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ABSTRACT ARTICLE INFO

The analysis of vulnerability in networks generally in-
volves some questions about how the underlying graph
is connected. One is naturally interested in studying the
types of disruption in the network that maybe caused by
failures of certain links or nodes. In terms of a graph,
the concept of connectedness is used in different forms to
study many of the measures of vulnerability. When cer-
tain vertices or edges of a connected graph are deleted,
one wants to know whether the remaining graph is still
connected, and if so, what its vertex - or edge - connec-
tivity is. If on the other hand, the graph is disconnected,
the determination of the number of its components or
their orders is useful. Our purpose here is to describe
and analyses the current status of the vulnerability mea-
sures, identify its more interesting variants, and suggest
a most suitable measure of vulnerability.
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PRELIMINARIES
Many graph theoretical parameters have been used to describe the vulnerability of com-
munication networks, including connectivity, toughness, binding number, integrity and
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tenacity. Before we start to describe and analyse the current status of the vulnerability
measures, we will give some basic definitions and notations.
We shall for the most part, use the terminlogy and notation of Bondy and Murty [3];
so a graph G has vertex set V(G), edge set E(G), ν(G) = n vertices, ε(G) = m edges.
We use α(G) to denote the independence number of G. Let A be a subset of V(G). The
neighborhood of A, N(A), consists of all vertices of G adjacent to at least one vertex of
A. We define G-A to be the graph induced by the vertices of V-A. Also, for any graph
G, τ(G) is the number of vertices in a largest component of G and ω(G) is the number
of components of G. A cutset of a connected graph G is a collection of vertices whose
removal results in a disconnected graph.

VULNERABILITY PARAMETERS

1. CONECTIVITY:
The connectivity κ = κ(G) of a graph G is the minimum number of vertices whose removal
results in a disconnected or trivial graph. There is a rich body of theorems concerning
connectivity. Many of these are variations of a classical result of a Meneger, which in-
volves the number of disjoint paths joining a given pair of vertices in a graph.

2. BINDING NUMBER:
In 1973 D. R. Woodall [47] introduced the concept of the binding number of a graph and
studied some properties of binding number. The binding number of a graph G, denoted
by bind(G), is defined to be min{ |N(A)|

|A| ;A ∈ F}, where F = {A | φ 6= A ⊆ V (G) and

N(A) 6= V (G)}.
Proposition 2.1: bind(Kn) = n− 1 (n ≥ 1)
Proposition 2.2: bind(Ka,b) = min(a

b
, b
a
) (a ≥ 1, b ≥ 1)

Proposition 2.3: If n ≥ 3, then bind(Cn) =

{
1 if n is even,
n−1
n−2 if n is odd

Proposition 2.4: (Fundemental Lemma). bind(G) is the largest number c such that

| N(A) |≥| G | c−1
c

+ |A|
c

for every A ⊆ V (G), A 6= φ.
Proposition 2.5: If | G |= n (≥ 1), and the connectivity of G is k (≥ 0) (so that G is
k-cnnected but not (k+1)-connected), then bind(G) ≤ n+k

n−k .

On the basis of these results in [47], Woodall gave a sufficient condition for the existence
of a Hamiltonian circuit.

Theorem 2.1: Let G be a graph on n vertices such that bind(G) ≥ c
a) If c ≥ 3

2
, then G has a Hmiltonian circuit.

b) If 1 < c ≤ 3
2
, then G contains a circuit of length at least 3(n−1)(c−1)

c
, unless G consists

either of two copies of K4 with exactly one edge joining them, in which case the formula
gives 41

2
and 41

5
respectively, and the longest circuit has length four.
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Theorem 2.1 suggest the following conjectures:

Conjecture 2.1: If G is a graph on n vertices such that bind(G) ≥ c, (1 ≤ c ≤ 3
2
),

where n and c are sufficiently large ( the precise conditions to be determined), and if G

contains a circuit of length m < 3(n−1)(c−1)
c

, then G contains a circuit of length m+1.
Conjecture 2.2. If bind(G) ≥ 3

2
, then G contains a triangle.

Conjecture 2.3: If bind(G) ≥ 3
2
, then G is pancyclic (i.e., contains a circuit of every

length m, 3 ≤ m ≤| G |).

