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Abstract 
his paper empirically examines the impact of dependence structure 
between the assets on the portfolio optimization, composed of 
Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. 

In this regard, the method of the Copula family functions is proposed 
as powerful and flexible tool to determine the structure of dependence. 
Finally, the impact of the dependence structure on the risk identification 
and the optimized portfolio selection, will be analyzed. The results 
show that the t-student copula function provides the best performance 
among other Copula functions. Also, empirical evidence suggests that 
the performance of the GJR-Copula-CVaR method is relatively more 
accurate and more flexible than other common methods of 
optimization. 
Keywords: Portfolio Optimization, Conditional Value at Risk, Copula 
Functions, Dependence Structure. 
JEL Classification: C60, C61, G11. 

 

1. Introduction 

Modern Portfolio Theory (MPT) argues that investment is not only the 

selection of assets but selected a diversified combination of assets. One 

of the most important factors in portfolio diversification, dependency 

structure between the return of assets on the portfolio. According 

assuming normal distribution of asset returns in Portfolio Modern 

Theory, dependence between asset returns is defined perfectly by the 

linear correlation coefficients; that is, the variance of the risky assets 

portfolio only depends on the variance of each individual assets 

constituent portfolio and the linear correlation between the assets. But 

in the literature of past two decades, a lot of evidence has been provided 

about the breaches of the assumption of normal distribution (Harvey 
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and Siddique, 1999; Sadique and Silvapulle, 2001; Hartman et al., 

2004; Poon et al., 2004; Dass and Uppal, 2004). So, the linear 

correlation coefficients will not be an appropriate criterion in stating the 

dependence structure between assets return and it can lead to wrong 

results.     

In order to fix this issue, the different solutions have been provided 

in the literature. Harvey and Siddique (1999) and Brooks et al. (2005) 

offer m-GARCH model with conditional skewness. Ang and Bekaert 

(2002) also benefited Markov Switching models for modeling the 

dependence structure. Despite the ability of these models to consider 

for time-varying conditional correlation, they cannot reproduce 

asymmetries in tail dependence.1 To reproduce the asymmetric 

dependence Hartmann et al. (2004), Poon et al. (2004) and Beine et al. 

(2010) have used the extreme value theory. The major subject of this 

model is the problem of selecting the appropriate threshold and extreme 

value distribution. In order to consider the asymmetric dependence 

structure, Fantazzini (2008) proposes the dependency structure 

calculated based on Kendall’s tau instead of linear correlation. 

In financial literature, an alternative approach has been suggested based 

on Copula theory. Copulas theory are used to describe the dependence 

structure based on the multivariate joint distribution. Patton (2006) 

applied conditional copula model for determining the joint distribution 

of daily exchange rates and he found that the dependence structure of 

exchange rate is asymmetric. Palaro and Hotta (2006), for eliminated 

the problem of linear correlation coefficient, identified multivariate 

distributions of two US stock market index by the conditional copula 

and showed how conditional copula theory can be a very powerful tool 

in estimating the portfolio’s Value at Risk (VaR). He and Gong (2009) 

constructed a copula- Conditional Value-at-Risk (CVaR) model for 

credit risks of listed company on Chinese security market and this 

model can exactly measure the coupled risks in financial market. Huang 

et al. (2009), Chen and Tu (2013) and Boubaker and Sghaier (2013), 

for omitting the limitation in the financial assets joint distribution 

included in portfolio which will result to the error estimation in VaR, 
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used the conditional Copula- GARCH model and also indicted that 

because of the flexibility specification in distribution, the model is more 

appropriate for the financial markets high volatility study. Also, to 

estimate the risk of portfolio more accurately, Deng and et al. (2011) 

combine pair Copula-GARCH with the extreme value theory. They 

indicate that the optimal portfolio is better via pair Copula-GARCH-

EVT model than other conventional model. 

In this paper, I initially focus on modeling the dependence structure 

between the assets returns using copula functions. So that, the 

dependence structure between the assets returns that estimated by 

copula functions, will be replaced linear correlation coefficients. As 

asset, a pair of daily stock returns is considered. Therefore, to replace 

pattern of tail behavior rather than the joint multivariate normal distribution, 

GARCH and GIR models have been combined with Copula function. Finally, 

to investigate the effect of the dependence structure on the optimal 

portfolio, VaR and CVaR methods are applied. Thus, in addition to 

studying the effect of the dependence structure, it is possible to compare 

the accuracy of proposed models in portfolio risk estimation. Our 

findings support the issue that due to the flexibility and accuracy of 

distribution, the GJR-Copula-CVaR method is relatively more accurate 

and more appropriate than other common methods of optimization for 

portfolio risk identification and portfolio optimization. 

In the next section, the CVaR GIR-Copula method, including the 

marginal distribution, dependence structure modeling and the CVaR 

estimation presented. In section 3, we will examine the effect of the 

dependence structure on portfolio optimization. In section 4, I carry out 

empirical analysis. In the final section, the conclusion will be expressed. 

