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1 Introduction

Conflict-free colouring of graphs and hypergraphs was defined and studied in [12, 23],
motivated by its application in the frequency assignment problem in cellular networks.
A conflict-free k-colouring of a hypergraph assigns one of k different colours to some of
the vertices of the hypergraph such that, for every edge, there is a vertex whose colour is
unique.
A conflict-free k-colouring of a graph assigns one of k different colours to some of the
vertices of the graph such that, for every vertex, there is a vertex in its neighbourhood
whose colour is unique.
Most of the research on conflict-free colouring has considered geometric graphs [2, 3, 4,
8, 9, 11, 12, 16, 17, 19, 23] and some others consider abstract graphs and hypergraphs
[1, 6, 15, 18, 21].
Pach and Tardos in [21] proved that O(log2 n) colours is sufficient for conflict-free colour-
ing of a graph with n vertices. Gargano and Rescigno show that finding a conflict-free
colouring with the minimum number of colours for general graphs is NP-complete. In [1],
conflict-free colouring of graphs is studied when every vertex is considered as a member of
its neighbourhood. By this consideration, for k = 1, 2, it is proved that having a conflict-
free k-colouring even for planar graphs is NP -complete and it is shown that three colours
is always sufficient for a conflict-free colouring of every planar graph. For a more detailed
overview, see [1].
With the motivation of using directed networks, in this paper, we have defined pointed
conflict-free partial colouring for digraphs. By our definition conflict-free colouring of
hypergraphs and also proper colouring of graphs can be reduced to conflict-free colouring
of digraphs. Therefore the conflict-free colouring problem for digraphs is not easier than
the proper colouring problem of graphs.
After giving preliminaries in the second section, in the third section, we will prove that
PCFP k-colourability of one-way bipartite digraphs is an NP-complete problem for any
k > 0. In the fourth section, we will prove that every one-way bipartite planar digraph D
has a PCFP 6-colouring. Furthermore, it is proved that every one-way bipartite planar
digraph whose vertices each have in-degree zero or greater than one has a PCFP 5-
colouring and every one-way bipartite planar digraph whose vertices each have in-degree
zero or greater than two has a PCFP 2-colouring. In the fifth section, for paths and
cycles with n vertices, we will show how to find a conflict-free colouring with the minimum
number of colours in O(n) time and also how to find a PCFP 2-colouring for a given tree.
In the sixth section, two algorithms will be proposed for finding a conflict-free colouring of
a digraph such that the number of used colours is not more than the maximum out-degree
of the vertices. In the seventh section, PCFP dynamic colouring will be considered and
in the last section, the paper will be concluded.
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2 Preliminaries

