, respectively. 

5. Conclusion 

In this study, a new LiDAR point cloud data filtering 

method was proposed based on the slope and progressive 

window thresholding (SPWT) approach.  

 

Table 5. Average total errors reported by novel algorithms 

AUTHOR TOTAL ERROR (%) 

(Chen et al., 2007) 10.48 

(Zhang & Lin, 2013) 13.92 

(Li et al., 2014) 5.62 

(Hui et al., 2016) 5.14 

SPWT 5.79 

 

Table 6. Applied parameter values in ground filtering 

of the IEEE data sample using the SPWT algorithm 

Size of 

small 

window 

Height 

difference 

threshold 

in small 

window 

The 

slope 

threshold 

Size of 

large 

window 

Height 

difference 

threshold 

in large 

window 

7×7 0.5m 45o 50×50 3m 

 

 

 Ground                Non-ground 

 Type I error         Type II error 

Figure 6. Error distribution for ground filtering of IEEE 

sample using the SWPT algorithm 

The SPWT method resamples the LiDAR point clouds into a 

regular grid data and removes the outliers. Then, using the 

slope between the points and the vertical information value 

of the local window, the non-ground objects are detected. 

The proposed method was tested by two datasets with 

different spatial resolutions. In filtering the low resolution 

datasets, the SPWT method showed a higher performance 

compared to other filtering methods. The average overall 

accuracy for the low- and high-resolution datasets were 

94.21% and 93.08%, respectively. The results of the filtering 

process indicate that the SPWT method can successfully 

filter the non-ground points from the LiDAR point clouds 

regardless of the data resolution. 

The future work will try to control the increase of the type 

II error because it is a slight in some samples and will use 

both the LiDAR point clouds and optical images to identify 

complex buildings on steep slope. In addition, we will 

automatically find the parameters of the proposed method to 

reduce the role of operator.    
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