تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,034 |
تعداد دریافت فایل اصل مقاله | 97,232,139 |
تهیه نقشه کاربری و پوشش اراضی با استفاده از دادههای سنجش از دور و شبکه عصبی مصنوعی | ||
تحقیقات آب و خاک ایران | ||
مقاله 18، دوره 49، شماره 5، آذر و دی 1397، صفحه 1171-1180 اصل مقاله (747.46 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.247112.667807 | ||
نویسندگان | ||
محمد علی محمودی* 1؛ سحر امین خواه2 | ||
1استادیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران | ||
2دانشجوی سابق کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکدۀ کشاورزی، دانشگاه کردستان، سنندج، ایران | ||
چکیده | ||
نقشههای کاربری اراضی برای بسیاری از فعالیتهای مدیریتی، هیدرولوژی و بررسی وضعیت فرسایش خاک ضروری میباشند. دادههای سنجش از دور از پتانسیل بالایی برای تهیة نقشههای بهروز کاربری و پوشش اراضی برخوردارند. هدف از این پژوهش تهیة نقشة کاربری اراضی حوضه آبخیز سد گاوشان با استفاده از تصاویر ماهوارة لندست 8 و شبکة عصبی مصنوعی و نیز ارزیابی روش مورد استفاده بود. بدینمنظور از 1320 نقطه به عنوان نقاط کنترل زمینی یا نقاط مرجع استفاده شد. کلاس کاربری در هر نقطه با پیمایش صحرایی و یا با استفاده از تصاویر گوگل ارث مشخص گردید. کلاسهای کاربری شناسایی شده در این حوضه عبارت بودند از کشاورزی، جنگلهای بافر (درختان کنار رودخانهای)، باغ، مراتع بوتهای، مراتع علوفهای، مناطق مسکونی، جاده و آب. شبکة عصبی مورد استفاده در این مطالعه از نوع پرسپترون پیشخور بود که با استفاده از الگوریتم پس-انتشار خطای گرادیان مزدوج مقیاسبندیشده آموزش داده شد. متغیرهای ورودی برای ایجاد شبکة عصبی مصنوعی مقدار بازتاب طیفی تصحیح شدة باندهای 1 تا 7 تصاویر ماهوارة لندست 8 بود. ارزیابی شبکة عصبی مصنوعی استفاده شده با استفاده از دادههای کنترل زمینی نشان داد که روش استفاده شده با دقت کلی 5/78 درصد و ضریب کاپای 5/68 درصد از دقت بالایی برخوردار است. نتایج این مطالعه نشان میدهد که استفاده از شبکههای عصبی مصنوعی و تصاویر ماهوارة لندست 8 امکان خوبی را برای تهیة نقشههای کاربری اراضی با دقت بالا فراهم میآورند. | ||
کلیدواژهها | ||
ماهوارة لندست؛ طبقهبندی تصویر؛ سد گاوشان | ||
عنوان مقاله [English] | ||
Providing Land Use and Land Cover Maps Using Remote Sensing Data and Artificial Neural Network | ||
نویسندگان [English] | ||
Mohammad Ali Mahmoodi1؛ Sahar Aminkhah2 | ||
1Assistant Professor, Department of soil science, Collage of Agriculture, University of Kurdistan, Sanandaj, Iran | ||
2Graduated M.Sc. Student, Department of Soil Science, Collage of Agriculture, University of Kurdistan, Sanandaj, Iran | ||
چکیده [English] | ||
Land use and land cover (LULC) maps are necessary for many management activities, hydrology and erosion analysis. Remote sensing data have a high potential for providing up-to-date LULC maps. The objective of this study was to provide and evaluate the LULC maps of Gavshan dam watershed in west of Iran using Landsat 8 satellite images and artificial neural network. Hence, 1320 ground control points or reference points were used to train and test the ANN model for providing LULC maps. Land use classification at each point was specified with a land survey or using Google Earth images. The identified LULC classes in this basin included agriculture, buffer forests (riverside trees), orchards, bushes, forage grasslands, residential areas, roads and water. The ANN used in this study was a feed-forward perceptron that was trained using a coupled conjugate gradient backpropagation algorithm. The input variables for the ANN model were the revised spectral reflectance of bands 1 to 7 of Landsat 8 satellite images. The evaluation of the ANN model made by the ground control data showed a high accuracy for the used method with a general accuracy of 78.5% and kappa coefficient of 68.5%. The results of this study indicated that the utilization of the ANN and Landsat 8 satellite images provides an opportunity to produce LULC maps with high accuracy. | ||