A proper k-colouring of a graph G is a colouring of the vertices of G with k or fewer
colours such that no adjacent vertices have the same colour.
A conflict-free partial (CFP) k-colouring of a hypergraph assigns one of k different colours
to some of the vertices of the hypergraph such that, for every edge, there is a colour that
is assigned to exactly one vertex in the edge.
If v is a vertex of a graph, define N(v) to be the set of all vertices adjacent to v. If v is a
vertex of a digraph, define IN (v) to be the set of all in-neighbours of v.
For a graph G(V,E), the hypergraph whose vertex set is V and whose edge set is {N(v) |
v ∈ V } is denoted by H ·(G). A pointed conflict-free partial (PCFP) k-colouring of a
graph G is a CFP k-colouring of H ·(G).
For a digraph D(V,A), the hypergraph whose vertex set is V and whose edge set is
{IN (v) | v ∈ V } is denoted by H ·(D). A pointed conflict-free partial (PCFP) k-colouring
of a digraph D is a CFP k-colouring of H ·(D). Considering a PCFP k-colouring of a
digraph, a vertex u is a PCFN of a vertex v iff u is an in-neighbour of v with unique
colour.
In a digraph a vertex with no out-neighbours and at least one in-neighbour is called an
in-vertex and a vertex with no in-neighbours and at least one out-neighbour is called an
out-vertex.
A digraph is a bipartite digraph if whose underlying graph is a bipartite graph. A digraph
is a one-way bipartite digraph if whose each none isolated vertex is an in-vertex or an
out-vertex.
Let H be a hypergraph with vertex set V and edge set E. Let D(H) be the one-way
bipartite digraph whose vertex set is V ∪E and there is an arc from vertex x to edge e if
e contains x. A PCFP k-colouring of D(H) corresponds to a CFP k-colouring of H.
If D is an arbitrary digraph, D(H ·(D)) is a one-way bipartite digraph and a PCFP
k-colouring of D corresponds to a PCFP k-colouring of D(H ·(D)).
The number of vertices of D(H ·(D)) is not less than the number of vertices of D and the
number of arcs of D(H ·(D)) is not more than the number of arcs of D. So D(H ·(D))
is not denser than D. There are lots of digraphs D which are not planar yet D(H ·(D))
is planar. For example, consider D0 be the one-way bipartite digraph whose underlying
graph is K3,3; after removing isolated vertices of D(H ·(D0)), the digraph obtained is a
one-way bipartite digraph whose underlying graph is K3,1. So D(H ·(D0)) is planar while
D0 is not planar.
A digraph D is called semi-planar iff D(H ·(D)) is planar.
For one of our NP-hardness proofs, we use the POSITIVE PLANAR 1-IN-3-SAT problem
which was introduced and proved to be NP-complete in [20]. Let φ be a formula in 3-
CNF with clause set C = {c1, c2, ..., cl} and variable set X = {x1, x2, ..., xn}. Graph
G(φ) with vertex set X ∪ C and edge set E(φ) = {xicj | xi ∈ X, cj ∈ C, xi occurs in
cj}∪ {xixi+1 | i = 1, ..., n} is the associated graph of φ. The formula φ is called backbone
planar if G(φ) is planar and positive planar iff it is both positive and backbone planar.
The problem is whether φ is 1-in-3-satisfiable; i.e., is it possible to assign boolean values



122 M. Hasheminezhad / JAC 50 issue 1, June 2018. PP. 119 - 131

to the variables such that each clause contains exactly one true variable.
For simplicity without lost of generality, in this paper we only consider connected digraphs.

3 Complexity results

In this section, we prove some complexity results for the problem of PCFP colouring of
digraphs. The first theorem shows that PCFP 1-colourability is an NP-complete problem
even for one-way bipartite graphs.

Theorem 1. It is NP-complete to decide whether a one-way bipartite planar digraph
whose in-vertices all have in-degree 3 has a PCFP 1-colouring.

Proof. Membership in NP is obvious. The proof of NP-hardness is done by a reduction
from the POSITIVE PLANAR 1-IN-3-SAT problem. Consider a POSITIVE PLANAR
1-IN-3-SAT problem φ.
In graph G(φ), remove all the edges in the set {xixi+1 | i = 1, ..., n} and direct every edge
xicj from xi to cj. The resulting digraphD is a one-way bipartite digraph whose in-vertices
all have in-degree 3. Digraph D has a PCFP 1-colouring iff φ is 1-in-3-satisfiable.

The following theorem shows that PCFP (k − 1)-colourability problem for digraphs is at
least as hard as proper k-colourability problem for graphs.

Theorem 2. For every integer k > 0, the proper k-colouring problem for graphs can be
reduced to PCFP (k − 1)-colouring problem for one-way bipartite digraphs.

Proof. Let G be a graph. Replace each edge uv of G with a vertex wuv and two arcs
(u,wuv) and (v, wuv). The resulting digraph is a one-way bipartite digraph D. Consider
a proper k-colouring of G and remove the colour of every vertex which is coloured with
colour k. Since, for every in-vertex wuv, at least one of u and v is not coloured with colour
k, then wuv has a PCFN.
Conversely, considering a PCFP (k−1)-colouring Γ of D, colour all the uncoloured vertices
with colour k. Since for each edge uv at least one of them is coloured in Γ, so u and v
are coloured with different colours.

The following are suggested by Theorem 2.

Proposition 1. It is NP-complete to decide whether a one-way bipartite digraph whose
in-vertices all have in-degree 2 has a PCFP k-colouring for any k > 1 .

Proposition 2. Every one-way bipartite planar digraph whose in-vertices all have in-
degree 2 has a PCFP 3-colouring.

Proof. These follow from Theorem 2 and the fact that every planar graph has a proper
4-colouring [5].

