تعداد نشریات | 161 |
تعداد شمارهها | 6,473 |
تعداد مقالات | 69,970 |
تعداد مشاهده مقاله | 122,759,457 |
تعداد دریافت فایل اصل مقاله | 95,907,818 |
شبیهسازی میدان باد سطحی در منطقه دریای عمان با مدل WRF با شرایط اولیه و مرزی متفاوت | ||
فیزیک زمین و فضا | ||
مقاله 13، دوره 45، شماره 1، فروردین 1398، صفحه 197-209 اصل مقاله (519.09 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2018.258409.1007009 | ||
نویسندگان | ||
پروین غفاریان* 1؛ نفیسه پگاه فر1؛ محمدرضا محمدپور پنچاه2 | ||
1استادیار، پژوهشکده علوم جوی، پژوهشگاه ملی اقیانوسشناسی و علوم جوی، تهران، ایران | ||
2دانشجوی دکتری، گروه علوم غیر زیستی جوی و اقیانوسی، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، تهران | ||
چکیده | ||
در این تحقیق کارایی مدل میانمقیاس WRF برای شبیهسازی باد سطحی تحت شرایط اولیه و مرزی متفاوت در سواحل و فراساحل دریای عمان ارزیابی شده است. بدین منظور از داده بازتحلیل Era-interim و دادههای تحلیلی NCEP-FNL و NCEP-GFS بهعنوان شرایط اولیه و مرزی استفاده شده است. خروجی میدان باد حاصل از شبیهسازی مدل با دادههای ایستگاههای سینوپتیکی واقع در سواحل دریای عمان در کشورهای ایران و عمان، داده بویه قشم و داده ماهواره ترکیبی مقایسه شدهاند. از روش کشانش (Nudging) برای بهبود در نتایج خروجی مدل استفاده شده است. نتایج هر سه شبیهسازی نشان میدهند که مدل در نقاط ساحلی، مقادیرسرعت باد را پیش برآورد کرده است. به گونهای که بیشترین برآورد مربوط به داده Era-Interim و کمترین مربوط به داده FNL بوده است. برای مناطق فراساحلی، میانگین اریبی روی کل دامنه مورد مطالعه نشان داد که شبیهسازیهایی که با دادههای GFS و FNL انجام شده بود، تمایل به کمبرآوردی داشته، درحالیکه دادههای Era-Interim سرعت باد را بیشبرآورد کردهاند. از مقایسه نمودار هیستوگرام سرعت باد مشخص شد که در هر سه شبیهسازی بیشترین میزان خطا در بازههای زمانی که سرعت باد کم بوده، رخ داده است. ارزیابی جهت باد نیز نشان داد که داده FNL نسبت به دو داده دیگر عملکرد بهتری را بهعنوان شرایط اولیه و مرزی برای شبیهسازی در منطقه مورد مطالعه داشته است. در کل بهترین عملکرد مدل برای شبیهسازی میدان باد در دوره مورد مطالعه با دادههای FNL در نقاط ساحلی و فراساحلی بوده است. | ||
کلیدواژهها | ||
میدان باد؛ مدل WRF؛ دریای عمان؛ داده بازتحلیل و تحلیلی؛ شرایط اولیه و مرزی؛ کشانش | ||
عنوان مقاله [English] | ||
Simulation of the surface wind field by the WRF model in Oman Sea region with different initial and boundary conditions | ||
نویسندگان [English] | ||
Parvin Ghafarian1؛ Nafiseh Pegahfar1؛ Mohammad Reza Mohammadpour Penchah2 | ||
1Assistant Professor, Atmospheric Science Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran | ||
2Ph.D. Graduated, Department of Non-biologic Atmospheric and Oceanic Sciences, Faculty of Marine Science and Technology, University of Hormozgan, Bandaabbas, Iran | ||
چکیده [English] | ||
Oman Sea and its coastlines have an important role in the international trade, coastal management and marine industries. Large weather instability and intense wind occur in Oman Sea due to tropical cyclones. The wind field simulated by atmospheric models can be used in ocean model for wave prediction. The main purpose of this research is to investigate applicability of WRF mesoscale model version 3-7-1 in surface wind simulation using various boundary and initial conditions over Oman Sea. for this aim, three data sets including Era-Interim reanalysis data, FNL and GFS analysis data have been used. Simulated wind at the coasts of Oman has been evaluated using observational data measured at synoptic stations in Iran and Oman and also data measured by buoy at Gheshm Island. Evaluation of simulated offshore wind has been done using data from National Climatic Data Center Blended Sea Winds with 0.25 degree horizontal resolution and 6-hourly time step. Moreover, SST