تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,004 |
تعداد دریافت فایل اصل مقاله | 97,205,597 |
تحلیل مکانی و زمانی تغییر اقلیم در سالهای آینده و مقایسۀ روشهای ریزمقیاسنمایی SDSM، LARS-WG و شبکۀ عصبی مصنوعی (مطالعۀ موردی: استان خوزستان) | ||
اکوهیدرولوژی | ||
مقاله 9، دوره 5، شماره 4، دی 1397، صفحه 1161-1174 اصل مقاله (1.39 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2018.258209.885 | ||
نویسندگان | ||
راضیه رحیمی* 1؛ مهدی رحیمی2 | ||
1استادیار دانشکدۀ محیط زیست و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران | ||
2کارشناس ارشد مهندسی منابع آب، گروه مهندسی آبیاری و آبادانی، دانشگاه تهران | ||
چکیده | ||
خشکسالی خطر پیچیدهای است که سبب برهمخوردن تعادل آبی میشود؛ بنابراین بررسی تغییرات اقلیمی و پیشبینی آنها میتواند در امر مدیریت و برنامهریزی مربوط به آن تأثیر زیادی داشته باشد. در تحقیق حاضر برای پایش و پیشبینی خشکسالی منطقۀ خوزستان و نیز بررسی عملکرد مدلهای ریزمقیاس در این منطقه، ابتدا دادههای بارش و دما بهصورت روزانه طی دورۀ 1985-2010 از هشت ایستگاه منتخب در منطقه دریافت شد. سپس، نمایۀ خشکسالی دورۀ مشاهداتی بهوسیلۀ دو شاخص SPI و SPEI محاسبه و نقشۀ پهنهبندی آنها ترسیم شد. در پژوهش حاضر برای پیشبینی خشکسالی از دادههای GCM و مدل HADCM3 تحت دو سناریوی A2 و B1 استفاده شد؛ سپس دادههای بزرگمقیاس GCM با سه مدل SDSM، LARS-WG و شبکۀ عصبی مصنوعی ریزمقیاس شدند. نتایج نشان داد توانایی مدل ریزمقیاس شبکۀ عصبی مصنوعی در شبیهسازی بارش نسبتاً قابل قبولتر از سایر مدلهاست. نتایج آمارۀ من-کندال نشان داد همواره مقادیر پیشبینیشده توسط مدل LARS-WG برای نمایههای SPI و SPEI شیب بیشتری در جهت منفی شدن دارد. با مشاهدۀ نقشۀ پهنهبندی نمایههای خشکسالی استان خوزستان میتوان چنین استنباط کرد که طی دورههای آتی همواره میانگین مقادیر دو شاخص کاهش یافته است، ولی از نظر مکانی تغییر درخور توجهی نداشته است. | ||
کلیدواژهها | ||
تغییر اقلیم؛ شبکۀ عصبی مصنوعی؛ SPEI؛ LARS-WG؛ SDSM | ||
عنوان مقاله [English] | ||
Spatial and Temporal Analysis of Climate Change in the Future and Comparison of SDSM, LARS-WG and Artificial Neural Network Downscaling Methods (Case Study: Khuzestan Province) | ||
نویسندگان [English] | ||
Razieh Rahimi1؛ Mahdi Rahimi2 | ||
1Assistant professor , Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Master of Science in Water Engineering, Irrigation and Reclamation Engineering Department, University of Tehran, Iran | ||
چکیده [English] | ||
Drought is a complex danger. Therefore, the study and prediction of climate change could have a significant role in the management and planning. In this study, at first rainfall and temperature data were obtained daily from the period of 1985-2010 from eight selected stations in the region. The indices during the observation period with SPEI and SPI indexes was calculated using statistical methods and their zoning map was drawn. In this study, GCM data and HADCM3 model under two scenarios A2 and B1 were used for prediction of drought. Then, the GCM large-scale data were downscaled using three methods including SDSM, LARS-WG and artificial neural networks. The results of statistical measures of performance evaluation showed that the ability the ANN model to simulate rainfall is relatively more acceptable than other models. The results of the Man-Kendall statistics for drought indexes show that the predicted values by the LARS-WG model for the SPI and SPEI indexes are consistently more negatively correlated. This can be deduced by observing the zoning map of drought indicators in Khuzestan province that in the coming periods, the mean values of the two indices have always dropped but did not change significantly in terms of spatial. | ||
کلیدواژهها [English] | ||
climate change, SPEI, LARS-WG, SDSM, Artificial Neural Network | ||
مراجع | ||