The figure 3
2

in Conjectures 2.2 and 2.3 is the least possible, in view of graphs of the
following form: the vertices are spaced regualrly round the cicumference of a circle, and
each vertex v is joined to all the vertices strictly within the arc of length 2

3
π whose mid-

point is diametrically opposite v. The conclusion of Conjecture 2 certainly follows if
bind(G) ≥ 1

2
(1 +

√
5).

3. TOUGHNESS:
In 1972, Chvátal [6] introduced the concept of the toughness of a graph. It measures in
a simple way how tightly various pieces of a graph hold together; therefore he called it
toughness. Let G be a graph and t a real number such that the implication ω(G− A) >
1 ⇒| A |≥ t · ω(G − A) holds for each set A of vertices of G. Then G will be said to be
t-tough.

Proposition 3.1: G ⊂ H ⇒ t(G) ≤ t(H).

Thus toughness is a nondecreasing invaiant whose values range from zero to infinity. A
graph G is disconnected if and only if t(G) = 0; G is complete if and only if t(G) = +∞.

Proposition 3.2: t ≥ κ
α

.
Proposition 3.3: If G is not complete, then t ≤ 1

2
κ.

Proposition 3.4: If G is not complete, then t ≤ n−α
α

.
Proposition 3.5: m ≤ n⇒ t(Km,n) = m

n
.

Theorem 3.1: t(Km ×Kn) = 1
2
(m+ n)− 1, (m,n ≥ 2).

Proposition 3.2, 3.3 indicate a relationship between toughness and connectivity. Another
indication of this relationship is given by:

Theorem 3.2: t(G2) ≥ κ(G).
Corollary 3.1: If m is a positive integer and n = 2m, then t(Gn) ≥ 1

2
nκ(G).

Proposition 3.6: Every hamiltonian graph is 1-tough.

Unfortunately, the converse of Proposition 3.6 holds for graphs with at most six vertices
only. Eventhough its converse in general does not hold, one may wonder what additional
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conditions placed upon a 1-tough graph G would imply the existence of hamiltonian cy-
cle in G. As in next conjecture, such conditions may have the flavour of Ramsey’s theorem.

Conjecture 3.1: Every t-tough with t > 3
2

is hamiltonian.

The toughness has been studied extensively; see for example [11,12,13,20,21]. Woodall
in[47] proved the following proposition:

Proposition 3.7. bind(G) ≤ t(G) + 1.

4. INTEGRITY:
The integrity of a graph G was introduced by Barefoot, Entringer and Swart in [2]
as a useful measure of the vulnerability of G. The integrity of a graph G is given by
I(G) = min(| S | +τ(G−S), where the minimum is taken over all vertex cutsets A of G,
τ(G− S) is the maximum number of vertices in a component of G-S. Integrity has been
studied in numerous papers including [1,8].

5.TENACITY:
The tenacity is a new invariant for graphs. It is another vulnerability measure, incorpo-
rating ideas of both toughness and integrity. The tenacity of a graph G, T(G) is defined

by T (G) = min{ |A|+τ(G−A)
ω(G−A) }, where the minimum is taken over all vertex cutset A of G,

G-A is the graph induced by the vertices of V-A, τ(G−A) is the number of vertices in the
largest component of the graph induced by G-A and ω(G− A) is the number of compo-
nents of G-A. A connected graph G is called T-tenacious if | A | +τ(G−A) ≥ Tω(G−A)
holds for any subset A of vertices of G with ω(G − A) > 1. If G is not complete, then
there is a largest T such that G is T-tenacious; this T is the tenacity of G. On the other
hand, a complete graph contains no vertex cutset and so it is T-tenacious for every T.
Accordingly, we define T (Kp) = ∞ for every p (p ≥ 1). A set A ⊂ V (G) is said to be a

T-set of G if T (G) = |A|+τ(G−A)
ω(G−A) .

The tenacity has been studied extensively; see for example [20-33].
Without attempting to obtain the best possible result, we can prove quite easily the fol-
lowing relation between T(G) and t(G). This result gives us a number of corollaries.

Theorem 5.1: For any graph G, T (G) ≥ t(G) + 1
α(G)

.

Proof: Let A ⊆ V (G) be a t-set and B ⊆ G be a T-set. Then |B|+τ(G−B)
ω(G−B)

≥ |B|
ω(G−B)

+
1

ω(G−B)
+ ≥ |A|

ω(G−A) + 1
α(G)

.

