تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,684 |
تعداد دریافت فایل اصل مقاله | 97,206,330 |
ارزیابی و مدلسازی روند مصرف انرژی، عملکرد و میزان انتشارات گلخانهای در تولید نخودآبی استان اصفهان | ||
مهندسی بیوسیستم ایران | ||
مقاله 7، دوره 49، شماره 3، آبان 1397، صفحه 409-421 اصل مقاله (1.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2018.242060.664988 | ||
نویسندگان | ||
بهزاد الهامی1؛ اسداله اکرم2؛ مجید خانعلی* 3 | ||
1دانشجوی دکتری مکانیزاسیون کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه کشاورزی و منابع طبیعی رامین، اهواز، ایران | ||
2دانشیار گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3استادیار گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
این مطالعه به منظور بررسی و مدلسازی میزان انرژی مصرفی و انتشارات گازهای گلخانهای در کشت نخود آبی در استان اصفهان توسط مدل پرسپترون چند لایهای شبکهی عصبی مصنوعی اجرا گردید. میزان هر یک از نهادههای مصرفی در تولید محصول، از 110 تولیدکنندهی نخود آبی به شکل تصادفی توسط پرسشنامه جمعآوری گردید. کل انرژی مصرفی، عملکرد محصول و نسبت انرژی در تولید نخود آبی به ترتیب برابر با 18/33211 مگاژول بر هکتار، 36/2276 کیلوگرم بر هکتار و 02/1 محاسبه گردید. کود نیتروژن با 9808 مگاژول بر هکتار بیشترین میزان انرژی مصرفی را به خود اختصاص داد. کل انتشارات گازهای گلخانهای برابر 20/965 کیلوگرم معادل کربن دیاکسید بر هکتار محاسبه گردید که الکتریسیته و سوخت دیزل به ترتیب با 36% و 34% بیشترین سهم را از کل انتشارات گلخانهای داشتند. مدل شبکهی عصبی مصنوعی با آرایش 2-7-13 به عنوان بهترین مدل برای پیشبینی عملکرد و کل انتشارات گلخانهای شناخته شد. بر اساس این مدل، مقدار ضریب تبیین در پیشبینی عملکرد محصول و کل انتشارات گلخانهای به ترتیب برابر با 929/0 و 979/0 تعیین شد. نتایج تحلیل حساسیت مدل نیز نشان داد که نهادهی ماشینهای کشاورزی بیشترین اثر را بر عملکرد و میزان انتشارات گلخانهای داشته است. | ||
کلیدواژهها | ||
الکتریسیته؛ انتشارات گلخانهای؛ تحلیل حساسیت؛ سوخت دیزل؛ کود نیتروژن | ||
عنوان مقاله [English] | ||
Assessment and Modeling of Energy Consumption, Yield and Greenhouse Gas Emissions of Irrigated Chickpea Production in Isfahan Province | ||
نویسندگان [English] | ||
Behzad Elhami1؛ Asadollah Akram2؛ Majid Khanali3 | ||
1Ph.D. Student, Department of Agricultural Machinery Engineering, Ramin Agriculture and Natural Resources University of Ahvaz, Ahvaz, Iran | ||
2Associate Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Assistant Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
This study was conducted to investigate and model the energy consumption and greenhouse gas emissions of irrigated chickpea cultivation in Isfahan province using multilayer perceptron artificial neural network (ANN). The amount of each consumed inputs in production were collected from 110 producers of chickpea randomly by a questionnaire. The total energy consumption, product yield and energy ratio in chickpea production were calculated as 33211.18 MJ/ha, 2276.36 kg/ha, and 1.02, respectively. Nitrogen fertilizer with 9808 MJ/ha had the highest amount of consumed energy. Total greenhouse gas (GHG) emissions were calculated 965.20 kg CO2eq. ha-, in which, electricity and diesel fuel had the highest amount of total GHG emissions with 36% and 34%, respectively. An ANN model with 13-7-2 topology was recognized as the best model for prediction of yield and total GHG emissions. Based on this ANN model, the values of determination coefficient in prediction of yield and total GHG emissions were determined as 0.929 and 0.979, respectively. The results of sensitivity analysis of the model showed that agricultural machinery inputs had the highest impact on yield and total GHG emissions. | ||
کلیدواژهها [English] | ||
electricity, Greenhouse emissions, Sensitivity analysis, Diesel fuel, nitrogen fertilizer | ||
مراجع | ||