 

2. Method 

In this section, we present the methodology of copula-GARCH-CVaR 

model by three steps. In first step, we propose the GARCH and GJR 

model to estimation the marginal distribution. In second step, we have 

introduced the copula functions and modeling of the dependence 

structure between assets returns is discussed. In the last step, we will 

pay on portfolio optimization based on CVaR approach with the 

dependence structure by copula functions. 
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Step 1: The marginal distribution  

The conditional variance and average rate of returns estimation will be 

required for Value at Risk calculation. In some cases, the returns 

conditional distribution has the conditional heteroscedasticity, so 

paying attention to this specification, will cause to access to the 

estimators of efficient conditional maximum likelihood. On the other 

hand, it can be seen in some cases that the residual component faces 

with the heteroscedasticity variance effects’ problem, i.e. the 

conditional auto-correlated variance. So we use the GARCH model and 

GJR models for the marginal distribution estimation, as powerful tools 

in time series data. Engle (1982), first used these models for estimation 

of financial time series, such as stock returns and exchange rate. The 

GARCH model is as follows: 

(1) 

𝑟𝑡 = Φ0 +∑Φ𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

−∑𝜃𝑖𝑎𝑡−𝑖 + 𝑎𝑡       ;     𝑎𝑡

𝑞

𝑖=1

= 𝜎𝑡𝜀𝑡 

𝜎𝑡
2 = 𝛼𝑜 +∑𝛼𝑖𝑎𝑡−𝑖

2 +∑𝛽𝑗𝜎𝑡−𝑗
2

𝑛

𝑗=1

𝑚

𝑖=1

 

𝜀𝑡 =∼ 𝑁(0.1) 𝑜𝑟 ∼ 𝑡𝑑 . 

 

where, {𝜀𝑡} Is the sequence of non-correlation random variables with a 

distribution with a mean of 0 and a variance of 1 and furthermore we 

have: ∑ (𝛼𝑖 + 𝛽𝑖)
max (𝑚.𝑛)
𝑖=1 < 1, 𝛽𝑗 > 0 , 𝛼𝑖 ≥ 0, 𝛼0 > 0. It is simply 

understandable that for 𝑖 > 𝑚, always we have 𝛼𝑖 = 0 and for 𝑗 > 𝑛,  

𝛽𝑗 = 0. In addition to the 𝑑 are the degrees of freedom. The applied 

method of estimating in parameters will be the MLE method. Based on 

the arguments Huang et al. (2009) assuming that Ω𝑡−1 =

{𝑎0. 𝑎1. … . 𝑎𝑡−1}, by given data 𝑎1. … . 𝑎𝑡, the log- likelihood that can 

create the maximized numerically based on the MLE method, follows 

the (3) equation: 
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(3) 

𝐿𝐿𝐹 = ∑𝑓(𝑎𝑛−𝑘|Ω𝑛−𝑘−1)

𝑛−1

𝑘=0

 

 

The condition can be used for each 𝜀𝑡 distribution for the volatility 

modeling. By using the (𝑥1. 𝑥2. … . 𝑥𝑡) variables, can define the  𝑋𝑡+1‘s 

conditional marginal distribution for GARCH model as follows: 

 

(4) (𝑋𝑡+1 ≤ 𝑥|Ω𝑡) = 𝑃(𝑎𝑡+1 ≤ (𝑥 − 𝜇)|Ω𝑡)

= 𝑃 (𝜀𝑡+1 ≤
(𝑥 − 𝜇)

√𝛼0 + 𝛼1𝑎𝑡
2 + 𝛽𝜎𝑡

2
|Ω𝑡)

=

{
 
 

 
 𝑁(

(𝑥 − 𝜇)

√𝛼0 + 𝛼1𝑎𝑡
2 + 𝛽𝜎𝑡

2
|Ω𝑡)  .     𝑖𝑓 𝜀 ∼ 𝑁(0,1)

𝑡𝑑 (
(𝑥 − 𝜇)

√𝛼0 + 𝛼1𝑎𝑡
2 + 𝛽𝜎𝑡

2
|Ω𝑡)  .               𝑖𝑓 ∼ 𝑡𝑑

 

 

The fundamental GARCH model’s main problem is that it considers 

the variance process as symmetric. However, the studies suggest that 

the negative shock is likely to cause more volatility than the positive 

shock which is attributed to the leverage effects on the financial return. 

Therefore we also use the GIR model by Glosten et al. (1993) that is 

defined as (5) equation:  

 

(5) 
𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖𝑎𝑡−𝑖

2

𝑚

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2 +∑𝛾

𝑛

𝑗=1

𝑠𝑡−𝑗𝑎𝑡−𝑗
2

𝑛

𝑗=1

 

where   𝑠𝑡−1 {
1.   𝑎𝑡−1 < 0
0.   𝑎𝑡−1 ≥ 0

 

 

moreover,  

𝛼0 > 0, 𝛼1 > 0, 𝛽 ≥ 0, 𝛽 + 𝛾 ≥ 0 and 𝛼1 + 𝛽 +
1

2
𝛾 ≤ 1.  

also 𝑠𝑡 is a dummy variable with the values of 1 and 0 when 𝜀𝑡 is 

negative and positive respectively. In GIR model, asymmetric effects 
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will result in 𝛾 coefficients, when 𝛾 will be positive; that is the negative 

shocks represent more volatile than the positive shocks of the same size 

and same period. To follow the Huang et al. (2009), the 𝑋𝑡+1‘s 

conditional marginal distribution in GJR model will be as follows: 

 

