تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,121,671 |
تعداد دریافت فایل اصل مقاله | 97,228,919 |
بهبود برآورد هیدروگراف سیلاب با استفاده از مدل شمارۀ منحنی اصلاحشده (رابطۀ غیرخطی Ia-S) | ||
اکوهیدرولوژی | ||
مقاله 16، دوره 5، شماره 3، مهر 1397، صفحه 931-939 اصل مقاله (960.45 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.252799.832 | ||
نویسندگان | ||
ساناز دایی1؛ میثم سالاری جزی* 2؛ خلیل قربانی3؛ مهدی مفتاح هلقی3 | ||
1کارشناس ارشد مهندسی آب، دانشکدۀ مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
2استادیار، گروه مهندسی آب، دانشکدۀ مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
3دانشیار، گروه مهندسی آب، دانشکدۀ مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
چکیده | ||
مدل شمارۀ منحنی (SCS-CN) در حالت متداول بر اساس رابطۀ خطی بین جذب اولیه (Ia) و بیشترین پتانسیل نگهداشت (S) حوضۀ آبریز است، ولی این مدل برای درنظرگرفتن رابطۀ غیرخطی Ia-S اصلاح شده است. هدف از مطالعۀ حاضر مقایسۀ مدلهای متداول شمارۀ منحنی و شمارۀ منحنی اصلاحشده (رابطۀ غیرخطی Ia-S) در برآورد هیدروگراف سیلاب در پنج حوضۀ آبریز گالیکش، نوده، تمر، وطنا و کچیک (کاربرد ۳۷ رویداد بارش-رواناب در محاسبات و انتخاب ۱۴ رویداد برای مقایسۀ نتایج در مرحلۀ صحتسنجی) است. برای مقایسۀ نتایج از معیارهای ریشۀ میانگین مربعات خطا (RMSE)، نش-ساتکلیف (NSE) و خطای برآورد دبی اوج (PEP) استفاده شده است. بررسی معیارهای RMSE و NSE و PEP نشان میدهد کاربرد مدل شمارۀ منحنی اصلاحشده (رابطۀ غیرخطی Ia-S) در همۀ رویدادهای مرحلۀ صحتسنجی موجب بهبود برآورد هیدروگراف و دبی اوج سیلاب نسبت به کاربرد مدل متداول شمارۀ منحنی (SCS-CN) شده است. بنابراین، نتایج نشان میدهد در حوضههای آبریز مطالعهشده مدل شمارۀ منحنی اصلاحشده (رابطۀ غیرخطی Ia-S) موجب بهبود درخور توجه کارایی مدل متداول شمارۀ منحنی (SCS-CN) شده است. | ||
کلیدواژهها | ||
سیلاب؛ شمارۀ منحنی اصلاحشده (رابطۀ غیرخطی Ia-S)؛ شمارۀ منحنی (SCS-CN)؛ هیدروگراف | ||
عنوان مقاله [English] | ||
Improvement of Estimation of Flood Hydrograph Using Modified Curve Number (non-linear Ia-S) Model | ||
نویسندگان [English] | ||
Sanaz Daei1؛ Meysam Salari Jazi2؛ Khalil Ghorbani3؛ Mahdi Meftah Halaghi3 | ||
1MSc Graduated, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources. | ||
3Associate Professor, Water Engineering Department, College of Water & Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources | ||
چکیده [English] | ||
The Curve Number Model (SCS-CN) is in conventional mode is based on the linear relationship between initial absorption (Ia) and potential maximum retention (S) of the catchment but this model has been modified to consider non-linear Ia-S relation. The objective of this study is to compare the conventional curve number and modified curve number (non-linear Ia-S relation) models in flood hydrograph estimation in five Galikesh, Nodeh, Tamer, Vatana and Kechik catchments (37 rainfall-runoff events in calculation and selection of 14 events for results comparison in validation step). The root mean square error (RMSE), Nash-Sutcliff (NSE) and peak discharge estimation error (PEP) criteria were used for results comparison. Investigation of RMSE and NSE and PEP criteria shows that the application of modified curved number model (non-linear Ia-S) in all events of validation step improves the estimations of flood hydrograph and peak discharge in comparison with conventional curve number model (SCS-CN), therefore the results indicated that in studied catchments, the modified curve number model (non-linear Ia-S) has improved the conventional curve number SCS-CN model. | ||
کلیدواژهها [English] | ||
Flood, Hydrograph, Modified Curve Number (non-linear Ia-S), curve number (SCS-CN) | ||
مراجع | ||
[1].King K W and Balogh, J. C. Curve numbers for golf course watersheds. Transactions of the ASABE. 2008; 51(3):987-996. [2].Tramblay Y, Bouvier C, Martin C, Didon-Lescot J. F, Todorovik D, Domergue J. M. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. Journal of Hydrology. 2010;387(3):176-187. [3].Chung W. H, Wang I. T, Wang R. Y. Theory-based SCS-CN method and its applications. Journal of Hydrologic Engineering. 2010; 15(12):1045-1058. [4].Ponce V. M, Hawkins R. H. Runoff curve number: Has it reached maturity. Journal of hydrologic engineering. 1996; 1(1):11-19. [5].Soulis K. X, Valiantzas J. D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrology and Earth System Sciences. 