Proposition 3. It is NP-complete to decide whether a one-way bipartite planar digraph
whose in-vertices all have in-degree 2 has a PCFP 2-colouring.
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Proof. It is NP-complete to decide whether a planar graph has a proper 3-colouring [14].
So by Proposition 2, the proposition is proved.

Proposition 4. There are some planar digraphs that need at least 3 colours for a pointed
conflict-free colouring.

Proof. For graph K4, replace each edge uv of G with a vertex wuv and two arcs (u,wuv) and
(v, wuv). The resulting digraph is planar and needs three colours for a PCFP colouring.

4 PCFP colouring of one-way bipartite planar and

semi-planar digraphs

For a plane graph G, a CF k-colouring of G with respect to faces is a k-colouring of G
such that for each face f of G, at least one of the vertices on the boundary of f has a
unique colour.
In this section we need to use a theorem which is proved in [13] and is about CF k-colouring
of a graph with respect to faces.

Theorem 3 ([13]). Every simple plane graph has a 3-colouring with colours black, blue
and red such that
(1) each face is incident with at most one red vertex, and
(2) each face that is not incident with a red vertex is incident with exactly one blue vertex.
(3) the end-vertices of an edge are not both coloured blue.

Note that in [13] property (3) is not in the theorem but in the lemma used for proving
the theorem.

Theorem 4. Every one-way bipartite planar digraph whose in-vertices each have in-degree
at least 3 has a PCFP 2-colouring. Therefore, every semi-planar digraph D whose vertices
with at least one in-neighbour have in-degree at least 3 has a PCFP 2-colouring.

Proof. Let D be a one-way bipartite planar digraph whose in-vertices each have in-degree
at least 3. Embed D in the plane. Let G be the graph whose vertex set is the set of all
out-vertices of D and two vertices are adjacent iff they are in-neighbours of at least one
in-vertex in the same face of D. Graph G is a simple plane graph. By Theorem 3, G has
a 3-colouring with colours black, blue and red such that
(1) each face is incident with at most one red vertex, and
(2) each face that is not incident with a red vertex is incident with exactly one blue vertex.
This colouring is a PCFP 3-colouring of D such that every in-vertex of D has a PCFN
with colour red or blue. Call this colouring Γ. Considering Γ if we remove the colour of
every vertex coloured by black, the resulting 2-colouring of D is a PCFP 2-colouring.

In the next theorem we try to find a PCFP 5-colouring for a one-way bipartite planar
digraph whose in-vertices each have at least two in-neighbours.
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Theorem 5. Every one-way bipartite planar digraph whose in-vertices each have in-degree
at least 2 has a PCFP 5-colouring. Therefore, every semi-planar digraph D whose vertices
with at least one in-neighbour have in-degree at least 2 has a PCFP 5-colouring.

Proof. Define graph G as in the proof of Theorem 4. Graph G is a simple graph and by
Theorem 3, G has a 3-colouring with colours black, blue and red such that
(1) each face is incident with at most one red vertex,
(2) each face that is not incident with a red vertex is incident with exactly one blue vertex,
and
(3) two end vertices of an edge are not both coloured with blue.
If we uncolour vertices of D which are coloured with black, every vertex with in-degree
more than 2, has a PCFN. Let v be an in-vertex with in-degree 2 and with no PCFN. By
(1), the in-neighbours of v are not coloured with red and by (3), they are not coloured with
blue. So the in-neighbours of v are uncoloured. Let G′ be the subgraph of G inducing on
V ′ = {u | u is a vertex of D which is an in-neighbour of a vertex with no PCFN}. Find
a proper 4-colouring of the plane graph G′ with colours black, green, yellow and white.
Now, remove the colour of every vertex coloured with white. The resulting 5-colouring is
a PCFP 5-colouring of D.

Proposition 5. Every one-way bipartite planar digraph D, has a PCFP 6-colouring.
Therefore, every semi-planar digraph D has a PCFP 6-colouring.

Let D be a bipartite digraph. If each of the maximal one-way bipartite subdigraphs
of D is planar then D is semi-planar and following is true by Theorems 4 and 5 and
Proposition 5.