Proposition 5.1: If G is Hamiltonian-connected and n ≥ 3, then T (G) > 1.
Proof: By Proposition 3.6, every Hamiltonian graph is 1-touph. Hence t(G) ≥ 1. But if
G is Hamiltonian-connected and p ≥ 3 then G is Hamiltonian. Therefore T (G) > 1.

The following theorem, proved by Chvátal and Erdös [7], enable us to relate Proposition
5.1 to the connectivity and the independence number of a graph.



113 D. Moazzami / JAC 50 issue 1, June 2018, PP. 109 - 118

Theorem 5.2: (Chvátal and Erdös). If G is k-connected and k > α, then G is
Hamiltonian-connected.

Thus from Proposition 5.1 we have three possibilities for a graph G:

1) 1 < κ(G)
α(G)

< κ(G)+1
α(G)

≤ T (G)

2) κ(G)+1
α(G)

≤ 1 ≤ T (G)

3) κ(G)+1
α(G)

≤ T (G) < 1

By Proposition 5.1, graphs satisfying the third inequality are not Hamiltonian-connected.
By Theorem 5.2, graphs satisfying the first inequality are Hamiltonian-connected. The
cycle Cp, p ≥ 6, satisfies the second inequality but is not Hamiltonian-connected while
the graph C2

p , p ≥ 10, satisfies the second inequality and is Hamiltonian-connected.

In [5] Chartrand, Kapoor and Lick considered some conditions necessay for a graph to be
n-Hamiltonian. Let graph G be m-connected. By definition every Hamiltonian graph is
2-connected. Since the removal of any n vertices from an n-Hamiltonian graph G results
in a Hamiltonian graph, it follows that G is (n+2)-connected.

Theorem 5.3: If G is n-Hamiltonian then T (G) ≥ 1 + n+1
α(G)

.

Proof: Let A be a cutset of G. We know that | A |≥ n+ 2. Let An be an n-vertex subset
of A. Since G is n-Hamiltonian, G − An has a Hamiltonian cycle C. The components of
C-A are disjoint paths P1, · · · , Pr. At least two vertices of A lie on C. Let v be one of
these vertices. If we start at v and travel around C in a definite direction and return to
v, we traverse each Pi exactly once. Let ui be the next vertex of C encountered after
having passed through Pi in the chosen direction. Then u1, · · · , ur are distinct vertices of
A. Thus, | A |≥ r + n. Also the union of the Pi’s includes all the vertices of G-A. Hence

ω(G−A) ≤ r. Thus we have ω(G−A) ≤ r ≤| A | −n, and so |A|+1
ω(G−A) ≥ 1 + n+1

ω(G−A) . Since

ω(G− A) ≤ α(G) for any A, the theorem follows.

To relate Theorem 5.2 to the connectivity of G, we use a generalization of the following
theorem of Chvátal and Erdös [7].

Theorem 5.4: (Chvátal and Erdös). If G is k-connected and k ≥ α, then G is Hamilto-
nian.
Theorem 5.5: (Molluzzo [34]). If G is k-connected and for any integer n, k − n ≥ α,
then G is n-Hamiltonian.

For such k and n, we have the following three possiblities for a graph G:

1) 1 + n+1
α(G)
≤ κ(G)+1

α(G)
≤ T (G)
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2) κ(G)+1
α(G)

≤ 1 + n+1
α(G)
≤ T (G)

3) κ(G)+1
α(G)

≤ T (G) < 1 + n+1
α(G)

If G satisfies the third inequality it is not n-Hamiltonian by Theorem 5.3. If G satisfies
the first inequlity then G is n-Hamiltonian by Theorem 5.5. Define the graph Ck

p for any
positive k as follows: V (Ck

p ) = V (Cp) = {0, 1, 2, · · · , p − 1} and two vertices i and j are
adjacent if and only if | i − j |≤ k. The graph Cn+2

p , for p sufficiently large, satisfies
the second inequality and is n-Hamiltonian while the graph Gp,2, defined below, for p
sufficiently large, satisfies the second inequality and is not n-Hamiltonian.

The graph Gp,m, with 1 ≤ m ≤ p−1
2

, has p vertices and vertex v which is adjacent to
all vertices of the two complete subgraphs, copies of Km and Kp−m−1, in other words we
have Gp,m

∼= K1 + (Km ∪Kp−m−1).