2012; 16(3): 1001-1015. [6].Romero P, Castro G, Gomez J. A, Fereres E. Curve number values for olive orchards under different soil management. Soil Science Society of America Journal. 2007; 71(6):1758-1769. [7].Hawkins R. H. Asymptotic determination of runoff curve numbers from data. Journal of Irrigation and Drainage Engineering. 1993; 119(2):334-345. [8].Ebrahimian M, Nuruddin A.A, MohdSoom M.A.B, Sood, A.M. Application of NRCS-curve number method for runoff estimation in a mountainous watershed. Caspian J. Environ. Sci. 2012; 10: 103-114. [9].Cazier D.J, Hawkins R.H.Regional application of the curve number method. Water today and tomorrow. Proc. ASCE Irrigation and Drainage Division Special Conf., ASCE. New York. 1984; 710. [10].Woodward D.E, Hawkins R.H, Hjelmfelt J.R, Jr A.T, Mullem J.A, Quan, Q.D. Runoff curve number method: Examination of the initial abstraction ratio. Proc. world water Environ. Res. Congress.2003; 1-10. [11].Shi Z.H, Chen L.D, Fang N.F, Qin, D.F, Cai C.F. Research on SCSCN initial abstraction ratio using rainfall runoff event analysis in the three Gorges Area, China. Catina. 2009;77(1): 1-7. [12].Singh M. Simulating rainfall changes effects on runoff and soil erosion in submontane Punjab. M.Sc. Thesis. Punjab Agricultural University. Ludhiana. 2014. [13].Bales J, Betson R. P. The curve number as a hydrologic index. Rainfall Runoff Relationship. 1981; 371-386. [14].Hauser V. L, Jones O. R. Runoff curve numbers for the Southern High Plains. Transactions of the ASAE. 1991; 34(1):142-148. [15].Gao Y, Zhu, B, Miao C. Y. Application of SCS model to estimate the volume of rainfall runoff in sloping field of purple soil. Chinese Agricultural Science Bulletin. 2006; 22(11): 396-400. [16].Mishra S K, and Singh V. P. Another look at SCS-CN method. Journal of Hydrologic Engineering. 1999; 4(3): 257-264. [17].Mishra S K, Jain M K, Singh V P. Evaluation of the SCS-CN-based model incorporating antecedent moisture. Water resources management. 2004; 18(6): 567-589. [18].Mishra S. K, Sahu R K, Eldho T I, Jain M K. An improved Ia- S relation incorporating antecedent moisture in SCS-CN methodology. Water Resources Management. 2006; 20(5): 643-660. [19].Jiao P Xu D, Wang S, Yu Y, Han S. Improved SCS-CN method based on storage and depletion of antecedent daily precipitation. Water ResourManag. 2015; 29:4753–4765. [20].Sahu R. K, Mishra S. K, Eldho T. I. An improved AMC‐coupled runoff curve number model. Hydrological processes. 2010;24(20): 2834-2839. [21].Karn A L, Lal M, Mishra S K, Chaube U C , Pandey A. Evaluation of SCS-CN Inspired models and their comparison. Journal of Indian Water Resources Society. 2016; 36(3): 19-27. [22].Mishra S. K, Singh V. P. Soil conservation service curve number (SCS-CN) methodology. 42th ed. Springer Science and Business Media.. 2013. [23].Mishra S.K, Singh V.P. SCS-CN-based hydrologic simulation pack-age. In: Singh V.P,Frevert D.K, editors. Mathematical Models in SmallWatershed Hydrology and Applications. Water Resour. Publ, P.O. Box2841, Littleton, Colorado 80161. 2002. pp. 391-464. [24].Mishra S.K, Singh V.P, Sansalone J.J, Aravamuthan V. A modifiedSCS-CN method: characterization and testing. J. Water Resour. Manage. 2003;17: 37-68. [25].Nash J. E, Sutcliffe J. V. River flow forecasting through conceptual models.part I- A discussion of principles. Journal of Hydrology. 1970; 10(3): 282-290. [26].Adib A, Salarijazi M, Vaghefi M, Shooshtari M. M, Akhondali A. M. Comparison between GcIUH-Clark, GIUH-Nash, Clark-IUH, and Nash-IUH models. Turkish Journal of Engineering and Environmental Sciences. 2010; 34(2): 91-104. [27].Adib A, Salarijazi M, Najafpour K. Evaluation of synthetic outlet runoff assessment models. Journal of Applied Sciences and Environmental Management. 2010; 14(3): 13-18. [28].Adib A, Salarijazi M, Shooshtari M M, Akhondali A M. Comparison between characteristics of geomorphoclimatic instantaneous unit hydrograph be produced by GcIUH based Clark Model and Clark IUH model. Journal of Marine Science and Technology. 2011; 19(2): 201-209. [29].Eidipour A, Akhondali A. M, Zarei H, Salarijazi M. Flood hydrograph estimation using GIUH model in ungauged karst basins (Case study: Abolabbas basin). TUEXENIA. 2016;36(3): 26-33. | ||
آمار تعداد مشاهده مقاله: 392 تعداد دریافت فایل اصل مقاله: 293 |