(6) 𝑃(𝑋𝑡+1 ≤ 𝑥|Ω𝑡)

= 𝑃 (𝜀𝑡+1 ≤
(𝑥 − 𝜇)

√𝛼0 + 𝛼1𝑎𝑡
2 + 𝛽𝜎𝑡

2 + 𝛾𝑠𝑡𝜀𝑡
2
|Ω𝑡)

=

{
 
 

 
 𝑁(

(𝑥 − 𝜇)

√𝛼0 + 𝛼1𝑎𝑡
2 + 𝛽𝜎𝑡

2 + 𝛾𝑠𝑡𝜀𝑡
2
|Ω𝑡)  ,     𝑖𝑓 𝜀 ∼ 𝑁(0,1)

𝑡𝑑 (
(𝑥 − 𝜇)

√𝛼0 + 𝛼1𝑎𝑡
2 + 𝛽𝜎𝑡

2 + 𝛾𝑠𝑡𝜀𝑡
2
|Ω𝑡)  ,               𝑖𝑓 ∼ 𝑡𝑑

 

 

Step 2: dependence structure modeling 

Our idea in this paper is that we use the new dependence structure 

instead of the linear correlation coefficient in portfolio optimization. To 

do this we used Copula functions. Sklar (1959) stated the Copula 

functions based on this theorem for the first time, which indicated if  

𝐹(𝑥1. 𝑥2)  was  an indicative of a joint distribution function for two- 

dimensional random vector 𝑋1 and 𝑋2  with a marginal distribution of 

𝐹1(𝑥1) and 𝐹2(𝑥2), so a Copula function like 𝐶 for all real values of 

𝑥1and 𝑥2 would be as  equations (7): 

 

(7) 𝐹(𝑥1. 𝑥2) = 𝐶(𝐹1(𝑥1). 𝐹2(𝑥2)) 

 

Which by differentiation of the equation (7) both sides: 

(8) 𝜕2𝐹(𝑥1. 𝑥2)

𝜕𝑥1𝜕𝑥2
=
𝜕2𝐶(𝐹1(𝑥1). 𝐹2(𝑥2))

𝜕𝐹1𝜕𝐹2
𝑓(𝑥1)𝑓(𝑥2)

=
𝜕𝐶(𝑢1. 𝑢2)

𝜕𝑢1𝜕𝑢2
×∏

𝜕𝐹(𝑥𝑖)

𝜕𝑥𝑖
𝑖

= 𝐶(𝑢̃) ×∏𝑓𝑖(𝑥𝑖)

𝑖

 

 

As 𝑓𝑖  is the density function of 𝐹𝑖 and 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) for each 𝑖 = 1.2 

and 𝑢̃ = (𝑢1. 𝑢2) and 𝐶(𝑢̃) is the copula density function. In the case of 
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continuous variables, Sklar’s theorem [1959] indicates that each 

multivariate probability distribution function can be defined as  

equation (8) with a marginal distribution and dependence structure. If 

all the margins are continuous, thus the Copula will be unique and can 

be defined by different values of the marginal distribution functions 

uniquely. The result main specification is that there is no necessity for 

the marginal distribution similarity; and it is not necessary the Copula 

selection is confined to the marginal distribution. Now we can define 

the linear correlation coefficient, as an indication of the dependence 

structure, by a kind of dependence by name of tail dependence and 

based on the F distribution function. The tail dependence, measures the 

dependence between the variables in the upper and lower quartiles 

on𝐼2 = [0.1], which are defined as the upper and lower tails 

dependence. The Copula family, has been used here, including 

Gaussian Copula, t-Student Copula and Archimedean Copulas are as 

follows: 

 Gaussian (Normal) copula 

Song (2000), expressed the normal copula family distribution 

function as equation (20): 

 

(20) 𝐶𝐺𝑎(𝑢. 𝜈; 𝜌) = 𝜌(𝜓
−1(𝑢). 𝜓−1(𝜈)) 

 

That 𝜓𝜌 is the multivariate standard normal distribution function 

with the correlation coefficient of 𝜌 ∈ (0.1); considering the equation 

(20), the joint distribution function and the joint density copula function 

of the family will be respectively as : 

(21) 𝐶𝐺𝑎(𝑢. 𝜈. 𝜌)

= ∫ ∫
1

2𝜋√1 − 𝜌2

𝜓−1(𝜈)

−∞

𝜓−1(𝑢)

−∞

exp {
2𝑢𝜈 − 𝑢2 − 𝜈2

2(1 − 𝜌2)
} 𝑑𝑢𝑑𝑣 

 

𝐶𝐺𝑎(𝑢. 𝜈. 𝜌) =
1

√1 − 𝜌2
exp {

𝑢2 + 𝜈2

2
+
2𝑢𝜈 − 𝑢2 − 𝜈2

1 − 𝜌2
} 
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 t-student copula  

Embrechts et al. (2002) expressed t-student copula distribution 

function as equation (19): 

 

            CT(u. v) = Tv.ρ(tv
−1(u). tv

−1(v)) 

= ∫ ∫
1

2π√1 − ρ2

tv
−1(ν)

−∞

tv
−1(u)

−∞

(1 +
s2 + t2 − stp

v(1 − ρ2)
)

−
v+2
2

ds dt 

(19) 

 

Here 𝑇𝑣.𝜌 is multivariate t- student distribution , 𝜌 is the correlation 

coefficient, 𝑣 is the degrees of freedom and 𝑡𝑣
−1 is the inverse t-student 

distribution; they showed that the t-student copula function expressing 

the upper and lower tails dependence at the same time. 