Proposition 6. Let D be a bipartite digraph whose maximal one-way bipartite subdigraph
are all planar. Then D has a PCFP 6-colouring and also:
(1) if each vertex with at least one in-neighbour has in-degree at least two, D has a PCFP
5-colouring,
(2) and if each vertex with at least one in-neighbour has in-degree at least three, D has a
PCFP 2-colouring.

Since for each hypergraph H, a CF k-colouring of H corresponds to a PCFP k-colouring
of digraph D(H), therefore we can propose the following by Theorems 4 and 5 and Propo-
sition 5.

Proposition 7. Let H be a hypergraph. If D(H) is planar, then H has CFP 6-colouring
and also:
(1) if each edge has cardinality at least two, H has a CFP 5-colouring,
(2) and if each edge has cardinality at least three, H has a CFP 2-colouring.
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5 PCFP colouring of simple digraphs

5.1 PCFP colouring of paths

Theorem 6. There is a linear time algorithm that finds a PCFP colouring with the
minimum number of colours for any given path P .

Proof. If the length of path P is one, colour the out-vertex with colour 1. Otherwise, if
P contains a directed subpath with length at least 2, then let v1, v2, v3 be such a directed
subpath. Divide P to two subpaths P1 and P2 such that P = P1 ∪P2, P1 ∩P2 = {v2}, P1

contains v1 and P2 contains v3. Recursively, find PCFP colourings with minimum number
of colours for P1 and P2. Colouring v2 with its colour in P2 and colouring other vertices
as their colour in P1 and P2 gives a PCFP colouring of P with the minimum number of
colours.
If P contains no directed subpaths with length at least 2, so every vertex of P is an
in-vertex or an out-vertex and they appear in P alternately. If one of the end vertices is
an out-vertex, let u, v and w be three first vertices from that end of P such that v is an
in-vertex, u is an out-vertex and also u is an end vertex of P . Remove u and v, find a
PCFP colouring with the minimum number of colours. Then insert the removed vertices.
If w is uncoloured, colour u with colour one. In the case that both end vertices of P are
in-vertices, let u1, ..., ul, be out-vertices of P in the order they appear in P . Colour u2i−1,
i = 1, ..., [(l + 1)/2], with colour 1. If l is an even number, colour ul with colour 2.

5.2 PCFP colouring of cycles

Theorem 7. There is a linear time algorithm that finds a PCFP colouring with the
minimum number of colours for any given cycle C .

Proof. If the length of cycle C is two, in the case that C is directed, colour both vertices
with colour 1 and otherwise colour the out-vertex with colour 1. If the length of cycle C
is more than 2 and C contains a directed subpath with length at least 2, then let v1, v2, v3
be such a directed subpath. Remove v2 and insert vertices v′ and v′′ and arcs (v1, v)′ and
(v′′, v3), find a PCFP colouring with the minimum number of colours for the resulting
path. Colour vertices of C as in the path and colour v2 with the colour of v′′.
Otherwise, let u1, ..., ul, be the out-vertices of C in the order they appear on C. Colour
u2i−1, i = 1, ..., [(l − 1)/2], with colour 1. If l is an odd number, colour ul with colour
2.

5.3 PCFP colouring of trees

Theorem 8. There is a linear time algorithm that finds a PCFP 2-colouring for a given
tree T .

Proof. Let v be an out-vertex of T with out-neighbours v1, ..., vl. Removing v gives l
subtrees T1, ..., Tl. Suppose Ti be the subtree including vi. Find a PCFP 2-colouring of
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Ti such that if vi is not an out-vertex in Ti, then it has a PCFN coloured with colour 1.
By colouring v with colour 2 we obtain a PCFP 2-colouring of T .

6 Algorithms

6.1 Algorithm 1

Consider a digraph D with vertex set {v1, v2, ..., vn}. Start with v1 and continue in order.
For vertex vi, if vi has at least one out-neighbour which does not have any PCFN yet,
colour vi with the least colour c such that no out-neighbour of vi is labelled by c∗. Label
all unlabelled out-neighbours of vi with label c∗. It is clear that the number of colours
used by the algorithm is not more than the maximum out-degree of D and the complexity
of the algorithm is O(m).