data from NCEP dataset with 0.083 degree in horizontal resolution have been used as WRF input data. Model outputs have been improved based on nudging technique. In this research, WRF model has been run using three 3-, 9- and 27-km nests, that the smaller one covers Oman Sea and some portions of the Persian Gulf. The model has been run for a time of 60 hour with 12 hour spin-up period for June 2009. Finally, fifteen “2-day re-started” simulations were performed to complete one month simulations. Results show that all three simulations overestimate wind speed at the considered coast area and the largest error belong to simulations that used Era-Interim dataset and the smallest error occurred in simulations that used FNL dataset. Comparison of the three datasets (analysis and reanalysis ones) with observational data indicated that using GFS dataset provided more accurate data due to its higher resolution. Moreover, ECMWF datasets underestimated them, while simulations using ECMWF them data as initialization and boundary conditions overestimated the winds. Bias-averaged values over the offshore areas demonstrated that using GFS and FNL datasets leads to underestimation, while using Era-Interim dataset resulted in overestimation in of predicted winds. Histogram of wind speed reveals that maximum error occurred for low wind speed for all three datasets (wind speed smaller than 3 m/s). In the mid-range (wind speed between 3-12 m/s), the model has an appropriate performance for simulating wind speed. Using GFS and FNL underestimates wind speed larger than 12 m/s, while using Era-Interim data overestimates that. Simulations using GFS and FNL have little discrepancy for various wind speeds, due to same model in producing these datasets. While results obtained from Era-Interim differ significantly with those from GFS and FNL datasets. Using FNL dataset produced the least error in wind direction. Since both GFS and FNL datasets are produced in NCEP with the same data assimilation techniques and forecast systems, the significant difference between these two datasets refers to the number of used observational data in producing analysis dataset (more observational datasets have been used in producing FNL dataset, comparing with those used in producing GFS dataset). Therefore, it can be concluded that dense grid of observational data in producing analysis dataset has an important role in mesoscale simulations. As a conclusion, using FNL dataset an input of WRF model led to the best performance in simulation of wind speed and wind direction for coasts and offshore part of Oman Sea. | ||
کلیدواژهها [English] | ||
Wind field, WRF model, Oman Sea, reanalysis and analysis data, Initial and boundary conditions, Nudging | ||
مراجع | ||
آزادی، م.، صوفیانی، م.، وکیلی، غ. و قائمی، ه.، 1395، مطالعه موردی اثر گوارد دادههای ایستگاههای دیدبانی و جو بالا بر برونداد بارش مدل WRF روی منطقه ایران، م. ژئوفیزیک ایران، جلد 10، 2، 110-119. غلامی، س.، قادر، س.، خالقی زواره، ح. و غفاریان، پ.، 1397، ارزیابی پیشیابی میدان باد توسط مدل WRF تحت تأثیر شرایط اولیه و مرزی متفاوت در منطقه خلیج فارس: مقایسه دادههای همدیدی و ماهوارههای QuickSCAT و ASCAT، م. فیزیک زمین و فضا، دوره 44، 1، 227-243. قادر، س.، یازجی، د.، سلطانپور، م. و نعمتی، م. ح.، 1394،: بهکارگیری یک سامانه همادی توسعه داده شده برای مدل WRF جهت پیشبینی میدان باد سطحی در محدوده خلیجفارس. دو فصلنامه هیدروفیزیک-دوره اول، 1، 41-54. لایقی، ب.، قادر، س.، علی اکبری بیدختی، ع. و آزادی، م.، 1396، حساسیتسنجی شبیهسازیهای مدل WRF به پارامترسازیهای فیزیکی در محدوده خلیج فارس و دریای عمان در زمان مونسون تابستانی. مجله ژئوفیزیک ایران، 11(1)، 1-19.