 

 Archimedean Copulas 

Archimedean Copula, is an important category of Copula functions 

with simple structure and many analytical features. The bivariate 

Archimedean Copula, is (𝑢. 𝑣) = 𝜓[−1]{𝜓(𝑢) + 𝜓(𝑣)} ; that is a 

continuous strictly decreasing convex function is  𝜓: [0.1] → [0.∞], as 

𝜓(1) = 0 and the pseudo inverse function 𝜓[−1] is as the equation (9): 

 

(9) 
𝜓[−1](𝑡) = {

𝜓−1(𝑡)   0 ≤ 𝑡 ≤ 𝜓(0)

0           𝜓(0) ≤ 𝑡 ≤ ∞     
 

 

If 𝜓(0) = ∞ will be strictly.(Schmidt (2003)). The general 

relationship between 𝜏𝑐 and the generator of Archimedean Copula is 

stated as equation (10): 

 

(10) 
𝜏𝑐 = 1 + 4∫

𝜓(𝑡)

𝜓́(𝑡)

1

0

 𝑑𝑡 

 

The dependence coefficients of the upper tail dependence (𝜆𝑈), and 

the dependence coefficient of the lower tail dependence (𝜆𝐿), can be 

expressed respectively in terms of the generate functions. 
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(11) 
𝜆𝑈 = 2 − 2 lim

𝑠→0

𝜓−1́ (2𝑠)

𝜓−1́ (𝑠)
 

(12) 
𝜆𝐿 = 2 lim

𝑠→∞

𝜓−1́ (2𝑠)

𝜓−1́ (𝑠)
 

 

There are three common kinds of Archimedean Copula including 

Clayton Copula (Clayton (1978)), Frank Copula (Frank (1979)) and 

Gumbel Copula (Gumbel (1960)). 

Clayton copula function has an asymmetric distribution, as in which 

the dependence on the negative tail is more than the positive one. 

 

(13) 𝐶𝑐(𝑣1. 𝑣2) = max [(𝑣1
−𝜃 + 𝑣2

−𝜃 − 1)
−𝜃−1

. 0] 

 

That its generator function is as equation (14): 

 

(14) 𝜓(𝑡)𝜃−1(𝑡−𝜃 − 1).       where 𝜃 ∈ [−1.+∞) 

 

where the upper tail dependence is equal to zero (𝜆𝑈𝑐 = 0) and the 

lower one will be𝜆𝐿𝑐 = 2
−𝜃−1. 

Gumbel copula function has an asymmetric distribution as the 

Clayton copula; and unlike the former function, the dependence on the 

positive tail is more than the negative one. 

 

(15) 𝐶𝐺(𝑣1. 𝑣2) = exp (−[(− ln(𝑣2))
𝜃

+ (− ln(𝑣2))
𝜃]
𝜃−1

) 

 

This copula function will also have the equation (16)’s generator 

function. 

 

(16) 𝜓(𝑡) = (−ln(𝑡))𝜃.      where 𝜃 ≥ 1     

 

Thus, in Gumbel copula 𝜆𝑈𝐺 = 2 − 2−𝜃and𝜆𝐿𝐺 = 0. 
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Frank copula function indicates symmetric condition of 

Archimedean copula as equation (17): 

 

(17) 
𝐶𝐹(𝑣1𝑣2) = −

1

𝜃
ln (1 +

(𝑒−𝜃𝑣1 − 1) + 𝑒−𝜃𝑣2 − 1

𝑒−𝜃 − 1
) 

 

with the generator function of: 

 

(18) 
𝜓(𝑡) = − ln (

𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
)        .   𝜃 ≠ 1 

 

According to the Frank copula function symmetry in this copula 

function, the upper tail dependence will be zero (𝜆𝑈𝑐 = 0) and the lower 

one is zero too (𝜆𝐿𝐹 = 0). 

This study will benefit from the Maximum Likelihood Estimation or 

MLE method for estimating the copula parameters. It is assumed that 

the 𝑋1. … . 𝑋𝑛 are the random variables with the distribution functions 

of 𝐹1. … . 𝐹𝑛 and the relative parameters of the distributions are 

respectively 𝛼1. … . 𝛼𝑛, with the joint distribution function of 𝐻, so 

considering the Sklar’s theorem, have: 

 

(22) 𝐻(𝑥1. … . 𝑥𝑛|𝛼1. … . 𝛼𝑛. 𝜃)

= 𝐶(𝐹(𝑥1). … . 𝐹(𝑥𝑛)) 
where 𝐶 is the copula function with 𝜃 parameter. 