6.2 Algorithm 2

Let D be a digraph with vertex set V such that D has no vertex with only one in-
neighbour. Consider a graph G whose vertex set is V and each of its edges is labelled
such that for every three vertices u, v and w of G, there is an edge uv with label w iff
u, v ∈ IN (w).
Choose a maximal independent set I1 in V and colour its vertices with colour one. Remove
all the vertices in I1 from G. Then for each vertex v in I1 and every label l of an edge
incident to v, remove all edges of G labelled with l. Using a new colour, repeat this
procedure until the resulted graph has no edges.
Consider the end of a step. For each vertex v of D which has not yet been removed,
vertex v has at least one out-neighbour w in D such that w has at least one in-neighbour
which is coloured in this step. So at least one of the out-neighbours of v which had not
any PCFN at the start of this step, has a PCFN at the end of the step. Therefore the
number of colours used by the algorithm is not more than the maximum out-degree of
vertices of D. We expect that the algorithm has even better experimental performance.
If digraph D has some in-vertices with only one in-neighbour, first remove the incoming
arcs of these vertices, then find a PCFP colouring of the resulting digraph. Reinsert
the removed arcs. Let v be a vertex with exactly one in-neighbour u such that u is not
coloured. There is at least one colour c not greater than the out-degree of u such that if
u is coloured with c then every out-neighbour of u has at least one PCFN.

7 Dynamic PCFP colouring

In this section, we consider a digraph with a given PCFN colouring and investigate after
deletion or insertion of a vertex or an arc how to recolour the digraph to obtain a PCFP
colouring.
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7.1 Vertex insertion

Let D be a digraph with a given PCFP colouring with colours in the set C = {1, ..., k}.
Suppose a vertex v with some in-neighbours and some out-neighbours is inserted into D.
We will recolour some vertices to find a PCFP colouring of the new digraph.
At first we need to define some notations. For a vertex u and an out-neighbour x of u,
define L(u, x) = {c ∈ C | if we colour u with colour c, thenx still has at least a PCFN}.
It is easy to see if x has at least two PCFN other than u then L(u, x) = C and otherwise
if x has exactly one PCFN z(x) other than u then L(u, x) = C − {the colour of z(x)}
and in the case u is the only PCFN of x then L(u, x) = {c ∈ C | c is not the colour of an
in-neighbour of x except u}. Note that if u = v, the case that v is the PCFN of x does
not happen; instead v can be the only in-neighbour of x and in this case L(v, x) = C.
Define L(u) = ∩u∈IN (x)L(u, x) and L = ∪u∈IN (v)L(u).
For a colour c ∈ C if there is an in-neighbour of v coloured with c define V (c) = {u ∈
IN (v) | u is coloured with c}.
In part A, we try to find a PCFN for v, if v has at least an in-neighbour and in part
B, we try to colour v with a suitable colour in case v has an out-neighbour whose only
in-neighbour is v.
Part A: If v has no in-neighbour or has a PCFN, we are done. Otherwise find set L.
If there is a vertex u ∈ IN (v) such that L(u) contains a colour l∗ which is not used for
any in-neighbour of v, then colour u with l∗. Otherwise, for each colour c used by at least
one in-neighbour of v consider the induced subdigraph D(c) of D containing vertices in
V (c) and their out-neighbours except v. A component of D(c) is a good component if
there is a colour c′ other than c which is in L(w), for every vertex w in the component.
Call the colour c′ a common colour.
A component of D(c) is a not bad component if there is a colour c′ other than c which
is in L(w), for every vertex w in the component except for one of them. Call that vertex
the bad vertex and call the colour c′ the common colour.
If there is a colour l which is used for at least two in-neighbours of v and all of the
components of D(l) are good. Choose a vertex u of V (l), and recolour all the vertices
of V (l) except u such that not considering u all the vertices of V (l) which are in a same
component of D(l) coloured with the same colour and every vertex x is coloured with a
colour in L(x).
Suppose there is a colour l which is used for at least two in-neighbour of v and D(l) has
exactly one not bad component with bad vertex w and all other components of D(l) are
good. For any component C of D(l), if D(l) does not contain w, recolor all the vertices
of C with a common color of C. Otherwise, recolor all the vertices of C except w with a
common color of C.
If none of the above cases happens, colour one of the in-neighbours of v with colour k+ 1.
Part B: If v has at least one out-neighbour such that v is its only in-neighbour, find L(v).
If L(v) is not empty, colour v with a colour in L(v) and otherwise, colour v with colour
k + 1.
We call the explained algorithm vertex-insertion. This algorithms takes O(kd(v)) where
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d(v) is the number of inserted arcs.