Carvalho, D., Rocha, A., Gómez-Gesteira, M. and Santos, C., 2012, A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environmental Modelling and Software, 33, 23-34. Carvalho, D., Rocha, A., Gómez-Gesteira, M. and Santos, C. S., 2014a, WRF wind simulation and wind energy production estimates forced by different reanalyses: comparison with observed data for Portugal. Applied Energy, 117, pp.116-126. Carvalho, D., Rocha, A., Gómez-Gesteira, M. and Santos, C. S., 2014b, Offshore wind energy resource simulation forced by different reanalyses: comparison with observed data in the Iberian Peninsula. Applied Energy, 134, 57-64. Dee, D. P. and Uppala, S., 2009, Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 135(644), pp.1830-1841. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P. and Bechtold, P., 2011, The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), pp. 553-597. Ghader, S., Montazeri Namin, M. and Chegini, F., Bohluly, A., 2014, Hindcast of Surface Wind Field over the Caspian Sea Using WRF Model. The 11th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2014), Tehran. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M. and Potter, G.L., 2002, NCEP-DEO AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83, 1631-1643. Mass, C. and Ovens, D., 2011, January. Fixing WRF’s high speed wind bias: A new subgrid scale drag parameterization and the role of detailed verification. In 24th Conference on Weather and Forecasting and 20th Conference on Numerical Weather Prediction, Preprints, 91st American Meteorological Society Annual Meeting (Vol. 23727). Menendez, M., García-Díez, M., Fita, L., Fernández, J., Méndez, F. J. and Gutiérrez, J. M., 2014, High-resolution sea wind hindcasts over the Mediterranean area. Climate dynamics, 42(7-8), pp.1857-1872. Otte, T. L., 2008, The impact of nudging in the meteorological model for retrospective air quality simulations. Part I: Evaluation against national observation networks. Journal of applied meteorology and climatology, 47(7), pp.1853-1867. Pickett, M. H., Tang, W., Rosenfeld, L. K. and Wash, C. H., 2003, QuikSCAT satellite comparisons with nearshore buoy wind data off the U.S. west coast. J. Atmos. Oceanic Technol., 20, 1869–1879. Pielke Sr., R. A., 2002, Mesoscale Meteorological Modeling, second ed. Academic Press, San Diego, CA. Simmons, A., 2006, ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF newsletter, 110, pp.25-36. Simmons, A., Uppala, S., Dee, D. and Kobayashi, S., 2006, ERAInterim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Huang, X. Y., Wang, W. and Powers, J. G., 2008, A Description of the Advanced Research WRF Version 3, NCAR TECHNICAL NOTE, NCAR/TN-475STR, pp. 113. Tabata, Y., Hashiguchi, H., Yamamoto, M. K., Yamamoto, M., Yamanaka, M. D., Mori, S., Syamsudin, F. and Manik, T., 2011, Lower tropospheric horizontal wind over Indonesia: a comparison of wind profiler network observations with global reanalyses. Journal of Atmospheric and Solar-Terrestrial Physics, 73(9), pp.986-995. Tang, W., Liu, W. T. and Stiles, B. W., 2004, Evaluation of highresolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Trans. Geosci. Remote Sens., 42, 1762–1769. Trenberth, K. E., Dole, R., Xue, Y., Onogi, K., Dee, D., Balmaseda, M., Bosilovich, M., Schubert, S. and Large, W., 2010, Atmospheric reanalyses: A major resource for ocean product development and modeling. Proc." OceanObs, 9. Zhang, H. M., Reynolds, R. W. and Bates, J. J., 2006, P2. 23 BLENDED AND GRIDDED HIGH RESOLUTION GLOBAL SEA SURFACE WIND SPEED AND CLIMATOLOGY FROM MULTIPLE SATELLITES: 1987-PRESENT. American Meteorological Society 2006 Annual Meeting, Paper #P2.23, Atlanta, GA, January 29 - February 2, 2006. | ||
آمار تعداد مشاهده مقاله: 1,182 تعداد دریافت فایل اصل مقاله: 698 |