And the 𝑋1. … . 𝑋𝑛 joint density function is as equation (23): 

 

(23) ℎ(𝑥1. … . 𝑥𝑛|𝛼1. … . 𝛼𝑛. 𝜃)

= 𝑐(𝐹(𝑥1; 𝛼𝑛). … . 𝐹(𝑥𝑛; 𝛼𝑛); 𝜃)∏𝑓𝑖(𝑥𝑖; 𝛼𝑗)

𝑛

𝑖=1

 

 

where 𝑐 is the 𝐶 copula function’s density function. Thus, the log- 

likelihood function is as the equation (24): 
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(24) 𝑙(𝛼1. … . 𝛼𝑛. 𝜃)

=∏(𝑐(𝐹1(𝑥1; 𝛼𝑛). … . 𝐹𝑛(𝑥𝑛; 𝛼𝑛); 𝜃))∏𝑓𝑖(𝑥𝑖; 𝛼𝑗)

𝑛

𝑖=1

𝑛

𝑡=1

 

 

That is: 

(25) ln(𝑙(𝛼1. … . 𝛼𝑛. 𝜃))

=∑ln 𝑐(𝐹1(𝑥1; 𝛼𝑛). … . 𝐹𝑛(𝑥𝑛; 𝛼𝑛); 𝜃)

𝑛

𝑡=1

+∑ln (𝑓𝑖(𝑥𝑖; 𝛼𝑗))

𝑁

𝑡=1

 

 

The equation (25) differentiation, in relation to each 𝛼1. … . 𝛼𝑛 and 𝜃 

parameters will be calculated, then by uniting the resulting equations to 

zero, the parameters estimated. Furthermore, for selecting an 

appropriate copula function, Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC) and Log-likelihood Function are 

used for data processing. 

 

Step 3: Conditional Value at Risk Estimation 

In this paper, in order to achieve accurate concept of risk, rather than 

using the variance approach, Conditional Value at Risk (CVaR) 

approach used to measure risk of portfolio. The portfolio optimization 

based on CVaR minimizing with considering the dependence structure 

by Coppola functions, will be modeled as equation (26). 

 

(26) 
min
𝑥.𝑤.𝐿𝑃

             𝐶𝑉𝑎𝑅(𝛼) = 𝜔̅ +
1

(1 − 𝛼)
∑𝐿𝑃𝑡

𝑇−1

𝑡=1

 

subject to ∶   𝐿𝑃𝑡 ≥∑(𝐿𝑡−1.𝑖 − 𝑃𝑡.𝑖)

3

𝑖=1

𝑥𝑖 − 𝜔̅   ,

𝑡 = 1,… , 𝑇 

∑𝑟𝑖𝑤𝑖 ≥ 𝐺

3

𝑖=1
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where 𝑖 indicates the portfolio’s comprising assets. The = 1,… , 𝑇 , 

is the option that indicates the different scenarios considering the 

intended period. 𝐺 indicates the portfolios minimum average return. 

𝑃𝑖 = 𝑃0.𝑖, is the opening price; 𝑃𝑖.𝑡 is the general element of the matrix 

which concludes the stock price in different conditions; 𝑟𝑖 is the 𝑖th 

asset’s expected return; 𝜔̅ is the approximately variable of the 

portfolio’s Value at Risk at the 𝛼 confidence level. 𝐿𝑃𝑡(𝑡 = 1, … , 𝑇) 

Represents the portfolios loss which exceeds 𝛼 threshold in different 

scenarios. 

Now we can clarify the CVaR bounds. Following Mesfioui and 

Quessy [2005], for determining the VaR bounds of total 𝑛 dependence 

risk 𝑆 = ∑ 𝑋𝑖
𝑛
1  at the confidence level 𝛼 percent, in which  both first 

and second moments 𝑋𝑖 are 𝜎𝑖
2 = V(𝑋𝑖) > 0 and 𝜇𝑖 = 𝐸(𝑋𝑖) > 0 and 

each 𝑋𝑖 marginal distribution is defined by (𝐹𝑖). But the 

(𝑋1. … . 𝑋𝑛)dependence structure is modeled by the unknown copula of 

𝐶(𝐹1(𝑋1).… . 𝐹𝑛(𝑋𝑛)) = 𝐹(𝑋1. … . 𝑋𝑛). 

 

(27) 𝑉𝑎𝑟𝐶𝑈(𝛼) ≤ 𝑉𝑎𝑟𝛼(𝑆) ≤ 𝑉𝑎𝑟𝐶𝐿(𝛼) 

 

𝑉𝑎𝑟𝐶𝑈(𝛼) is the upper bound’s clarification according to definition 

(28): 

 

(28) 
𝑉𝑎𝑟𝐶𝑈(𝛼) = sup𝐶𝐿(𝑢\𝑛.1)≤𝛼 [∑𝐹𝑖

−1(𝑢𝑖)

𝑛−1

𝑖=1

+ 𝐹𝑛
−1{𝐶

𝑈.𝑢\𝑛
−1 (𝛼)}] 

 

where 𝐶𝑈 = min(𝑢1. … . 𝑢𝑛) will be 𝑢\𝑛 = (𝑢1. … . 𝑢𝑛−1)  and 

Fréchet - Hoeffding’s lower bound.  

𝑉𝑎𝑟𝐶𝐿(𝛼) will also be the upper bound clarification according to 

definition (29): 
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(29) 
𝑉𝑎𝑟𝐶𝐿(𝛼) = inf𝐶𝐿(𝑢\𝑛.1)≤𝛼 [∑𝐹𝑖

−1(𝑢𝑖)

𝑛−1

𝑖=1

+ 𝐹𝑛
−1{𝐶

𝑈.𝑢\𝑛
−1 (𝛼)}] 

 

where, 𝐶𝐿 = max(∑ 𝑢𝑖 − 𝑛 + 1.0
𝑛
𝑖=1 ) is the Fréchet-Hoeffding’s 

upper bound. 