[1]. Mosaedi A, Mahdi Zade S, Maftah M, Seyyed Ghasemi S. The Effect of Climate Change on Precipitation in Golestan Dam Basin. Water and soil conservation Research. 2011; 18(3). [Persian]. [2]. Keyantash J, Dracup JA. The quantification of drought: an evaluation of drought indices. Bulletin of the American Meteorological Society. 2002; 83(8):1167-80. [3]. Abbasi F, Babaian I, Goli Mokhtari L, Melbosi Sh. Assessment of Climate Change Effects on Iran's Temperature and Precipitation in Decades with the MAGICC-SCENGEN Model. Natural Geography Research. 2010; 42-72. [Persian]. [4]. IPCC. General guidelines on the use of scenario data for climate impact and adaptation assessment. Task Group on Data and Scenario Support for Impact and Climate Assessment. 1999. [5]. Salah al-Din M, Khani T, Mortazavi M. Precipitation and temperature prediction in the Uromieh basin using HadCM3. 12th National Conference on Irrigation and Evaporation Reduction in Kerman. Shahid Bahonar University of Kerman. 2013; [Persian]. [6]. Wilby RL, Harris I. A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK. Water Resources Research. 2006; 1: 42(2). [7]. Modaresi F, Araghinejad Sh, Ebrahimi K, Kholghi M. Assessment of Climate Change Effects on the Annual Water Yield of Rivers: A Case Study of Gorganroud River, IRAN. Journal of Water and Soil. 2011; 25(6): 1365-1377. [Persian]. [8]. Komozep T and Chung Ok. The effects of climate change on the water resources of the Geumho River Basin. Republic of Korea. Journal of Hydro-environment Research. 2014; 8(4): 358–366. [9]. Dehghan Z, Fathian F, Eslamian S. Comparative Assessment of SDSM, IDW and LARS-WG Models for Simulation and Downscaling of Temperature and Precipitation. Majallah-i āb va Khāk. 2017; 29(5):1376-90. [10]. Rajabi A, Sedghi H, Eslamian S, Musavi H. Comparison of LARS-WG and SDSM downscaling models in Kermanshah (Iran). Journal of Ecology, Environment and Conservation. 2010; 16(4): 465-474. [11]. McKee T B, Doesken N J, Kleist J. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology. American Meteorological Society. 1995; 233-236. [12]. Vicente-Serrano SM, Beguería S, López-Moreno JI. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate. 2010; 23(7):1696-718. [13]. Babaeian I, Kouhi M. Agroclimatic Indices Assessment over Some Selected Weather Stations of Khorasan Razavi Province Under Climate Change Scenarios. Journal of Water and Soil. 2012; 26(4):953-967. [Persian]. [14]. Principe JC, Euliano NR, Lefebvre WC. Neural and adaptive systems: fundamentals through simulations. New York. Wiley.2000; 679(29). [15]. Mahsafar H, Maknoon R. Saghafian B. The Impact of Climate Change on Urmia Lake Water Level. Iran-Water Resources Research. 2011; 7(1):5-37. [Persian]. [16]. Sarafroozheh F M, Jalali T, Jalali A. Evaluation of the effects of future climate change on water consumption of wheat in Tabriz. Quarterly Journal of Geographical Space Islamic Azad University. Ahar Branch. 2012; 12(37):81. [Persian]. [17]. Moghadam, Jamali J, Javanmard S, Mehdiyan A, and Treasury L. Drought monitoring on the basis of SPI, decile and normal profile in Sistan and Baluchistan province. Proceedings of the First Conference on Measuring Water-Crisis Solutions. Zabol University, Iran. 2001; 69-80. [Persian]. [18]. Massah Boani AS, Morid S. The effects of climate change on the flow of the Zayandehrud River. Journal of Agricultural Science and Technology. 2005; 9 (4): 17-27. [Persian]. [19]. Zhang XC, Liu WZ, Li Z, Chen J. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios. Agricultural and Forest Meteorology. 2011; 151(10):1297-304. [20]. Alison L K, Richard GJ, Nicholas S R. RCM rainfall for UK flood frequency estimation Climate change results. J Hydrol. 2004; 318: 163-172. | ||
آمار تعداد مشاهده مقاله: 613 تعداد دریافت فایل اصل مقاله: 492 |