کلیدواژهها [English] | ||
Landsat ETM, Image classification, Gavshan dam | ||
مراجع | ||
Amiri, A., Ghavoshi, S. H. and Amini, G. (2007). Comparison of three methods of fuzzy classification, neural network and least distance in satellite images (Quickbird). In: Geomatics Conference. Tehran: Mapping Organization of Iran. (In Farsi) Arekhi, S., Niazi, Y., and Arzani, H. (2011). Comparing various techniques for land use/cover change detection using RS and GIS (Case Study : Daresher Catchment, Ilam Province). Environmental Sciences, 8(3), 81-96. (In Farsi) Bishap, C. M. (1995). Neural networks for pattern recogniation. Oxford: Oxford University Press. Hord, R. M. (1982). Digital image processing of remotely sensed data (1th ed.). New York: Springer Netherlands Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feed forward network are universal approximators. Neural Networks, 2(5), 359-366. Li, Z. Y. (1998). Supervised classification of multi-spectral remote sensing image using B-P neural network. Journal of Infrared and Millimeter Waves, 17,153-156. Lillesand, T., Kiefer, R. W., Chipman, J. (2004). Remote sensing and image interpretation (6th ed.). New York: Wiley. Lu, D. and Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Jornal of remote sensing, 28(5), 823–870. Manandhar, R., Odeh, I. O. and Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing, 1(3), 330-344. Mas, J. F., Puig, H., Palacio, J. L. and Sosa-López, A. (2004). Modelling deforestation using GIS and artificial neural networks. Environmental Modelling and Software, 19(5), 461-471. Potere, D. (2008). Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors, 8, 7973-7981. Salberg, A. B., and Jenssen, R. (2012). Land-cover classification of partly missing data using support vector machines. International journal of remote sensing, 33(14), 4471-4481. Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124, 689-704. Steele, B. M., Winne, J. C. and Redmond, R. L. (1998). Estimation and mapping of misclassification probabilities for thematic land cover maps. Remote Sensing of Environment, 66(2), 192–202. Stuckens, J., Coppin, P. R. and Bauer, M. E. (2000). Integrating contextual information with per-pixel classification for improved land cover classification. Remote sensing of environment, 71(3), 282-296. Sudheer, K. P., Gowda, P., Chaubey, I. and Howell, T. (2010). Artificial neural network approach for mapping contrasting tillage practices. Remote Sensing, 2(2), 579-590. Wijaya, A. (2005). Application of Multi-Stage Classification to Detect Illegal Logging with the Use of Multi-Source Data (1th ed.). Netherlands: ITC. Yuan, H., Van Der Wiele, C. F. and Khorram, S. (2009). An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sensing, 1(3), 243-265. Zhao, Z., Yang, Q., Benoy, G., Chow, T. L., Xing, Z., Rees, H. W., and Meng, F. R. (2010). Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes. Canadian Journal of Soil Science, 90:75-87. Zhou, L. and Yang, X. (2008). Use of neural networks for land cover classification from remotely sensed imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 575-578. Zobeiry, M. and Majd, A. R. (1996). An introduction to remote sensing technology and its application in natural resources (1th ed.). Tehran: Tehran University Publishers. (In Farsi) Zoungrana, B. G. B., Conrad, C., Amekudzi, L .K., Thiel, M., Dapola Da, E., Forkuor, G. and Löw, F. (2015). Multi-temporal Landsat images and ancillary data for land use/cover change (LULCC) detection in the southwest of Burkina Faso, west Africa. Remote Sensing, 7(9), 12076-12102.
| ||
آمار تعداد مشاهده مقاله: 969 تعداد دریافت فایل اصل مقاله: 595 |