If it is assumed that the 𝐹𝑖 marginal distribution is unknown in 

definition (28), then this definition will rewrite as definition (30): 

 

(30) 𝑉𝑎𝑟∗
𝐶𝑈
(𝛼) ≤ 𝑉𝑎𝑟𝛼(𝑆)

≤ 𝑉𝑎𝑟∗𝐶𝐿(𝛼) 

 

𝑉𝑎𝑟∗
𝐶𝑈

 will be the upper bound clarification with definition (31): 

 

(31) 
𝑉𝑎𝑟∗

𝐶𝑈
(𝛼) = sup𝐶𝐿(𝑢\𝑛.1)≤𝛼 [∑𝑔𝜇𝑖𝜎𝑖(𝑢𝑖)

𝑛−1

𝑖=1

+ 𝑔𝜇𝑖𝜎𝑖{𝐶𝑈.𝑢\𝑛
−1 (𝛼)}] 

 

Where 𝐶𝑈 = min(𝑢1. … . 𝑢𝑛) will be 𝑔𝑎.𝑏(𝑛) = {𝑎 − 𝑏𝑞(1 −

𝑢)}1
(𝑢≥

𝑏2

𝑎2+𝑏2
)
 and 𝑢\𝑛 = (𝑢1. … . 𝑢𝑛−1) Fréchet -Hoeffding’s lower 

bound. 

𝑉𝑎𝑟∗𝐶𝐿(𝛼) is also the upper bounds clarification by the definition (32): 

(32) 
𝑉𝑎𝑟∗𝐶𝐿(𝛼) = inf𝐶𝐿(𝑢\𝑛.1)≤𝛼 [∑ ℎ𝜇𝑖𝜎𝑖(𝑢𝑖)

𝑛−1

𝑖=1

+ ℎ𝜇𝑖𝜎𝑖{𝐶𝑈.𝑢\𝑛
−1 (𝛼)}] 
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where ℎ𝑎.𝑏(𝑢) = 𝑎 − 𝑏𝑞
2(𝑢)1

(𝑢≥
𝑏2

𝑎2+𝑏2
)
+ 𝑏𝑞(𝑢)1

(𝑢≥
𝑏2

𝑎2+𝑏2
)
 and 

𝑞(𝑢) = √𝑢/(1 − 𝑢) is a strictly increasing function on an 

interval[0.1]. 

 

3. Empirical Results 

3.1 Data 

The data of this analysis consists Tehran Stock Exchange Price Index 

(TEPIX) and Borsa Istanbul 100 Index (BIST 100) for the period 

November 2008-April 2015. TEPIX data are obtained from TSE 

database and BIST 100 from Yahoo Finance database. Stock market 

return have been calculated in logarithm form. Since only three days of 

trading days of the week on Tehran and Istanbul stock exchange 

overlapped, the frequency of our data is three days. Thus, our final 

sample consisted 2034 daily observations. Table 1 summarizes sample 

descriptive statistics of the each return series. 

 

Table 1:  Summary Statistics 
Series TEPIX BIST 100 

Mean -0.0003 0.0041 

Max 1.2527 1.6486 

Min -6.8916 -2.4849 

Standard deviation 0.2321 0.1431 

Skewness -25.8041 -3.5803 

Kurtosis 7.3098 17.9569 

Jarque–Bera 3889.84*** 5631.56*** 

ADF -8.51*** -32.06*** 

R/S 1.21 1.02 

***A rejection of the null hypothesis at the 1% significance level. 

 

It’s understandable that kurtosis coefficient of the series returns is 

more than normal density function coefficient of kurtosis. All returns 

are skewed and The Jarque-Bera statistic denotes that the variables’ 

return distribution function is not normal and this lack of normality is a 

justification for copula functions’ using. Also, Augmented Dickey–

Fuller (ADF) statistic show that the series are stationarity. The R/S test 

results also indicate the lack of a long-term memory among the used 

data; because the value of this statistic, by subtracting number 1, will 
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be a number between the domains of (-0.5, 0.5). It can also be easily 

seen in Figure 1, where it is clear that have fat tails. 

 

 

3.2 The Marginal Distribution 

Since the tested time series return has clustering volatility, for returns 

empirical distribution compatibility, considering marginal distribution 

will be necessary. Thus each time series marginal distribution 

investigated by GARCH (1, 1) and GJR (1, 1) models with t-student 

and normal distributions has been estimated. 
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Figure 1: Quantile-Quantile Plot of Daily returns of TEPIX, BIST 100, FGC and USD 
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Table 2:  Parameter Estimates of GARCH  & GIR Model 

 GARCH   GIR 

 Normal t-student  Normal t-student 

Parameter TEPIX BIST 100 TEPIX BIST 100  TEPIX BIST 100 TEPIX BIST 100 

Ω 0.003 0.029 0.004 0.011  0.003 0.017 0.004 0.009 

 (0.00) (0.96) (1.39) (1.00)  (1.55) (1.29) (0.91) (1.14) 