Theorem 9. Algorithm vertex insertion recolours some of the vertices of D such that
every vertex with at least one in-neighbour has a PCFN.

Proof. In the cases: (1) vertex v has a PCFN without recolouring, (2) there is a vertex
u ∈ IN (v) such that L(u) contains a colour l∗ which is not used for any in-neighbour of v
and (3) the algorithm uses colour k+ 1 and the proof is obvious, so we consider the other
case.
It is obvious that v has a PCFN. Suppose the algorithm recolours the vertices u1, ..., ut.
Let x be a vertex other than v with at least one in-neighbour in the set U = {u1, ..., ut}.
If x has more than one in-neighbour in U , then l is not the colour of a PCFN of x and all
in-neighbours of x which are in U are in the same component of D(l) and after recolouring
any of them are coloured with l or another colour l′. If x has exactly one PCFN before
recolouring so the colour of PCFN of x is not l or l′, then after recolouring that vertex
is still a PCFN of x and if x has more than one PCFN before recolouring so the colour
of at least one of the PCFN of x is not l and l′, so after recolouring that vertex is still a
PCFN of x.
Finally suppose that x has exactly one in-neighbour w in U . Then since w is coloured
with a colour in L(w, x), so x has at least a PCFN after recolouring.

Using the insertion vertex algorithm, we can present some PCFP colouring algorithms.
One idea is starting with one vertex and inserting the other vertices one by one. The
other idea is investigating the planarity of D(H ·(D)) for given digraph D. If D(H ·(D))
is planar, we find a PCFP colouring of D as in the Theorems 4 and 5 and Proposition 5,
otherwise, we remove some in-vertices of D(H ·(D)) one by one to obtain a planar digraph
D′. Then after finding a PCFP colouring of D′, we insert the removed vertices one by
one.

7.2 Vertex deletion

Consider removing a vertex u of a digraph with a given PCFN colouring. If u is uncoloured
we are done. Otherwise for each vertex v with no PCFN except u, do part A of the vertex
insertion algorithm.

7.3 Arc insertion

Consider inserting an arc (u, v) of a digraph with a given PCFN colouring. If v has only
one PCFN and u is coloured with the PCFN colour of v, do Part A of the vertex insertion
algorithm for v.

7.4 Arc deletion

Consider removing an arc (u, v) of a digraph with a given PCFN colouring. If u has been
the only PCFN of v, do Part A of the vertex insertion algorithm for v.
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8 Conclusion

In this paper, it is proved that PCFP k-colourability even for one-way bipartite digraphs
is NP-complete, for any k > 0. Since PCFP k-colouring of a digraph D corresponds to
PCFP k-colouring of D(H ·(D)), it is good to investigate about the structure of D(H ·(D)).
Specially it would be interesting to characterize the digraphs D such that D(H ·(D)) is
planar. We know that there are some planar digraphs which need three colours for a
PCFP colouring but it would be interesting to know if three colours is always sufficient.
Using the two presented algorithm, we proved that every digraph has a PCFP k-colouring
such that k is not more than the maximum out-degree. It would be good to find better
upper bounds.
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[22] Pach, J. and Tóth, G. Conflict free colorings. Discrete and Computational Geometry,
The Goodman Pollack Festschrift (2003) 665–671.



131 M. Hasheminezhad / JAC 50 issue 1, June 2018. PP. 119 - 131

[23] Smorodinsky, S. Combinatorial problems in computational geometry. PhD thesis,
School of Computer Science, Tel-Aviv University, (2003).


	Introduction
	Preliminaries 
	Complexity results 
	PCFP colouring of one-way bipartite planar and semi-planar digraphs
	PCFP colouring of simple digraphs 
	PCFP colouring of paths
	PCFP colouring of cycles
	PCFP colouring of trees

	Algorithms 
	Algorithm 1
	Algorithm 2

	Dynamic PCFP colouring
	Vertex insertion
	Vertex deletion
	Arc insertion
	Arc deletion

	Conclusion