Anonymous (2013). Annual agricultural statistics, Ministry of Jihad-e-Agriculture of Iran (www.maj.ir) [In Persian]. Dyer, J.A. and Desjardins, R.L. (2006). Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosystems Engineering, 93(1), 107-118. Elhami, B., Akram, A. and Khanali, M. (2016a). Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Information Processing in Agricuture, 3(3), 190-205. Elhami, B., Akram, A., Khanali, M. and Mousavi-Avval, S.H. (2016b). Application of ANFIS and Cobb-Douglas models to predict the output energy and benefit to cost ratio of lentil and chickpea production (a case study in Iran). Energy Equipment and System, 4(2), 255-270. FAO (2014). (www.fao.org). Ghaderpour, O. and Rafiee, S. (2016). Analysis and Modeling of Energy and yield of reinfed Chickpea Production in Bokan County. Iranian Journal of Biosystems engineering, 47(4), 7011-720 [In Farsi]. Ghasemi-Mobtaker, H., Akram, A., Keyhani, A. and Mohammadi, A. (2012). Optimization of energy required for alfalfa production using data envelopment analysis approach. Energy for Sustainable Development, 16(2), 242-248. Hashem, S (1993). Sensitivity analysis for feed forward artificial neural networks with differentiable activity functions. International conference on neural network, Baltimore: IEEE, 1, p. 419–429. Harouni, S., Sheikh Davoudi, M.J. and Kiani, M. (2015). Modeling of energy consumption and amount of green house emissions in the process of sugar cane production in Raton field using artificial neural networks (a case study: Debal KHAZAEI,s agro-industry in Khuzestan province). Journal of Agricultural Machinery Mechanics 4(2), 11-19. [in Persian]. IPCC. (2007). IPCC Assessment Report 4. (www.ipcc.ch). Khanna, T. (1990). Foundation of neural networks. Addison-Wesley Publishing Company, U.S.A. Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M. and Movahedi M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333-338. Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H. and Rajaeifar M.A. (2014). Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agricultural System, 123, 120-127. Koocheki, A., Ghorbani, R., Monadi, F., Alizadeh, Y., and Moradi R. (2011). Pulses Production Systems in Term of Energy Use Efficiency and Economical Analysis in Iran. International Journal of Energy Economics and Policy 4(1), 95-106. Lai, R. (2004). Carbon emission from farm operations. Environment International, 30(7), 981-990 Lu, M., AbouRizk, S. and Hermann U. (2001). Sensitivity analysis of neural networks in spool fabrication productivity studies. Journal of Computing in Civil Engineering, 15, 299–308. Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S. and Ghasemi-Mobtaker, H. (2014). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311-317. Nabavi-Pelesaraei, A., Abdi, A. and Rafiee, S. (2016a). Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, 15(1), 38-47. Nabavi-Pelesaraei, A., Rafiee, S., Hosseinzadeh-Bandbafha, H. and Shamshirband, S. (2016b). Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production, 133, 924–931. Nourani, V. and Sayyah Fard, M. (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advances in Engineering Software, 47, 127–146. Pahlavan, R., Omid, M., and Akram, A. (2012). Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy, 37(1), 171-176. Pishgar-Komleh, S.H., Keyhani, A., Mostofi-Sarkari, M.R. and Jafari, A. (2012). Energy and economic analysis of different seed corn harvesting systems in Iran. Energy, 43(1), 469-476. Rahimyan, B. (2015). Determination of economic, energy and environmental indicators of some crops (sugar beet, wheat and pea) in West Azarbaijan Province (Boukan Region) using computional intelligence techniques. Msc. dissertation, Unevercity of Tehran [In Farsi]. Safa, M. and Samarasinghe, S. (2011). Determination and modeling of energy consumption in wheat production using neural networks: “A case study in Canter bury province, New Zealand”. Energy, 36(8), 5140-5147. Salami, P. and Ahmadi, H. (2010). Energy inputs and outputs in a chickpea production system in Kurdestan, Iran. African Crop Science Journal, 18(2), 51-57. Sohrabi, Y., Heidari, G. and Esmailpoor, B. (2008). Effect of salinity on growth and yield of Desi and Kabuli Chickpea cultivars. Pakistan Journal of Biological Sciences, 11(4), 664-667. Taghavifar, H. and Mardani, A. (2015). Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using artificial neural network. Journal of Cleaner Production, 87, 159-167.
| ||
آمار تعداد مشاهده مقاله: 454 تعداد دریافت فایل اصل مقاله: 377 |