𝛼 0.059*** 0.161** 0.057*** 0.217**  0.053** 0.016 0.050 0.090** 

 (0.01) (2.34) (2.70) (3.19)  (2.06) (0.25) (1.66) (2.03) 

𝛽 0.888*** 0.821*** 0.882*** 0.782***  0.860*** 0.856*** 0.841*** 0.800*** 

 (0.03) (10.55) (29.27) (9.30)  (44.02) (17.01) (18.76) (11.75) 

γ      0.118 0.235** 0.165*** 0.218** 

      (1.51) (2.48) (10.95) (3.04) 

shape   3.536*** 3.717***    3.479*** 3.728*** 

   (7.97) (10.12)    (6.54) (9.63) 

Log-

Likelihood 
-452.07 -1125.67 -185.64 -903.68  -444.16 -1111.53 -141.10 -896.11 

Ljung-Box test 
Q-Statistics 

Lag[1] 
0.0004 0.7289 0.0003 0.1154  0.0002 0.6771 0.0001 0.0954 

P-value 0.98 0.39 0.98 0.73  0.98 0.41 0.98 0.75 

Lag[5] 0.0044 4.7432 0.0043 3.6791  0.0031 3.8323 0.0028 2.7241 

P-value 1.00 0.44 1.00 0.59  1.00 0.57 1.00 0.74 

ARCH LM tests 

Lag[1] 0.0021 0.0752 0.0021 0.0923  0.0020 0.1198 0.0020 0.1274 

P-value 0.99 0.96 0.99 0.95  0.99 0.94 0.99 0.93 

Lag[5] 0.0052 0.2993 0.0052 0.2200  0.0051 0.3468 0.0051 0.2950 

P-value 1.00 0.99 1.00 0.99  1.00 0.99 1.00 0.99 

Lag[10] 0.0104 0.5600 0.0104 0.4750  0.0104 0.6435 0.0104 0.6007 

P-value 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

Notes: The values in parenthesis are the t-Student. Ω is constant of conditional variance equation. 𝛼 and  

𝛽are the parameter of the volatility during the previous period and the variance during the previous period.γ 

is the GJR‘s threshold value. Shape is the t-student distribution‘s degrees of freedom. 

** Significance at the 5% level 

*** Significance at the 1% level 
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Table 2 reports the results of estimating parameters of the GARCH 

(1, 1) and GJR (1, 1) models with t-student and normal distributions. 

The value of 𝛼 and  β are significant at the 5% significance level 

(excluding BIST 100 normal GIR model) and the Ljung-Box statistic 

test results don’t reject the null hypothesis of autocorrelations at the 5% 

significance level; denoting no autocorrelation between the residuals 

and the estimated ARCH LM Test confirms the lack of 

heteroscedasticity at the 5% significance level and guarantees the 

accurate fitted of these models. So, these models present a desirable 

estimation. In addition, t-student distribution degrees of freedom 

(Shape), is significant in t-student GARCH and t-student GIR. The γ 

parameter’s significant and positive values that is the GIR‘s threshold 

value, in t-student GIR model, is a confirmation of the leveraged effects 

existence; and indicates that the negative shocks in comparison to 

positive ones, will have greater effect in volatility market. The empirical 

and conditional volatility distribution and News Impact Curve of the 

estimation can be seen in Figure 2. 
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Thus, according to the log-likelihood parameters value (Table 2), the 

maximum value of this parameter is for the GIR (1, 1) model with t-

student distribution. This result suggests that the GIR (1, 1) model with 

𝑡 distribution, is the best model for TEPIX and BIST 100 time series 

marginal distribution fit; which can determine the leveraged effects of 

TEPIX and BIST 100 return in response to the positive and negative 

shocks. Therefore, in order to calculate the dependence structure 

between the assets, only the marginal distribution of the process GIR 

(1, 1) model with t-student distribution is considered. 

 

3.3 The Dependence Structure Modeling Based on the Copula Functions 

After estimating the 𝐹𝑖 marginal distribution, to determine the data 

dependence structure, normal copula, t-student copula, Klayton, Gumel 

and Frank functions for portfolios including TEPIX and BIST 100 

return couple has been estimated. In Figure 3, joint return of the 

portfolio in a range of [0.1] is illustrated. 
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Figure 2:  News Impact Curve, Empirical &Conditional Volatility Distribution 
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 BIST 

 Figure 3: Joint Return of TEPIX and BIST 100 

 

Table 3 reports the estimated parameters of Archimedean copulas, 

the lower tail dependence coefficient and the upper tail dependence 

coefficient for index stock market returns. 