Now we can discuss about tenacity and its operation on graphs. If the removal of a vertex
from a graph results in a complete graph, the tenacity becomes infinite. On the other
hand, the removal of a vertex cannot lower by too much. In [9] we proved the following
two theorems and corollaries:

Theorem 5.6: For any nontrivial, noncomplete graph G with n vertics and any ver-
tex v, T (G− v) ≥ T (G)− 1

2
.

The following theorem allow us to find the tenacity of several important classes of graphs.

Theorem 5.7: If G is a bipartite, r-regular, r-connected graph on n vertices, then
T (G) = n+2

n
.

This result gives several interesting corollaries.

Corollary 5.1: If G1 is a bipartite, d-regular, d-connected graph with n1 vertices and G2

is a bipartite, q-regular, q-connected graph with n2 vertices, then T (G1 ×G2) = n1n2+2
n1n2

.

Corollary 5.2: For any integer n, T (Qn) = 2n+2
2n

.
Corollary 5.3: For any integers n and m, T (Cn × Cm) = nm+2

nm
.

Corollary 5.4: For any even integer n, T (Cn ×K2) = n+1
n

.

We next obtain some bounds on the tenacity of products of graphs. Note that the first
inequality in the following theorem is a corollary to Theorem 5.1

Theorem 5.8: If n ≥ m, then m2+mn−2m+2
2m

≤ T (Km ×Kn) ≤ mn−n+d n
m
e

m
.

Proof: By Theorem 3.1, t(Km ×Kn) = m+n−2
2

. It is easy to see that α(Km ×Kn) = m.
Let V (Kn) = {1, 2, 3, · · · , n} and V (Km) = {1, 2, 3, · · · ,m}. Then V (Km × Kn) =
{(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Also let n = am + b, for 0 ≤ b < m, so if b = 0 then
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a = d n
m
e = n

m
and otherwise a + 1 = d n

m
e. Now, if b = 0, then define the sets Wi as

Wi = {(i, ia− a+ 1), · · · , (i, ia)} for 1 ≤ i ≤ m , otherwise define the sets Wi as follows:

Wi =

{
{(i, ia+ i− a), · · · , (i, ia+ i)} 1 ≤ i ≤ b

{(i, ia+ b− a+ 1), · · · , (i, ia+ b)}, b+ 1 ≤ i ≤ m,

and let W =
m⋃
i=1

Wi. Define A = V (G)−W and so | A |= mn− n. It is easy to see that

the Wi, 1 ≤ i ≤ m, are the components of G-A and so τ(G−A) = d n
m
e and ω(G−A) = n.

The result follows.
Corollary 5.5: For any integer n, T (Kn ×Kn) = n− 1 + 1

n
.

Recently proved the following:

Corollary 5.6: If n ≥ m ≥ 2 then T (Km ×Kn) =
mn−n+d n

m
e

m
.

CONCLUDING REMARKS:

The vulnerability of a communication network composed of processing nodes and com-
munication links is of prime importance to network designers. As the network begins
losing links or nodes there is a loss in it’s effectiveness. Normally new nodes or links
are added so that the network is reconstructed in an attempt to regain it’s effectiveness.
Thus, communication networks must be constructed to be as stable as possible, not only
with respect to the initial disruption, but also with respect to the possible reconstruction
of the network.
Since such a network can be represented by a graph, G, with a vertex set, V(G), and
an edge set, E(G), many graph theoretical parameters have been used to describe the
vulnerability of communication networks. Most notably, the parameter called connectivity
have been frequently used. The difficulty with this parameter is that they do not take
into account what remains after the graph is disconnected. That is, two graphs with the
same number of vertices and the same connectivity may result in entirely different forms
after a minimum disconnected set of vertices is removed. One maybe totally disconnected
while the other may consist of a few very stable components, and thus be much easier to
reconstruct. Consequently, a number of other parameters have been introduced to cope
with this difficulty. The parameters considered in this paper which were introduced in
different references, in order to deal with this problem.
In [18], we compared integrity, connectivity, binding number, toughness and tenacity for
several classes of graphs. The results suggest that tenacity is a most suitable measure of
vulnerability in that for many graphs it is best able to distinguish between graphs that
intuitively should have different levels of vulnerability.
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