
Journal of the Earth and Space Physics, Vol. 45, No. 4, Winter 2020, P. 1-13 

DOI: 10.22059/jesphys.2018.249340.1006962 

Thickness of Crust in the West of Iran Obtained from Modeling of Ps Converted Waves 
 

Khatami, M. S.1, Taghizadeh-Farahmand, F.2* and Afsari, N.3 
 

1. M.Sc. Student, Department of Physics, Qom Branch, Islamic Azad University, Qom, Iran 
2. Associate Professor, Department of Physics, Qom Branch, Islamic Azad University, Qom, Iran 

3. Assistant Professor, Department of Civil Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran 

(Received: 14 Jan 2018, Accepted: 25 Sep 2018) 
 

Abstract 
Receiver functions are usually used to detect Ps converted waves and are especially useful to 
picture seismic discontinuities in the crust and upper mantle. In this study, the P receiver function 
technique beneath the west Iran is used to map out the lateral variation of the Moho boundary. The 
teleseismic data (Mb ≥5.5, epicentral distance between 30˚-95˚) recorded from 2004 to 2016 at 17 
permanent broadband and short-period stations of the Iranian Seismological Center (ISC, 
http://irsc.ut.ac.ir) of Kermanshah, Khoramabad, Hamedan and Boroujerd and one broadband 
station of the International Institute of Earthquake Engineering and Seismology (IIEES, 
http://www.iiees.ac.ir) were used. The results indicate clear Ps conversions at the Moho boundary. 
The Moho depths are estimated from the delay time of the Moho converted phase relative to the 
direct P wave beneath each network. The average Moho depth lies at ~42±2 km. Furthermore, the 
clear image of the Moho at depths as modeling of PRF, ranging from 37 km beneath KCHF station 
to maximum 55 km beneath HAGD station was presented. According to the distribution and 
number of stations used, this study is more comprehensive than previous studies. 
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1. Introduction 
The Zagros fold-thrust belt extends 2000 km 
from Turkey in the NW to the Hormuz Strait 
in the SE (James and Wynd, 1965) resulted 
from the collision of Arabian Plate with the 
continental crust of Central Iran after the 
closure of the Neotethys Ocean (Dewey and 
Grantz, 1973). The Zagros collision zone 
comprises of three major sub-parallel 
tectonic elements. They are, from SW to NE, 
the Zagros Fold and Thrust Belt (ZFTB), the 
Sanandaj-Sirjan Metamorphic Zone (SSZ), 
and the Urmieh-Dokhtar Magmatic Arc 
(UDMA) (Stöcklin, 1968; Ricou et al., 1977). 
There are some main active faults in the west 
of Iran. ZFTB is bounded to the north by the 
Main Zagros Reverse Fault (MZRF), 
(Stöcklin, 1974), which have been considered 
to be the active thrust fault between Arabia 
and Iran during subduction and before 
suturing occurred (i.e. Falcon, 1974). High 
Zagros Fault (HZF) is another major fault in 
the ZFTB in the NW–SE trending (Falcon, 
1974; Berberian, 1995), which marks the 
High Zagros with the highest topography in 
the region (Fig. 1). Earthquake data show 
that most of the activity is concentrated along 
the Zagros fold-thrust belt in Iran. The region 
referred as northwest of Zagros of Iran in this 
study includes the area located between 46°–
50° longitude and 33°–36° latitude (Fig. 1). 

The Moho discontinuity has been extensively 
studied with different methods and data in 
Zagros region (Asudeh, 1982; Dehghani and 
Makris, 1984; Snyder and Barazangi, 1986; 
Hatzfeld et al., 2003). Recently, Paul et al. 
(2006, 2010) showed the migrated sections 
computed from P receiver functions (PRF) 
and their results revealed an average crustal 
thickness of 42±2 km beneath the Zagros 
Fold and Thrust Belt implying that the 
crystalline crust of ZFTB has not been 
significantly thickened by the collision yet. 
They showed a crustal model with a 
maximum crustal thickness of ∼70 km 
underneath SSZ. Even though, they found a 
thick crust beneath the UDMA ~50 km along 
the Northwest Zagros profile. They also 
explained the thickening by overthrusting of 
the Arabia margin crust by the crust of 
central Iran along the Main Zagros Recent 
Faults (MZRF). Shad Manaman and Shomali 
(2010) and Shad Manaman et al. (2011) 
propose a maximum 65 km depth for the 
Zagros region on the same profile as Paul et 
al. (2006), but their maximum crustal 
thickness is some 50 km further SW. A more 
recent study by Afsari et al. (2011), based on 
receiver functions modeling, indicates an 
average Moho depth of about 42 km beneath 
the Northwest Zagros increasing toward the 
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Table1. Specification of the seismic stations, Ps conversion times (Sec.), corresponding depths (km). 

Network 
Code 

Station 

Arrival 
Time of Ps 

Phase 
(Sec.) 

Moho Depth 
(±2.5,km) as 

(Paul et al., 2010, 
Afsari et al., 2011)

Moho Depth 
(±2.5 km) 

as Modeling  
Lat.N 
(Deg.) 

Long.E 
(Deg.) 

Elevation 
(m) 

K
er

m
an

sh
ah

 

DHR 4.9 39.5 40.0 34.700 46.387 1840 

KOM 4.6 37.0 41.0 34.176 47.514 1716 

GHG 4.6 37.0 44.0 34.329 46.568 2060 

LIN 4.5 36.5 40.0 34.919 46.963 2140 

VIS 5.9 47.5 50.0 34.528 46.851 1833 

BZA 4.7 38.0 39.0 34.470 47.861 2330 

KCHF 4.6 37.0 38.0 34.275 47.040 1715 

KER 6.4 51.5 53.0 34.387 47.133 1338 

K
ho

ra
m

ab
ad

 DOB 6.0 48.5 50.0 33.787 48.177 1948 

KFM 5.1  41.0 42.0 33.524 47.847 1676 

KMR 6.5 52.0 52.0 33.518 48.38 1733 

H
am

ed
an

 

HAGD 6.5 52.0 55.0 34.822 49.139 1831 

HALM 5.0 40.0 44.0 34.860 48.168 2450 

HSAM 5.5 44.0 48.0 34.212 48.602 2314 

HSRG 5.9 47.5 51.0 35.242 48.279 2545 

B
or

ou
je

rd
 

BDRS 5.0 40.0 42.0 33.954 48.881 2494 

BMDN 5.0 40.0 42.0 33.672 48.825 1698 

INSN SNGE 4.7 38.0 42.0 35.093 47.347 1940 
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6. Conclusion 
The Moho discontinuity beneath west of Iran 
is resolved using 17 permanent broadband 
and short-period stations of the Tabriz 
Telemetry Seismic Network of Kermanshah, 
Khoramabad, Hamedan and Boroujerd and 
one broadband station of  SNGE by using P 
receiver function modeling. The average 
Moho depth in the west parts of Iran is about 
~47±2.5 km and Moho discontinuity is not 
flat. We have been able to present a clear 
image of the Moho at depths ranging from 38 
km beneath KCHF station to Maximum 55 
km beneath HAGD station in the southern 
and northern part of the study area, 
respectively. The Moho depth map 
significantly presents a crustal thickening 
from the southeast towards the northeast. 
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