The results of estimating parameters of copula functions, the lower tail 

dependence coefficient and the upper tail dependence coefficient for 

index stock market returns are reported in Table 3. The t-student copula 

function with t-student distribution and GIR (1,1) marginal distribution, 

with the minimum Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) and the most log-likelihood function 

(LLF), has the best performance among other copula functions. Thus, 

two TEPIX and BIST 100 in the form of the portfolio have the upper 

and lower tails dependence. So, in positive and negative returns, the two 

indexes dependence of the portfolio will increase. In other words, by 

considering each positive and negative shock, these two couples will 

have more dependence.  
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The portfolios probability density (PDF) and cumulative distribution 

function (CDF), of t-student copula are plotted in Figure 4. The 

estimated parameters of t-student copula is 𝜌 = 0.0299. We observe that 

the CDF of copula is strongly tailed, which means that the mass for t-

student copula is concentrated in this tail and the upper and lower tail 

have peaks. The estimated coefficient of the upper and lower tails 

dependence for the pair of Index of stock markets returns (𝜆𝑈 = 𝜆𝑙 =

0.044) is positive and equal, and indicate that there is no difference in 

the dependence between TEPIX and BIST 100 returns during bull 

markets and bear markets. Furthermore, dependence between financial 

returns is symmetric. This finding is in contrast to the results of Costinot 

et al. (2000), Patton (2006), Aloui et al. (2011) and Boubaker and 

Sghaier (2013) who based on the Gumbel copula argue that the 

dependence structure during boom is stronger than the dependence 

during recession. 

 

Table 4: Parameter Estimates for Families of Copula and Model Selection Statistic 

Portfolio of TEPIX & BIST 100 

Copula Normal t-Student* Clayton Gumbel Frank 

𝜌 0.0274 0.0299    

𝜃   0.0299 1.0337 0.165 

𝜆𝑈 0 0.0440 0 0.0447 0 

𝜆𝐿 0 0.0440 4.9e-06 0 0 

LLF 0.2989 4.5980 0.3391 1.1060 1.1283 

AIC 1.4021 -5.1961 -0.2566 -0.2121 1.3217 

BIC 6.3168 4.6333 4.6580 4.7025 6.2365 

Notes: 𝜌 is the t-student and normal copula’s dependence coefficient. 𝜃 is the Archimedean 

Copulas’ dependence coefficient. 𝜆𝑈 and 𝜆𝐿 are denote the distribution upper and lower tails 

dependence respectively. The LLF is the log- likelihood function. AIC and BIC are the Akaike 

and Bayesian information criterion respectively. 
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CDF With t-Student Copula PDF With t-Student Copula 

 

Figure 4:  CDF & PDF of t-student Copula Estimated for Portfolio 

 

3.4 Conditional Value at Risk Estimation 

With regard to determining the appropriate copula function for 

measuring dependence between TEPIX and BIST 100 return, the 

estimation of value of the Conditional Value at Risk (CVaR) in the 

equation 23, will be done easily. For getting the portfolios optimal 

CVaR amount, first for achieving the optimal weight by using the 5000-

day simulation of the portfolio, the optimal weight will be calculated 

and the CVaR concluded in copula approach (Figure 6). 
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Figure 6: Weights of Optimal Portfolios Based on 5000 Days Simulation 
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The results of 50 different weights with Variance-Covariance 

method and concluding t-student copula function dependence for curve 

of Efficient Frontier of the portfolios can be observed Table 5 for 

several selective weights. 

 

Table 5: Several Selective Weights of Results of 50 Different Weights 

Portfolio of TEPIX & BIST 100 

No. Portfolio WBIST100 WTEPIX Mean Cov VaR CVaR 

1 0% 100% 0.0012 2.0886 5.6069 10.1126 

13 26% 74% 0.0009 1.6384 4.3227 7.8633 

25 50% 50% 0.0006 1.2964 3.3365 5.8122 

37 74% 26% 0.0002 1.1623 3.0438 4.6512 

50 100% 0% 0.0001 1.3245 3.5590 5.4564 

 

The more details of the 50 weights, applied in the efficiency curve 

can be seen in Figure 7. Figure 7 shows that CVaR-Copula is always 

larger than VaR-Copula when the expected returns are the same. This 

indicates that it is better to apply CVaR-Copula to capture the 

dependence structure among assets, so that to estimate CVaR of 

portfolio more accurately, but VaR-Copula underestimates the risk of 

portfolio. This evidence is in line with the results in Boubaker and 

Sghaier (2007) and He and Gong (2009), supporting the finding that 

CVaR-Copula have better performance from other optimization 

program. As well as, the optimal weight for a portfolio with the least 

CVaR, including TEPIX and BIST 100 using the CVaR method and the 

dependence structure on the t-student copula functions in 37th weight 

will equal the BIST 100, 0.74 and TEPIX 0.26 weight. 
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Figure 7:  Efficient Frontier of Portfolios of TEPIX & BIST 100 Based on CVaR 

 

4. Conclusion 

In this paper, the effect of dependence structure on the optimal 

portfolio, consisting of TEPIX and BIST 100, has been investigated by 

the GJR-Copula-CVar model. According to the great importance of the 

linear dependence structure between the financial assets and their 

impact on the portfolio, the copula functions approach was used. Since 

the copula can identify and measure the tail behavior, it‘s a powerful 

and flexible tool to determine the structure of dependence between 

highly volatile financial markets and it‘s an alternative for correlation 

in the financial risk modeling. Therefore, its impact on risk 

identification and portfolio optimization has been examined in this 

study. 

The results of the empirical studies indicate that t-student copula 

function is the most optimal function for the dependence structure 

recognition and two portfolios interpretation. The results of portfolio 

optimization showed that VaR with Student Copula underestimates the 

risk of portfolio. In conclusion, the GJR-Copula-based CVaR model 

can be more accurate than VaR-Copula model. 
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